
Future Generation Computer Systems 146 (2023) 260–272

t
c
g
i
g
n
e
u
p
u
d
p
p
t
i
c

m
t
o

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

TurboStencil: You only compute once for stencil computation
Song Liu a, Xinhe Wan a, Zengyuan Zhang a, Bo Zhao b, Weiguo Wu a,∗

a School of Computer Science and Technology, Xi’an JiaoTong University, Xi’an, China
b School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK

a r t i c l e i n f o

Article history:
Received 25 September 2022
Received in revised form 28 February 2023
Accepted 17 April 2023
Available online 25 April 2023

Keywords:
Stencil computation
Convolution
Fast Fourier transform
Boundary effect
Data padding
Performance

a b s t r a c t

Stencil computation is an important kind of computational mode that widely used in numeric. It
iteratively updates the values of the spatial grid points over multiple time steps according to a
given pattern. Existing techniques suffer from high complexity of massive iterative computations.
Convolution and fast Fourier transform (FFT) provide the possibility to avoid massive iterations
and reduce time complexity of stencil computation. However, current convolution-based fast stencil
algorithms cannot effectively solve the problems with aperiodic boundary conditions that are common
in practical applications. In this paper, we present a novel algorithm, TurboStencil, for linear stencil
computations with aperiodic boundary condition. TurboStencil provides a padding method, eliminating
the effects of boundary conditions, to enable convolution for all grid points. For symmetric stencil,
TurboStencil only computes once by applying FFT, and thus achieves the time complexity of O(N logN),
where N is the grid data size. For asymmetric stencil, TurboStencil also only computes several times
by employing a divide-and-conquer method and FFT, and exhibits a lower complexity than existing
stencil algorithms. Experimental results demonstrate that TurboStencil outperforms the state-of-the-
art convolution-based fast stencil algorithm by up to 777.1×, 43.2×, and 9.4× for symmetric stencil,
and 12.9×, 2.0×, and 1.3× for asymmetric stencil, respectively, on 1D, 2D, and 3D benchmarks.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Stencil computation is a kind of important scientific compu-
ational mode, which is widely used in various numerical appli-
ation fields. It performs the update on a spatial grid following a
iven pattern, called a stencil, over multiple time steps. Specif-
cally, a stencil defines the pattern that the value of a spatial
rid point at each time step is calculated by the values of its
eighboring points at previous time step. A linear stencil uses
xclusively linear combinations of other points for numerical
pdate. Therefore, stencil computation can effectively solve the
artial differential equations of discrete linear systems [1] to sim-
late the time-varying state of physical models, such as molecular
ynamics [2], transient or unsteady heat conduction [3], image
rocessing [4], combustion [5], elastic wave simulation for geo-
hysics [6]. Due to the importance of stencil computations and
heir massive parallel computing potential, a lot of research work
s devoted to improving the execution performance on various
omputing architectures.
The optimization approaches for stencil computation are

ainly divided into three categories, including cache-aware loop
iling methods [7–9], cache-oblivious divide-and-conquer meth-
ds [10], and Krylov subspace methods [11,12]. The loop tiling
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methods [7] use loop transformations to exploit data locality for
high level cache hierarchies as well as expose coarse-grained
parallelism. The divide-and-conquer methods [13,14] recursively
decompose the region into smaller sub-regions to enable cache-
oblivious tiling. The divide-and-conquer methods [13] also try to
avoid frequent communication between sub-regions to improve
the parallelism. These two types of approaches are used to imple-
ment direct solvers to obtain exact solutions for stencil problems
in a finite number of time steps. On the contrary, the Krylov
subspace methods employ mathematical techniques to produce
approximations of exact solutions. And they make a trade-off
between execution time and accuracy. But the Krylov methods
require a high level of expertise for numerical analysis by manual
effort, and they only work for a small subset of stencil prob-
lems with low dimensional grids. Although all these approaches
improve the execution performance to a certain extent, they all
explicitly perform massive iterative computations on the points
in a spatial grid, and thus the time cost is nontrival.

Recently, a few fast computing methods [15–17] for linear
stencil computations are proposed, which uses convolution to
generate the final output by evolving the initial data for many
time steps at once. These methods directly evolves grid points via
skipping the iterative computations legitimately, and thus signifi-
cantly reduce the time complexity and execution time. And these

emerging methods have become the state-of-the-art accelerating
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echniques for stencil computations. However, such methods are
nly applicable to stencils with periodic boundary conditions,
hich means all grid points are evolved by the given stencil.
or the aperiodic boundary conditions, the boundary points of
he grid are updated following some rules other than the stencil.
herefore, convolution cannot be directly applied to the stencil
omputations with aperiodic boundary conditions, and the fast
omputing methods have to handle some points by naïve loop
terative computation. Unfortunately, the processing time of loop
omputation has been demonstrated much larger than that of
onvolution [16]. And in many real scientific applications [2,
8,19], the stencil problems are often with aperiodic boundary
onditions. The inefficiency of the state-of-the-art techniques
n processing aperiodic boundary conditions limit the bursts of
ptimal performance.
In this paper, we propose TurboStencil, a novel convolution-

ased fast stencil computing algorithm for solving linear systems.
s far as we know, TurboStencil is the first algorithm that only
omputes once for linear stencil computations with both periodic
nd aperiodic boundary conditions, which almost replaces the
aïve iterative computations in the evolution of all grid points.
nd thus, it greatly reduces the computational time complexity
nd execution time, while achieving good accuracy and numerical
tability.
In summary, this work makes following contributions.

• We present the TurboStencil algorithms to effectively solve
the linear stencil problems with constant aperiodic bound-
ary conditions. We provide a novel padding method for
eliminating the effect of boundary conditions, to enable
convolution for all stencil points. The proposed algorithm
almost completely avoids explicit loop iterative computa-
tions. It can also be applied to general boundary conditions
by performing a small number of iterative computations.

• We implement a one-time computation algorithm for sym-
metric stencil problems with the computational complexity
of O(N logN) by applying FFT to convolution, where N is the
grid data size. We also provide a divide-and-conquer based
algorithm for asymmetric stencil problems, recursively per-
forming a pad-convolve-add operation several times, with
O((N1/d

+ 2t)d log(N1/d
+ 2t)dT/t), where T is the number

of time steps, d is the grid dimension and t is a human-
chosen parameter. And the algorithm for symmetric stencils
theoretically generates solutions for both finite and infinite
time steps.

• We experimentally evaluate the computational performance
and numerical accuracy of our algorithms over 1D, 2D, and
3D stencil computations. Our algorithms achieve orders of
magnitude speedups (up to 777×) for symmetric stencils,
compared to a state-of-the-art algorithm, and speedup up
to 90× for asymmetric stencils, with comparable loss in
accuracy from floating point error.

The rest of this paper is organized as follows. Section 2
presents the problem statement. Section 3 describes TurboStencil
for 1D stencil computations. Section 4 generalizes TurboStencil
for high dimensional stencil computations. Section 5 shows the
experimental results. Section 6 introduces related work, and
Section 7 concludes this paper.

2. Problem statement

2.1. Definitions

Stencil computations iteratively updates the value of points
of a spatial grid of points D with an initial data A[0] under a
tencil pattern S for a given finite T time steps, or iteratively
261
Fig. 1. Stencil computation codes of 1d3pt heat equation.

update the grid points until the values of points have converged
for many time steps. The unspecified iteration time steps for
stencil computations to achieve convergent values are referred as
‘‘infinite time steps’’ in this paper. Usually, the stencil is described
by ndmpt that the value of a point is updated by its m neighbors,
including itself, from previous time step in a n-dimensional grid.
The linear stencil is an exclusively linear combination of data of
neighboring points. For a stencil computation, grid data A and
stencil pattern S have the same dimensions and different sizes.
A point on the boundaries of the grid is called boundary point
which follows the boundary conditions for update. Otherwise, it
is an interior point which performs update by S . The data of grid
points at time step t is denoted by A[t]. Fig. 1 shows the 1d3pt
heat stencil codes, and S = (0.25, 0.5, 0.25).

2.2. Boundary conditions

Boundary conditions determine the update rule of boundary
points. There are mainly periodic and aperiodic boundary con-
ditions [16]. With periodic boundary condition, boundary points
follow the same stencil pattern as interior points, and their up-
date depend on the values of neighboring interior points at pre-
vious time step. With aperiodic boundary condition, boundary
points follow a different update pattern which does not depend
on their neighboring interior points. Generally, the values of
these boundary points can be specified by user or calculated by
other patterns unrelated to the stencil. In short, the values of all
boundary points at all time steps are known with the aperiodic
boundary condition before stencil computation.

This paper focuses on the constant aperiodic boundary condi-
tion, which is a special case of Dirichlet boundary conditions [20],
and is very common in stencil computations [19,21]. With this
condition, the values of boundary points remain constant along
with time step iterations. For the 1d3pt heat in Fig. 1, constant
boundary condition ensures that A[0][0] = A[1][0] = · · · =

A[T ][0] and A[0][N − 1] = A[1][N − 1] = · · · = A[T ][N − 1].

2.3. Convolution and boundary effect

With periodic boundary conditions, the data is updated by
A[t + 1] = S ∗ A[t]. And with the associative law of convolution,
we have A[T ] = S ∗ S ∗ · · · ∗ S ∗A[0] = ST

∗A[0]. The final output
can be calculated by convolution of S for T times.

However, with aperiodic boundary conditions, only some
points are valid for convolution. Fig. 2 shows the iterative com-
putation process of the 1d3pt heat stencil. Since the boundary
points are not applied with stencil for update, they affect the
update of some interior points near the boundary regions (red
points) due to the data dependence. These points are invalid to
conduct convolution for stencil computation. We call these points
as affected points, and the effect of boundary points that causes
invalid convolution for affected points as boundary effect. In Fig. 2,
only the green interior points that are not affected by boundary
effect are valid for convolution.



S. Liu, X. Wan, Z. Zhang et al. Future Generation Computer Systems 146 (2023) 260–272

s
I
m
d
t
d
F
c
V
t

i

f
i
t
t

s

o
I

P
t

I

w
v

Fig. 2. Iterative computation process of the 1d3pt heat stencil.

2.4. Discrete Fourier transform

Fourier transform (FT) is a basic operation used in digital
ignal processing to express and analyze time-domain signals.
n order to use FT for scientific computing programs, functions
ust be defined at discrete points rather than in continuous
omains, i.e., Discrete Fourier transform (DFT) [22]. According to
he convolution theorem, circular convolution in the FT forward
omain equals multiplication in the FT backward domain. Thus,
T can be used to calculate convolution. There are three steps to
alculate convolution U ∗V with FT: First, perform DFT on U and
to get XU and XV ; second, calculate dot product XW = XU ·XV ;

hird, perform inverse DFT on XW to get W , and W = U ∗ V .
Suppose the size of both U and V is N , the time complex-

ty of DFT is O(N2), which is the same as that of convolu-
tion. There are many methods to implement convolution, such
as img2col+GEMM, Winograd [23], and fast Fourier transform
(FFT) [22]. The FFT method can reduce the complexity of DFT
from O(N2) to O(N logN). There are many variants of FFT today,
and we employ the FFT implementation from the Intel Math
Kernel Library (MKL) [19] to reduce the time complexity and
speed up stencil computations. Note that, applying FFT causes
accuracy decline [24] due to the floating point errors, but it is still
acceptable. The numerical stability is discussed in Section 4.4.

2.5. Motivation

Previous work [16] has noticed the boundary effect but did
not eliminate the effect. A fast stencil algorithm [16] uses naïve
loop method to iteratively compute the affected points and applies
ast Fourier transform (FFT) to implement convolution for valid
nterior points to solve the aperiodic stencil problem. However,
he iterative computation takes much more time than FFT and
he time complexity of this algorithm is

O(dTN1−1/d log(dTN1−1/d) log T +N logN), where N is the data
ize, T is time steps, and d is the dimension of spatial grids.
To solve the boundary effect and ensure correct convolution

f all grid points, our basic ideas are as follows.

• Points that follow different update patterns should be calcu-
lated separately. Because of linearity, the final result is the
sum of boundary point result and initial interior point result,
generated by evolving the input data of points for many time
steps.

• Data padding can be used to eliminate the boundary effect
and enable convolution for all points. The padding method
should be carefully designed to ensure that the output of
convolution is the same as that of naïve iterative computa-
tion.
 m

262
Fig. 3. Illustration of padding method for computing interior points.

3. TurboStencil for 1D stencil

To clearly introduce the proposed TurboStencil algorithm, we
use the 1d3pt stencil computation as a walk-through example.
Suppose S = (c1, c2, c3), initial input A[0] of grid points D with
data size N for the 1d3pt stencil. D consists of Di and Db. Di
represents interior points and contains points D[1 : N − 2]. Db
represents boundary points and contains points D[0] and D[N−1].
Because of the linearity, the final output is the sum of interior
point output and boundary point output over finite time step
iterations, i.e., A[T ] = I[T ] + B[T ]. A[T ] is the final output of D,
I[T ] is the output of Di, and B[T ] is the output of Db over T time
steps. Therefore, the stencil computation can be decomposed into
computing interior point result and boundary point result.

3.1. Computing interior points

Our idea is to design a padding method to enable all interior
points valid for convolution. To exclude the boundary effect, we
first set the input values of Db to 0. Then, we pad 2T points to
D. The number of padded points is determined by T and stencil
radius. Here we consider the stencil radius of 1, and the padded D
has a size of N + 2T . Fig. 3 shows the padding process of interior
points for 1d3pt heat. With correct padding values, all interior
points, including the affected points, can be convolved with S to
compute the output.

However, inappropriate padding leads to incorrect results.
Thus, the key of padding method is to find the solutions of padded
points to ensure that the result of convolution for Di is correct.

Padding method
The method pads proportional numbers opposite to corre-

sponding input values with the initial two boundary points, re-
spectively, as the symmetric axis, see in Fig. 3. And the input
values by padding for interior points are calculated by (1). To
verify the correctness of padding, we have to prove that (2) is
established based on (1).

I[0][i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 i = 0 or i = N − 1
A[0][i] 0 < i < N − 1
−A[0][−i] · (c3/c1)i −T ≤ i < 0
−A[0][2N − 2 − i] · (c3/c1)−i N − 1 < i ≤ N − 1 + T

(1)

[T ] = ST
∗ I[0] (2)

roof. For the affected points next to left boundary point D[t][0],
he output I[t][i] of these points at t time step is written as (3),

[t][i] = S t
· I[0][i − t : i + t] −

t−i∑
j=0

eijI[j][0], 0 ≤ i ≤ t (3)

here the dot product is the output evolved with related input
alues (including initial values and padded values), the sum-
ation is the computational deviation of the output caused by
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Fig. 4. Illustration of the computational deviation deriving from boundary points
after padding.

the padding points, and the eij is related to S and is the coef-
icient of the linear representation of the deviation. Fig. 4 gives
n illustration of the deviation. The values of boundary points
volve with the padded data, while they should have remained
t 0. And thus, a computational deviation is introduced to the
alue of I[4][1]. The output of I[4][1] needs to subtract the extra

computing results from boundary points.
Applying the binomial theorem to the given S = (c1, c2, c3),

we obtain (4), where index is the index of element of S t .

S t
[index] =

t∑
i+j=0

t!
i!j!k!

c i1c
j
2c

k
3

i + j + k = t, k − i = index, −t ≤ index ≤ t)

(4)

Hence, we derive (5) from (4).
t
[−index] = S t

[index] · (c1/c3)index (5)

Then, we can deduce (6).

[j][0] =S t
· I[0][−index : index]

=

index∑
y=−index

S t
[y]I[0][y]

=S t
[0]I[0][0] +

index∑
y=1

(S t
[y]I[0][y] + S t

[−y]I[0][−y])

=0 +

index∑
y=1

(S t
[y]I[0][y] + S t

[y] · (c1/c3)y · I[0][y] · (−(c3/c1)y))

=0

(6)

Next, we bring (6) into (3) and obtain (7).

I[t][i] = S t
· I[0][i − t : i + t] (7)

For the affected points next to right boundary point D[t][N −

1], the proof process is the same, and they also satisfy (7). There-
fore, I[T ] = ST

∗ I[0] is proved. □

According to the padding method, the interior point result can
be obtained by computing convolution I[T ] = ST

∗ I[0]. However,
there is a limitation for padding that T ≤ N − 2. If T > N − 2,
points are out the scope of I[0][1 − N : 2N − 2], and cannot be
added. However, this limitation can be solved by our algorithms,
hich is described in Sections 3.4 and 3.5.

.2. Computing boundary points

With constant boundary conditions, boundary points remain
he input values during time step iterations and have boundary
263
Fig. 5. Process of computing boundary points.

effect on affected points. To exclude the effect of interior points
on computing boundary point result, we first set the values of
initial interior points to 0 and design the input value of B[0][i] by
(8).

B[0][i] =

⎧⎨⎩
A[0][0] i = 0
−A[0][N − 1] i = N − 1
0 1 ≤ i ≤ N − 2

(8)

Fig. 5 shows the process of computing boundary points. For all
left boundary points B[t][0] at t time step, they follow the stencil
pattern (c1, 0, −c3), while all right boundary points B[t][N −

1] follow the stencil pattern (−c1, 0, c3). For simplicity, we use
stencil S1 = (c1, 0, −c3) to compute all boundary point results,
and thus the input value of B[0][N − 1] is opposite to initial
value in (8). Therefore, B[1] = S1 ∗B[0], and B[1] contains correct
result from B[0] and intermediate values of B[1][-1] and B[1][N].
With B[1], B[t + 1] can be derived from B[t] recursively for each
iteration. To solve B[t + 1], B[t] is divided into interior points
and boundary points. And B[t+1] is the sum of the interior point
result obtained by convolving B[t] with given S and the boundary
result B[1]. Formally, the recurrence formula is described by (9).

B[t + 1] = S ∗ B[t] + B[1] (9)

3.3. Applying FFT to convolution

The size of A[0] and S should be the same for the dot product
operation in applying FFT to convolution. Since the input data
A[0] has been padded with corresponding values according to the
padding method, S also should be padded to make the size is
consistent with that of the padded input data. In order to make
the padded data not affect the correctness of the results, we pad
S with zeros, and use all points of padded A[0] and S to perform
FFT computation. The computing result of dot product in the FT
backward domain will contain some useless padded data, which
will be discarded to obtain the final result. In addition, before
performing FFT for convolution, S is rotated to the left, making
the central element is in the first, to align with the padded input
data, so that the order of output vector after FFT is consistent with
final output. Besides, S should be padded with zeros to make the
length of padded S is consistent with that of padded input data
for FFT.

When applying FFT to (2) and (9), we obtain the output results
of I[T ] and B[T ] in the FT backward domain by (10) and (11),
respectively. X denotes the result of FT. In (10) and (11), XI [0], XS
and XB[1] are both constant vectors. So, XB[t+1][i] only depends
on XB[t][i], and the data dependence has changed after Fourier
transform. And the XB[T ][i] only depends on XB[1][i]. Then, the
general formula for XB[T ][i] is given by (12). And the output
of A[T ] in the FT backward domain is given by (13), in where
B[1] = S1∗B[0]. Then, the inverse FFT is performed on XA[T ], and
the unnecessary padded data of the result is discarded to generate
the final output A[T ].
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I [T ][i] = XI [0][i]XS [i]T (10)

B[t + 1][i] = XB[t][i]XS [i] + XB[1][i] (11)

B[T ][i] =

{
TXB[1][i] XS [i] = 1

XB[1][i]
1−XS [i]T

1−XS [i] XS [i] ̸= 1
(12)

A[T ][i] =

{
XI [0][i] + TXB[1][i] XS [i] = 1

XI [0][i]XS [i]T + XB[1][i]
1−XS [i]T

1−XS [i] XS [i] ̸= 1
(13)

There could be a convergence in (13) while T → ∞, which
rovides the possibility to solve the convergence value problem
irectly. However, there are some problems about numerical
tability because of the floating-point error. We will discuss them
n Section 4.4.

.4. TurboStencil for symmetric stencil

A symmetric stencil is like S = (c1, c2, c1) for 1d3pt or S =

c1 c2 c1
c3 c4 c3
c1 c2 c1

]
for 2d9pt, that elements are symmetrical with

respect to the central element in S . This is very common in stencil
omputation, such as Heat, Jacobi, Poisson, etc.
The symmetry brings great benefits for our approach. First,

t eliminates the need to compute powers when padding, since
owers have a base of 1. Second, and more importantly, it allows
he input to be padded to a circular vector and breaks the limita-
ion that T ≤ N − 2. For example, given that I[0] = [0 1 2 3 0],
nd the padded initial input is [0 1 2 3 0 −3 −2 −1 0 1 2 3 0
3 −2 −1 0 1 2 3 0] for T=8 according to the padding method,
hich is a circular vector with a period of [0 1 2 3 0 −3 −2
1]. Then, only one period of the circular vector is stored in
emory, and the input data that needs to be stored is reduced

rom N + 2T to 2N − 2, as T is generally much larger than N .
ased thereon, we can perform circular convolution and FFT on
ymmetric stencil computation. And the FFT is very suitable for
arge scale circular convolution and reduces the time complexity
rom O(N2) to O(N logN).

Now, we introduce the TurboStencil algorithm for 1D sym-
etric stencil computation. For the given input vector A[0] with

he size of N , stencil pattern S, and time steps T , A0[0] and A1[0]
hich respectively denote the input values of interior points and
oundary points are derived from A[0], and S0 and S1 which
espectively denote the stencil patterns of interior points and
oundary points are derived from S.
According to the padding method for symmetric stencil de-

cribed above, padded input values of A0[0] and A1[0] with the
ize of 2N − 2 are given by (14) and (15). Before performing
ircular convolution, S0 and S1 are rotated to the left and padded
with zeros by (16).

A0[i] =

⎧⎨⎩
0 i = 0 or i = N − 1
A[0][i] 0 < i < N − 1
−A[0][2N − 2 − i] N − 1 < i < 2N − 2

(14)

A1[i] =

⎧⎨⎩
A[0][0] i = 0
−A[0][N − 1] i = N − 1
0 0 < i < N − 1 or N − 1 < i < 2N − 2

(15)

S0 = (c2, c1, 0, 0, . . . , c1), S1 = (0, c1, 0, 0, . . . ,−c1) (16)

Then, we perform FFT on these four vectors in parallel and
compute the middle results in FT backward domain by (13).
264
Fig. 6. Process of TurboStencil for 1D symmetric stencil.

Next, we perform inverse FFT on the middle results, and discard
padding data and restore boundary values to generate the final
output. Fig. 6 shows the process of TurboStencil for 1D symmetric
stencil computation.

3.5. TurboStencil for asymmetric stencil

For asymmetric stencils, elements are not symmetrical with
respect to the central element in S . And there is a limitation that
T ≤ N−2 for directly applying the padding method. For the cases
that T > N−2, we employ a divide-and-conquer method to break
the limitation.

Our method is to choose a proper time step band t to make
t ≤ N − 2, and then we perform a pad-convolve-add operation
to compute the t iterations. For each t time step band, we pad
the input data, and convolve S t with input data to respectively
compute the interior point result and the boundary point result
by FFT, and then add the results to get the output over t iterations
according to the methods described in Sections 3.1 to 3.3. And
the output is used as the input data for the next t time step band.
This process is repeated for T/t times to generate the final output
over T iterations. If T cannot be divided by t , the rest iterations
are computed by naïve loop method. This case will increase the
computation time, and thus it should be avoided as much as
possible.

Fig. 7 shows the process of TurboStencil for 1D asymmetric
stencil computation. Here, the linear convolution is used. And
some intermediate results, such as XS [i]T and XB[t][i], can be
reused and only need to be calculated once. The selection of time
step band t has an influence on the performance of our method,
and it is discussed in Section 4.2.

4. Generalization and implementation of TurboStencil

Based on the core ideas of TurboStencil, it can be extended
for higher-dimensional stencil computations. We use 2D case to
demonstrate the problems and process for extension, and there is
no essential difference for 3D or higher-dimensional cases. Based
thereon, we propose the general TurboStencil algorithms.

4.1. Main problems for extension

For 2D case, there are different types of boundary points.
Correctly identifying boundary effects and padding for different
input values are the main problems for extension.

Different boundary effects. Suppose a 2d9pt stencil with an
input data of A[0] (A[0] is a matrix) and a stencil pattern S =
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Fig. 7. Process of TurboStencil for 1D asymmetric stencil.

[c00 c01 c02
c10 c11 c12
c20 c21 c22

]
. There are four types of points and correspond-

ing stencil patterns for 2D stencil, see in Fig. 8. And three of
them are related to boundary points. An interior point affects its
surrounding 8 neighbors and itself in one iteration. A point on
the up/down boundary affects its 3 down/up neighbors, and a
point on the left/right boundary affects its 3 right/left neighbors.
A vertex affects one point on its diagonal.

We reassert our idea that points that follow different sten-
cil patterns should be calculated separately. So, we derive four
patterns, i.e., S0, S1, S2 and S3, from S to describe the stencils
of interior points, up/down boundary points, left/right boundary
points, and vertexes, respectively. Fig. 8 gives the specific forms
of these stencil patterns.

Correct padding. To apply the padding method, the opposite
rows or columns of S should be proportional. Formally, ∃k1 ̸=

, [c00 c10 c20] = k1[c02 c12 c22] and ∃k2 ̸= 0, [c00 c01 c02] =

k2[c20 c21 c22]. If S is not accord with this rule, no padding method
could give correct results. However, common stencils often meet
this rule, and most of them are symmetric.

The input data A[0] is divided into initial values of interior
points, up/down boundary points, left/right boundary points, and
vertexes, denoted by A0, A1, A2, and A3, respectively.

For the interior points, each row and column of A0 is padded
in the same way as 1D case, but replacing the c1/c3 with k1 and
2 in (1) for row and column data, respectively. For the boundary

points, A1, A2, and A3 are padded by (8), and the padded values
hould follow the corresponding stencil patterns to determine
hat they are opposite number of the boundary point initial value
r not.
Fig. 9 shows the padding process for the given 2d9pt stencil. To

erform FFT for convolution, S0, S1, S2, and S3 need to be cyclic left
nd up shifted and padded with zeros. Then, (13) can be naturally
xtended to 2D case by (17) to apply FFT computing the output,

A[T ][i][j] =

{
XA0 [i][j] + TXB[i][j] XS [i][j] = 1

XA0 [i][j]XS [i][j]T + XB[i][j]
1−XS [i][j]T

1−XS [i][j] XS [i][j] ̸= 1

(17)

here XB represents the sum three types of boundary point
esults in one iteration, and X [i][j] = X [i][j]X [i][j] +
B A1 S1 c

265
Fig. 8. Four different types of points and stencil patterns in 2D case.

A2 [i][j]XS2 [i][j] + XA3 [i][j]XS3 [i][j]. And the final output is ob-
ained by performing an inverse FFT on the output in FT backward
omain, discarding padding data and restoring boundary values.

.2. General TurboStencil algorithms for symmetric and asymmetric
tencil

When we identify different types of boundary points and use
orrect padding method generating padded input data and stencil
attern matrices, the circular convolution method for 1D sym-
etric stencil and the pad-convolve-add operation-based divide-
nd-conquer method for 1D asymmetric stencil can be directly
sed for 2D cases. And we can generalize the TurboStencil algo-
ithms to the general case.

In a general d-dimensional stencil, there are 2d types of dif-
erent points and stencil patterns. Then, we generate stencil pat-
erns, i.e., S0, S1, . . . , and S2d−1, from given S , and divide input
ata A into A0, A1, . . . , and A2d−1. The padding on each of the
into A0, A1, . . . , and A2d−1 should be in d dimensions inde-

endently. And S0, S1, . . . , and S2d−1 need to be cyclic shifted
long d dimensions and padded with zeros for applying FFT to
onvolution. The output in FT backward domain is the sum of all
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Algorithm 1 TurboStencil for d-dimensional symmetrical linear
tencil computation
Require: input data A[0] with size N , stencil pattern S, time steps

T
Ensure: A[T ]

1: generate S0, S1, · · · , S2d−1 from S and perform cyclic shift and
pad them with zeros;

2: generate A0, A1, · · · , A2d−1 from A[0] and pad on them;
3: do FFT on S0, S1, · · · , S2d−1 and A0, A1, ..., A2d−1 in parallel;
4: compute output of XA[T ] by (13); /* Here XB = XA1 ·XS1 +XA2 ·

XS2 + · · · + XA2d−1
· XS2d−1

*/
5: do inverse FFT on XA[T ];
6: discard the padding data and restore the boundary values;
7: return A[T ];

2d different results. Other than that, the computation process for
d-dimensional stencil is the same as the 1D and 2D cases.

Algorithm 1 and 2 give the TurboStencil for d-dimensional
ymmetric and asymmetric linear stencil computation, respec-
ively. The time complexity of TurboStencil is O(N logN) for sym-
etric stencil and O((N1/d

+ 2t)d log(N1/d
+ 2t)dT/t) for asym-

etric stencil, and t is the height of time step band, which is a
uman-chosen parameter.
The selection of t time step band has an influence on the

erformance of asymmetric stencil. To be specific, a larger value
f t leads to more cost of once convolution but less numbers
f convolutions, and vice versa. The cost of padding is mainly
elated to the memory access performance, while the cost of FFT
s related to both memory access and computing performance.
266
Algorithm 2 TurboStencil for d-dimensional asymmetrical linear
stencil computation
Require: input data A[0] with size N , stencil pattern S, time steps

T , height of time step band t
nsure: A[T ]

1: generate S0, S1, · · · , S2d−1 from S and perform cyclic shift and
pad them with zeros;

2: generate A0, A1, · · · , A2d−1 from A[0] and pad on them;
3: do FFT on S0, S1, · · · , S2d−1 and A0, A1, ..., A2d−1 in parallel;
4: compute t iterations’ boundary effect XB[t][i] by (13) and

convolution kernel XS[i]t in FT backward domain;
5: for itr = 0 → T/t do
6: A[T ] = pad(A[T ]); /*pad operation*/
7: XA[T ] = FFT (A[T ]);
8: for i = 0 → (N1/d

+ 2t)d − 1 do
9: XA[T ][i] = XA[T ][i] ∗ XS[i]t + XB[t][i]; /*convolve-add

operation*/
0: end for
1: A[T ] = iFFT (XA[T ]);
2: end for
3: discard the padding data and restore the boundary values;
4: compute rest iterations in loop method;
5: return A[T ];

Therefore, the best selection of t is related to hardware architec-
tures and is difficult to model accurately. And we chose the value
of t empirically in this paper.

4.3. General aperiodic boundary condition problem

Although TurboStencil is specially designed for stencil com-
putations with the constant aperiodic boundary condition, it can
also be applied to more general aperiodic boundary conditions
that the values of boundary points are not constant at each time
step, i.e., the Dirichlet boundary condition [20]. Since TurboSten-
cil calculates the results of interior points and boundary points
separately, the computing of interior points based on the padding
method is the same. We only need to consider the computing of
boundary points and affected points.

Fig. 10 shows the illustration of our algorithm applied to one-
dimensional stencil computation with general aperiodic bound-
ary condition. The boundary points A[0:t][0] and A[0:t][N-1] will
ffect the results of points A[t][1:t] and A[t][N-1-t:N-1], respec-
ively, after t time steps. As the values of boundary points at each
ime step is not constant, the calculation of (12) is no longer
pplicable to the results of boundary points. We use the naïve
oop computation method to calculate the results of boundary
oints and affected points. In this case, for both symmetric and
symmetric stencils, we employ the divide-and-conquer method
sed in TurboStencil for asymmetric stencil to split the time
teps into several time step bands. Then, we separately calculate
he results of boundary points and affected points (i.e., the red
riangle regions) by the naïve loop computation method and add
he results with the results of interior points within each time
tep band. Only the add operation in each pad-convolve-add is
ifferent from the TurboStencil for asymmetric stencil, and other
rocessing steps are the same, that is, the values of interior
oints (i.e., the green trapezoidal regions) are calculated by the
adding and convolution methods. The naïve loop computation of
ed triangle regions can be performed in parallel and the results
re obtained before the iterative processes of pad-convolve-add
perations.
Although the naïve loop computation method can be directly

erformed on all boundary points and affected points (i.e., the
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Fig. 10. Process of divide-and-conquer method for general aperiodic boundary
ondition.

egions within the blue triangle) to compute the results of output
or symmetric stencil, this will lead to a massive number of
terative computations and lower the computational performance
f the algorithm. The divide-and-conquer method can effectively
educe the time-consuming iterative computations that only a
mall portion of points are calculates in the naïve loop iterative
ay. The state-of-the-art fast stencil algorithm [16] also uses the
aïve loop computation method to handle the aperiodic boundary
ondition problem, which needs to iteratively compute a large
umber of points (i.e., the shadowed small trapezoidal regions) in
ach time step band, while our algorithm can reduce the amounts
f iterative computations by 2/3.

.4. Discussion

umerical stability
Theoretically, our algorithm should have the same results of

he naïve loop method. But FFT and complex number calculations
ccumulate and exaggerate the floating-point errors, and may
ause the numerical instability of the algorithm.
Let us review (13). XA[T ][i] and XS [i] are complex numbers.

ecause of the floating-point error, whether the XS [i] equals 1
hould be judged carefully. If it is misjudged, the algorithm will
ive wrong results. A commonly used method is to set an upper
rror limit. This method does work but needs manual labors to
djust the parameter. However, identifying which XS [i] equals
before doing FFT is a potential way to solve the problem of
isjudgment, and we are going to study in further work.
For the stencil problems that compute convergence values for

nfinite time steps, T → ∞, we can use (18) instead of (13), with
he conditions: (a)|XS [i]| < 1 or (b)XS [i] = 1 and XB[i] = 0, to
compute the output. And these two conditions are very common
in most well-designed stencils.

XA[T ][i] =

{
XI [i] XS [i] = 1

XB[1][i]
1−XS [i]T

1−XS [i] XS [i] ̸= 1
(18)

pplicability
(a) Linearity. Our algorithms are applicable to linear sten-

il computations for solving the discrete linear systems. Lin-
ar stencils are quite common in computational numeric meth-
ds [25,26]. Loop optimization-base approaches are applicable to
onlinear stencils, but they suffer high computational complex-
ty. To the best of our knowledge, there are three convolution-
ased approaches for stencil computations [15–17], and they are
napplicable to nonlinear stencils.

(b) Boundary conditions. Our algorithms are effective for the
periodic boundary conditions, specifically the constant boundary
onditions. The state-of-the-art FFT-based method [16] focuses on
olving the stencil problems with periodic boundary conditions.
ut it fails to effectively handle with the aperiodic boundary con-
itions. Our algorithms can also be applied to general aperiodic
267
boundary conditions with introducing a small number of loop
iterative computations.

(c) Stencil pattern. To apply our algorithms, the stencil pattern
should be proportional. The symmetric stencil is a special case of
proportional stencil. The convolution-based methods [15,17] are
only applicable to symmetric stencils while ours to both symmet-
ric and asymmetric stencils. And the FFT-based method [16] can
solve proportional and disproportional stencils.

(d) Finite or infinite time steps. Our algorithm for symmet-
ric stencils is applicable to both cases, while the asymmetric
algorithms is applicable to finite time steps. The loop-based ap-
proaches cannot be applied to stencils with infinite time steps, as
well as some convolution-based methods [15,17]. And the FFT-
based method [16] cannot solve the stencil problems for infinite
time steps with the aperiodic boundary conditions.

Memory cost
TurboStencil is to exchange memory space for fast computing

time. The use of FFT requires more costs of memory, i.e., it stores
one copy of real numbers and two copies of complex numbers.
The memory requirement of applying FFT is three times that of
the input data. However, as the fast DFT algorithm, FFT is still
widely used to quickly solve some large-scale industrial and sci-
entific problems, such as digital image processing, modern radar
data analysis, data acquisition, and locomotive fault detection.
Since TurboStencil derives different points and stencil patterns
to separately perform FFT based the proposed padding method,
it also brings additional memory overhead. We will specifically
analyze the memory cost of the proposed algorithms.

For a d-dimensional input data of grid points with N data
ize, the naïve loop iterative computation method requires 2N
emory space and exhibits the time complexity of O(NT ), where
is the time steps. For the symmetric stencil computation, in

ach dimension of points, our algorithm respectively generates
2N1/d

− 2) padded data of interior points and boundary points,
equiring a 2× (2N1/d

− 2) memory space. It also needs to derive
ifferent stencil patterns and pad them, and then performs FFT on
ifferent points, separately. Therefore, TurboStencil requires total
2 × (2N1/d

− 2))d × 2 × 3 memory space for symmetric stencil
omputation, and achieves the time complexity of O(N logN). The
emory space is less than (2× (2N1/d))d ×2×3, i.e., the memory

equirement of TurboStencil is less than 3 × 4d times that of
he naïve loop iterative computation method. Generally, stencil
omputations have 2D or 3D grid points, and T is more than
housands to millions, or even more. In other words, TurboStencil
as gained thousands of times of improvement in computing
ime with less than 200 times of memory overhead, which is
ost-effective. Similarly, for the asymmetric stencil computation,
urboStencil requires total (2×(N1/d

+2t))d×2×3 memory space,
nd achieves the time complexity of O((N1/d

+ 2t)d log(N1/d
+

t)dT/t), where t is the manually tuned height of time step band.
ompared with the naïve loop computation method, the ratio of
emory cost to computing time benefit is still worthwhile.
In fact, TurboStencil can solve the stencil computations of gen-

ral scale on current commercial servers or workstations. Most
f these computing devices are equipped with a large capacity
f memory, which is sufficient to meet the memory requirement.
or example, the Intel Xeon series servers generally have 128 GB
f memory and can be expanded to 6TB of memory, which allows
urboStencil to perform with at least 13000 × 13000 of 2D or
50 × 350 × 350 of 3D double-precision floating-point data.
In addition, we believe that the proposed algorithm is suit-

ble for the computer systems in near future. The emerging
emory pooling or disaggregation technology can achieve effi-
ient resource sharing and high-speed communication between
he CPU memory and other memory space. Recently released
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Table 1
Experimental setup.
Hardware/software Parameters

Server Intel(R) Xeon(R) Gold 6248
# of cores 40 cores/socket, 2 sockets
Cache sizes 32KB L1, 1MB L2, 27MB L3(shared)
Memory 188GB
Compiler icc version 2021.4.0
Compiler flags -qopenmp -xhost -ansi-alias -ipo

-qopt-prefetch=3 -AVX512 -lm -qmkl
Parallelization OpenMP 201511

Table 2
Benchmarks.
Benchmarks Stencil points Typical applications

heat1d 3 transient heat conduction,
jacobi1d 3 fluid dynamics, elastic
heat2d 5 wave simulation for
seidel2d 9 geophysics, numerical
heat3d 7 meteorological simulation,
3d27pt 27 image processing, etc.

Compute Express LinkTM (CXLTM) 3.0 [27] of the open industry
tandard interconnect has achieved high-bandwidth, low-latency
onnectivity, and memory coherency between host processor and
ttached CXL devices such as accelerators and memory buffers.
his enables users to simply focus on the computation rather than
he memory requirements. Such advances offer an opportunity
or the proposed algorithm to use a unified, expanded memory
pace and distribute the naïve loop iterative computation to
ccelerators with trivial cost of data movements.

. Experiments

We conduct a series of experiments to evaluate the compu-
ational performance and numerical accuracy of the TurboStencil
lgorithms. The experimental setup is list in Table 1.
Baseline method
To the best of our knowledge, there are three convolution-

ased methods [15–17] for stencil computations, which are sim-
lar to ours. Among them, two methods [15,17] employ tradi-
ional convolution to compute stencil results, and thus have a
igh computational complexity of O(NT ). And the fast stencil
lgorithm [16], the state-of-the-art convolution-based method,
pplies FFT to accelerate the implementation of convolution for
tencil computations. But it uses the naïve loop method to com-
ute the results of affected points with aperiodic boundary condi-
ion. It reduce the computational complexity from O(NT ) of naïve
oop method to O(dTN1−1/d log(dTN1−1/d) log T+N logN). Besides,
he fast stencil algorithm also outperforms the state-of-the-art
oop tiling-based stencil compiler PLuTo [28,29] by 1.3 × to 8.5
× times for aperiodic stencil problems [16]. Therefore, we choose
the fast stencil algorithm as the baseline method for performance
evaluation. Both the fast stencil algorithm and our TurboStencil
algorithm use the FFT implementation from the Intel Math Kernel
Library (Intel MKL) [30].

Benchmarks
We selected 6 benchmarks across 1, 2, and 3 dimensions

from [28,29], listed in Table 2. They are stencil computations
with aperiodic boundary conditions and widely used in various
numerical computing domains. All benchmarks are symmetrical
and can be directly tested with the algorithms for symmetric
stencil. And the asymmetrical stencil benchmarks are not very
common. We manually changed some values of the stencils of
benchmarks to make them asymmetrical, and used them to test
the algorithms for asymmetric stencil. The differences of values in
268
the stencil pattern do not affect the performance. The input data
of benchmarks are double-precision floating-point numbers.

5.1. Performance

We conducted two different sets of experiments and used the
execution time to evaluate the computational performance of our
TurboStencil algorithms. We compared the TurboStencil with the
fast stencil [16] on both symmetric and asymmetric benchmarks.
The fast stencil performs the same process on symmetric and
asymmetric stencils, so the execution time is the same for both.
The TurboStencil_sym and TurboStencil_asym respectively denote
our algorithm for symmetric stencil and asymmetric stencil. Be-
sides, for benchmarks with the same dimension, data size, and
time step, tested algorithms have the same execution time for
them, which does not vary with different stencil patterns. There-
fore, we use 1D stencils, 2D stencils, and 3D stencils respectively
to demonstrate the performance of the benchmarks with the
same dimension.

In the first set of experiments, we fixed the data size N while
aried the time steps T according to different values of T/N1/d,
is the number of dimensions. Fig. 11 shows the results. We

ee that the execution time of TurboStencil_sym keeps the same
nd does not varies with T for the same N . This is because
urboStencil_sym only compute once for any time step itera-
ions with a complexity of O(N logN). However, the execution
ime of TurboStencil_asym grows with T , as TurboStencil_asym
as to compute T/t times with the complexity of O((N1/d

+

t)d log(N1/d
+ 2t)dT/t). Despite this, both TurboStencil_sym and

urboStencil_asym outperform the fast stencil, except the case of
/N1/d

= 1. For this case with relatively few time steps, the
ime overhead of memory allocation for padding is much greater
han the computation time in our algorithms, but the fast stencil
oes not perform the costly padding. With the increase of T ,
he performance advantages of our algorithms become more and
ore significant, while the fast stencil suffers the increasingly
verhead of iterative computations. And the fast stencil has a
igher complexity than ours.
The TurboStencil_sym reaches the speedups up to 358.4×,

7.1×, and 14.4× over the fast stencil for 1D, 2D, and 3D sten-
ils, respectively. And the corresponding maximum speedups
chieved by the TurboStencil_asym are 12.9×, 2.0×, and 1.3×,
espectively. The more time steps, the better our algorithms
erform than the fast stencil.
In the second set of experiments, we varied both N and T

hile fixed the values of T/N1/d
= 100. Fig. 12 shows the results.

or all cases, the TurboStencil_sym consistently outperforms the
ther two algorithms significantly. For the cases of 3D stencils
ith N1/d

≤ 200, TurboStencil_asym does not perform as well
s fast stencil, as the time overhead of the padding method
ccounts for a relatively large proportion of the overall execution
ime when data size is small. When N1/d

≥ 250, TurboSten-
il_asym outperforms fast stencil. The TurboStencil_sym achieves
he speedups up to 777.1×, 43.2×, and 9.4× for 1D, 2D, and
D stencils, respectively, and the TurboStencil_asym achieves the
peedups up to 90.4×, 4.6×, and 1.3×. The larger data sizes, the
etter our algorithms perform. In practical applications [19,31],
he data sizes are generally very large, from tens of thousands to
ven millions, and the time steps are thousands of times of data
izes. This makes our TurboStencil algorithms have promising
pplication prospects.
The height of time step band, t , is an important parameter

hich influences the speed of TurboStencil_asym. In the exper-
ments, we manually tuned the optimal t for TurboStencil_asym.
ccording to the analysis in Section 4.2, we should choose smaller
for higher dimensional stencils to reduce the time overhead of
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Fig. 11. Performance comparison with state-of-the-art fast stencil algorithm. In
the experiments, N was fixed while T was varied.

memory allocation (caused by the padding) and FFT computation.
For example, when T/N1/d

= 100 in Fig. 11, we used t = 250K
for 1D stencils, 2.5 K for 2D stencils, and 50 for 3D stencils.

5.2. Evaluation of general aperiodic boundary condition

To verify the practicality of TurboStencil algorithm applied
to the general aperiodic boundary condition, we have also con-
ducted evaluation experiments. Since the fast stencil algorithm
is also applicable to this boundary condition, we compared the
proposed algorithm with it. Table 3 shows the performance com-
parison results. The height parameters t of the time step band
for TurboStencil are 50000, 2500, and 100 for 1D, 2D, and 3D
stencils, respectively. For the general aperiodic boundary condi-
tion, TurboStencil needs to performs a small number of naïve
loop iterative computations, so there is some degradation in
computational performance. However, TurboStencil still outper-
forms the state-of-the-art fast stencil algorithm by achieving the
speedups of 1.74×, 1.34×, and 1.17× for 1D, 2D, and 3D stencils,
respectively, in the experiments.
269
Fig. 12. Performance comparison with state-of-the-art fast stencil algorithm. In
the experiments, both N and T were varied while T/N1/dwas fixed.

Table 3
Performance comparison with fast stencil for general aperiodic boundary
condition.
Benchmarks Data sizes &

Time steps
Execution time (s) Speedups

fast stencil TurboStencil

1D 100000, 197.671 113.357 1.74stencils 10000000

2D 10000 × 10000, 538.346 401.566 1.34stencils 1000000

3D 500×500×500, 266.724 228.802 1.17stencils 2000

5.3. Numerical accuracy

In this Section, we briefly evaluate the numerical accuracy of
our algorithms and the fast stencil. We tested maximum absolute
error against the output values of naïve loop method in certain
time steps. For all benchmarks, input values were set to zeros
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Table 4
Numerical accuracy of algorithms with T = 100 K.
Benchmarks & Data sizes Maximum absolute error against naïve loop method

fast stencil TurboStencil_sym TurboStenicl_asym

heat1d, 100000 8.15e−10 4.43e−11 2.82e−13

jacobi1d, 100000 1.38e−9 9.02e−10 1.84e−12

heat2d, 1000 × 1000 2.84e−14 1.69e−15 1.56e−11

seidel2d, 1000 × 1000 3.55e−16 6.23e−16 1.58e−11

heat3d, 100 × 100 × 100 <1e−19 3.47e−18 <1e−19

3d27pt, 100 × 100 × 100 <1e−19 2.08e−17 3.20e−18
except the first value was set to one, making the truth value of
each point is fallen within [0, 1]. Table 4 shows the results with
T = 100 K. Because our algorithms and fast stencil employ FFT for
convolution, they both incur a loss of floating-point accuracy. In
the experiment, the maximum absolute errors of these algorithms
are close and completely within the acceptance range.

6. Related work

There are three common stencil optimizations: loop tiling,
divide-and-conquer methods, and Krylov subspace methods.

Loop tiling. These methods change the iteration order to
improve data locality and divide the iteration space into loop
tiles to exploit coarse-grained parallelism [9,32,33]. They employ
low-level compilation techniques, such as loop transformations,
to transform data dependency for developing wave-fronts [34]
or concurrent start-up parallelism [7,35,36] for stencil compu-
tations. The tile sizes [37,38] also need to be well designed for
cache hierarchy efficiency. Based on loop tiling, some source-to-
source frameworks, like PLuTo [28], ATF [39] and MSC [1], have
been greatly successful in automatically optimizing stencil codes.
But these methods cannot reduce the computational complexity
of stencil problems.

Divide-and-conquer methods. These methods [10] recur-
sively divide the solution region into sub-regions, and thus
achieve cache-oblivious tiling for stencil computations. And they
perform redundancy calculations to avoid frequent communica-
tion between sub-regions for better parallelism [13]. The Pochoir
[14] is a well-known stencil compiler based on this method. It
makes hyperspace cuts on grids and yields asymptotically optimal
cache efficiency. The divide-and-conquer methods also do not
change the total FLOPs of stencil computations.

Krylov subspace methods. Krylov subspace methods are a
class of methods that usually used to solve numerical problems.
Mathematical techniques are employed to find better approxi-
mations of the exact values for stencil problems [11,12]. Such
methods generally do not produce exact solutions in finite time,
even without floating error, but exhibit a trade-off between com-
putational time and accuracy. The Krylov subspace methods also
have to perform costly iterative computations, like the loop tiling
and divide-and-conquer methods. Besides, high-level expertise is
required for numerical analysis in the design of such methods.

Recently, some convolution-based computing methods [15–
17] are proposed to fast compute the output of linear stencil
computations. These methods apply convolution to the evolution
of grid points rather than the iterative computation, and thus sig-
nificantly reduce the computational time. Januario et al. [15] in-
troduced a convolution-based technique called aggregate stencil-
loop iteration, which applies a stencil operator convolved with
itself one or more times to speed up stencil computation. Koraei
et al. [17] also employs convolution solving stencil problems,
but their method works on FPGA. These two methods perform
270
the naïve convolution operations, and thus do not reduce the
time complexity. However, convolution provides opportunities
to accelerate stencil computations by improving data reuse and
FLOPs-to-load ratio. Zafar Ahmad et al. [16] proposed a fast stencil
algorithm, which applies FFT to convolution, and thus reduces
the time complexity as well as the total FLOPs of stencil with
periodic boundary conditions. This state-of-the-art method em-
ploys a divide-and-conquer based technique to correct the values
of points affected by boundary effect for stencils with aperiodic
boundary conditions. And this technique also need to perform
naïve loop iterations for some points. On the contrary, we propose
a padding method to enable correct convolution for the affected
points. Therefore, our method does not explicitly compute any
iterations and effectively reduces the time complexity of stencils
with aperiodic boundary conditions.

7. Conclusion

In this paper, we present a novel algorithm, named TurboSten-
cil, for fast stencil computation with aperiodic boundary con-
ditions. TurboStencil provides a padding method to eliminate
the boundary effect. And our algorithm separately computes the
results of points with different stencil patterns by applying FFT to
convolution, which enables it to completely avoid explicitly itera-
tive computation. TurboStencil only compute once for symmetric
stencil, while also only compute several times for asymmetric
stencil. And thus, it is able to effectively reduce the computational
complexity. Our experimental results show that TurboStencil sig-
nificantly outperforms a state-of-the-art fast stencil algorithm
for both symmetric and asymmetric stencils, with comparable
loss in accuracy. There are still a few classes of stencil com-
putations, including nonlinear stencil and inhomogenous stencil,
that are not well addressed. We will further study fast stencil
computation algorithms for these problems in the future. Besides,
applying TurboStencil to supercomputer systems to solve large-
scale applications is also a promising direction of our future
work.
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