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A B S T R A C T

Traditional residential incentive-based demand response (DR) programs use fixed incentive structures that
do not incorporate closed-loop feedback to compensate for non-compliance by participants. In practice, such
programs may not reliably meet their event goals. To address this challenge, real-time feedback can be used to
adaptively modify the participants’ incentives, an approach which has not been proposed before. This paper
proposes a flexible monitoring framework to detect potential non-compliance, whereby a second DR event
is adaptively scheduled with higher incentives. In this context, constraints are presented to prevent over-
compensation and gaming of the DR system by the participants. This novel dual-event design is implemented
using a distributed event-stream monitoring framework to preserve scalability and ensure low monitoring
costs. The merits of the proposed DR design are demonstrated at a utility-scale for 100,000 residents, while
also considering the adoption of residential electric vehicles that are poised to increase the flexibility of the
demand in the distribution system.
1. Introduction

Demand response (DR) programs play a crucial role in increasing
the reliability of power distribution systems by leveraging consumers’
demand flexibility to manage the supply–demand gap [1–3]. Incentive-
based, or event-based DR programs require changes in the consumers’
demand patterns – usually, a load reduction during a specified event
period – in exchange for monetary incentives [4]. Event details, in-
cluding the event timing and incentive, are communicated to the DR
participants before the actual event period.

However, real-time feedback about their performance during the
event may not be available to the consumers or used by the utility [5].
Any data collected by the utility about the consumer performance
is only used for post-event analyses, primarily for settlement (see
Fig. 1(a)). In this open-loop implementation, the expected quantum
of peak energy savings may not materialize due to multiple factors,
e.g., hot weather resulting in higher cooling demand [6,7].

While numerous studies have shown the importance of real-time
consumer feedback in eliciting short and long term behavioral change
in consumers [8–10], such feedback mechanisms have surprisingly not
been incorporated widely by utilities. Some forms of feedback have
been introduced in small field trials [4,9], but the incentive offered
to the participants was kept unchanged regardless of the observed

∗ Corresponding author.
E-mail address: jpeng@nus.edu.sg (J.C.-H. Peng).

performance during the DR event. Others have applied feedback in
the context of optimal scheduling of heating or cooling loads enrolled
in direct load control programs [11–13], or for price-based DR where
automated flexible loads are controlled based on the dynamic price
signal from a real-time market, e.g., in the transactive system pro-
posed by the Pacific Northwest National Laboratory [14]. However, all
of these designs explicitly require consumers to install home energy
management systems and smart appliances capable of remote control,
resulting in high costs and privacy concerns [6,7] and leading to low
adoption rates. Therefore, the above closed-loop DR designs are not
applicable to residential consumers who respond manually to curtail
their consumption, which is the case in an incentive-based DR program.

The absence of DR feedback limits the utility in two ways. First,
an inadequate performance cannot be detected before the event period
ends. Second, the utility lacks flexibility in terms of how trade-offs—
incentives to consumers vs. coping with an inadequate response and
hence an inadequate peak demand reduction—are managed. In other
words, since the incentive offered to the DR participants cannot be
adaptively changed to improve their performance during the event,
the utility is forced to rely on other resources to make up for any
slack in the demand response. This is not economical and results in
the under-utilization of the demand flexibility.
vailable online 29 September 2022
306-2619/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.apenergy.2022.119998
Received 24 January 2022; Received in revised form 2 September 2022; Accepted
 15 September 2022

http://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
mailto:jpeng@nus.edu.sg
https://doi.org/10.1016/j.apenergy.2022.119998
https://doi.org/10.1016/j.apenergy.2022.119998
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2022.119998&domain=pdf


Applied Energy 326 (2022) 119998G. Raman et al.
Fig. 1. Incentive-based DR program design, showing: (a) the traditional single-event approach, and (b) the proposed dual-event design enabled by the real-time monitoring of
participants’ responses.
t
(
e
t
i
n
B

To address these challenges, this paper proposes monitoring of the
DR performance in real-time to predict potential non-compliance of
the system to the DR goals during the DR event. In conjunction, the
proposed scheme increases the incentive offered to the participants
to annul any deficit in the response. Different to existing studies and
based on [15], the higher incentive is implemented using a second
DR event, rather than the more impractical alternative of continuously
varying the incentive in a closed loop. The second DR event happens
within the time frame of the first event, as illustrated in Fig. 1(b).
This design is simple, and as demonstrated later on, is effective in
achieving the expected peak energy reduction. As such, the proposed
DR design preserves the traditional schema of a DR event and can
therefore be implemented only using existing DR infrastructure. Since
the monitoring scheme should be scalable at the utility-level, this
paper employs a distributive event-stream approach [16] wherein the
monitoring system creates and responds to specific events of interest
rather than processing continuously-generated real-time measurements.
This further reduces the computational and communication costs.

In summary, the contributions of this paper are as follows:

1. It proposes a real-time monitoring system for traditionally open-
loop incentive-based DR programs to robustly achieve the ex-
pected peak energy reduction.

2. It proposes an event-stream monitoring-based architecture for
predicting potential non-compliance of the system to the DR
goals before the DR period ends. This monitoring is adaptive and
distributed, thereby reducing the communication and computa-
tional overheads.

3. It proposes a novel dual-DR-event design, wherein once non-
compliance is predicted for the system, a second DR event is
created to provide additional incentive to the participants in
order to nullify the energy reduction deficit. Such a DR design
has never been proposed previously in the literature. Constraints
are also derived to prevent over-compensation and gaming.

4. A utility-scale demonstration of the proposed DR design is pre-
sented to illustrate the benefits of the proposed DR design while
also considering the impact of increasing residential demand
flexibility due to electric vehicle (EV) adoption.

The rest of the paper is organized as follows. Section 2 describes the
proposed incentive-based DR scheme. Section 3 presents a case study
that illustrates the merits of the proposed DR scheme, and Section 4
concludes the study.
2

p

Fig. 2. Inadequate vs. complete demand response of a residential consumer.

2. Proposed monitoring scheme and DR design

In a traditional incentive-based DR program, the utility informs the
DR participants of an upcoming event while specifying the timing,
energy reduction required, and incentive for compliance. During the
event period, those consumers who commit to participating in the event
defer their energy usage. Once the event ends, the performance of all
the participants is assessed, and the utility compensates consumers who
have fully achieved the required reduction (Fig. 1(a)). Formally, each
participant 𝑗 is found to have complied with the DR task if the following
condition is satisfied:
𝑡𝑒𝑛𝑑
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

(𝐵𝑗,𝑡 − 𝑃𝑗,𝑡) 𝛥𝑡 ≥ Specified energy reduction, (1)

where 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 respectively denote the starting and ending times of
he DR event, 𝐵𝑗,𝑡 refers to the baseline load profile for that consumer
i.e., the fictitious demand of the consumer had there been no DR
vent), while 𝑃𝑗,𝑡 is the measured load profile. The term 𝛥𝑡 represents
he metering resolution. Note that the above energy-based constraint
s the ‘Baseline Type-I’ DR measurement and verification (M&V) tech-
ique defined by the North American Energy Standards Board (NAESB)
usiness Practice Standards [17] and is widely adopted by utilities in
ractice, e.g., see [4,5,8].
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Fig. 3. Profile of the cumulative energy reduction from the baseline during a DR event.

As mentioned previously, the utility traditionally does not monitor
he performance of the DR participants in real-time during the event,
nd as a consequence, may not be able to assess the overall performance
efore the event ends. To address this, we propose to monitor the
esponses of DR participants during the event as shown in Fig. 1(b).
sing this, the utility can predict the success of the DR event even
s it progresses. If it is predicted that the required performance at
he system-level can be achieved, no further action is taken, and all
he participants who have successfully completed their individual DR
eductions are compensated for their responses. However, if the utility
redicts that the performance may fall short at the system-level, it has
he flexibility to modify the incentives of the participants in order to
ncrease their response. The following subsection presents one such
ompliance prediction technique. We remark here that this specific
echnique is only an illustrative example and can be replaced in practice
ith any other method deemed suitable by the utility.

.1. Real-time monitoring and compliance assessment

Consider the average load profile of a typical residential consumer
hown in Fig. 2(a), which was generated based on the probabilistic
eneration technique validated in [18,19]. The black plot in Fig. 2(a)
orresponds to the case when no DR event exists. Consider the sce-
ario where a DR event is scheduled from 6:30 p.m to 8:30 p.m; the
reen plot in Fig. 2(a) represents the consumer’s typical response for
given incentive. Now, say for some reason (e.g., hot weather) that

or a similar DR event on a different day, the consumer does not
espond adequately, resulting in the load profile depicted in brown.
he difference between the load profile with DR and that with no DR

s plotted in Fig. 2(b). This figure indicates that unless the behavior of
he consumer changes partly through the event period, the utility can
redict if the consumer would be able to meet their event goal fully by
onitoring the historically expected/complete (green) and measured

brown) profiles from the start of the event period. Based on this
bservation, we now derive a non-compliance prediction algorithm.

We begin by plotting the energy reduction profiles for the two
ases, viz., inadequate response and complete response, for the event
eriod. These are shown in Fig. 3. Note that these curves were derived
y integrating the power reduction profiles shown in Fig. 2(b). These
lots indicate that if the actual response (in terms of kWh reduction
chieved) is lower than the expected/complete response at the begin-
ing of the DR event, it is very likely that the energy curtailment
t the end of the DR event would also be insufficient. This leads to
he proposed non-compliance prediction algorithm, also based on the
Baseline Type-I’ M&V technique by the NAESB [17]:

1. Wait for a fixed time 𝑡𝑤𝑎𝑖𝑡 after the DR event begins for the
3

pre-event rebound (see the undershoot in Fig. 3) to disappear. a
Fig. 4. The proposed distributed DR monitoring system for groups of consumers.
Individual consumers’ smart meter streams are monitored at the group level, and
group-level compliance status is used by the utility for system-level compliance
assessment.

2. Monitor the energy reduction at a constant interval 𝛿 at times
𝑡𝑡𝑒𝑠𝑡 = 𝑡1, 𝑡2, 𝑡3, ⋯ such that 𝑡𝑡𝑒𝑠𝑡 < 𝑡𝑒𝑛𝑑 to verify if the following
equation is satisfied for a participant 𝑗:
𝑡𝑡𝑒𝑠𝑡
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

(𝐵𝑗,𝑡 − 𝑃𝑗,𝑡) 𝛥𝑡 <
𝑡𝑡𝑒𝑠𝑡
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

(𝐵𝑗,𝑡 − 𝑃𝑗,𝑡) 𝛥𝑡 . (2)

Note that [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ] is the DR event period, 𝐵𝑗,𝑡 the baseline de-
mand under no DR, 𝑃𝑗,𝑡 the measured demand during the event,
and 𝑃𝑗,𝑡 the load profile for the expected/complete response. This
equation can be simplified into the following:
𝑡𝑡𝑒𝑠𝑡
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑃𝑗,𝑡 >
𝑡𝑡𝑒𝑠𝑡
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑃𝑗,𝑡 . (3)

3. Predict non-compliance if Eq. (3) is satisfied for 𝑚 consecutive
testing times.

emark 1. Transitioning from using Eq. (1) to (3) allows the prediction
f non-compliance before the DR event ends.

emark 2. 𝐵𝑗,𝑡 and 𝑃𝑗,𝑡 are estimated using standard DR measure-
ent and verification techniques based on historical performance data

nd/or randomized control trials [17].

emark 3. The above algorithm waits for at least 𝑚 consecutive
esting intervals before issuing a prediction (see step 3 above). This
s because in reality, the measured and expected load profiles would
uffer from high variability as opposed to the average profiles presented
n Fig. 2. Therefore, repeated testing is performed in order to avoid
alse predictions of non-compliance. Values for the parameters of this
lgorithm, i.e., 𝑡𝑤𝑎𝑖𝑡, the testing interval 𝛿, and 𝑚 need to be tuned for a
iven system, e.g., using historical data from the DR program’s planning
nd design phase, before accurate predictions can be obtained.

To perform this monitoring process in a scalable, traceable, and
rivacy-preserving manner with low latency, we adopt an event-stream
rchitecture [16]. For details on how the compliance-prediction algo-
ithm can be implemented on smart metering streams, see [15]. In brief,
monitoring query operates on the stream of the consumers’ smart
eter readings. Once non-compliance is predicted, a non-compliance

vent is added to an output stream of this query, which is then mon-
tored by the utility in order to predict overall system-level non-
ompliance. For illustration purposes, we adopt the following simple
ule for this: if more than 𝛾𝑖𝑛𝑑 fraction of the total individual DR
articipants is predicted to be non-compliant, then the system-level
erformance is predicted to be non-compliant as well.

However, such individual-level testing and centralized monitoring
ay experience several challenges. First, it is difficult to accurately
redict the expected reduction profile 𝑃𝑗,𝑡 given the inherent vari-
bility of a single consumer’s demand. Second, the centralized nature
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of this monitoring would result in high communication and com-
putation costs, while also being vulnerable to single-point failures.
As such, a more accurate, efficient, and scalable approach is to as-
sess the compliance for groups of consumers in a distributed fashion
nd use group-level compliance predictions to assess the system-level
ompliance as illustrated in Fig. 4. Importantly, this would also ad-
ress an issue mentioned previously: while individual consumers may
otentially change their performance during the event resulting in er-
oneous predictions of (non-)compliance, grouping multiple consumers’
emand in the analysis would mitigate the variability in their event
erformance.

A convenient and practical clustering approach is to group together
ll the consumers under a Load Aggregator. Once the groups are
efined, the compliance of each group 𝐺𝑘 is assessed similar to the
rocedure defined previously, but instead of (3), we now test the
ollowing condition:

∑

∈𝐺𝑘

𝑡𝑡𝑒𝑠𝑡
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑃𝑗,𝑡 >
∑

𝑗∈𝐺𝑘

𝑡𝑡𝑒𝑠𝑡
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑃𝑗,𝑡 . (4)

f (4) is satisfied for 𝑚 consecutive testing intervals, the group’s re-
ponse is predicted to be unsuccessful. Subsequently, system-level com-
liance is determined as follows: if more than 𝛾𝑔𝑟𝑜𝑢𝑝 fraction of groups
s predicted to be non-compliant, then the overall system is predicted
o be non-compliant.

In the proposed DR implementation, the monitoring rate at the
arious levels of the system is reduced once the compliance assessment
s complete. For instance, consider the case where a group of DR par-
icipants is predicted to be non-compliant at an instance 𝑡𝑛𝑐 during the
R event. For this group, further compliance testing is not performed
uring the event period, and the monitoring rates for smart meters in
his group are lowered to the rate required for settlement purposes.
herefore, even if the smart meter streams were initially monitored at
higher rate, say, at 1 min intervals, the rate can be reduced to 15 min

ntervals after non-compliance prediction. Meanwhile, the monitoring
n the other groups remains unaffected, and the system-level monitor-
ng query continues to predict the system-compliance status. Once the
verall system is detected to be non-compliant, the monitoring rate
or all the smart meters is then reduced. This approach significantly
educes the monitoring cost and allows scalable implementation in
arger systems, as will be demonstrated in Section 3.4.3.

.2. Utility intervention during an unsuccessful DR event

Say the utility predicts an unsatisfactory response when consumers
re given an incentive 𝜆𝑜. It then offers a higher incentive 𝜆𝑛𝑒𝑤 for con-
umers to offset the deficit in the peak energy reduction. Here, rather
han dynamically changing the incentive, we propose the incentive
hange to be implemented as a second DR event (see Fig. 1(b)). This
ay, by preserving the schema of the DR event, the proposed design
llows for easier implementation by the utility. While the second event
s announced at short notice, participants only need to reconsider their
nergy usage in the immediate future, and therefore does not involve
uch preparation. Importantly, we do not implement more than two
R events to avoid the risk of participation fatigue [20], which may
eter consumers from participating in future DR events.

.2.1. Incentive for second DR event
Determining the new incentive 𝜆𝑛𝑒𝑤 requires the utility to have some

nowledge about the behavior of the consumers in the system, which is
reasonable expectation [14]. One such technique is presented in the

ontext of a case study in Section 3. In this subsection, constraints are
resented so as to prevent over-compensation and potential gaming of
he DR system by the participants.

First, while the second event task is offered to all participants, the
roposed system uses a fixed probability 𝑝𝑖𝑛𝑐 to randomly select a subset
4

f the participants that are compliant in the second event, who are
Fig. 5. DR participants’ expected payoffs (in square braces) under three possible
strategies. Strategy-3 is strictly dominated, whereas Strategy-1 is the preferred strategy
from the utility’s perspective.

actually paid the additional incentive. Indeed, such a lottery-based
reward scheme has been found to elicit more response than a fixed
reward [4], while also reducing the overall cost of the second event to
the utility. The value of 𝑝𝑖𝑛𝑐 , or equivalently, the number of participants
𝜅 = (𝑝𝑖𝑛𝑐 × total participants) actually offered the higher incentive is
determined as follows:

Hardware cost + Monitoring cost+

𝜅 (𝜆𝑛𝑒𝑤 − 𝜆𝑜) ≤ 𝐶𝑠𝑎𝑣𝑒𝑑 . (5)

This equation compares the cost and benefit of the proposed scheme,
with 𝐶𝑠𝑎𝑣𝑒𝑑 referring to the cost savings achieved by reducing the peak
oad through the second DR event. 𝐶𝑠𝑎𝑣𝑒𝑑 may also refer to the cost of

using alternates such as direct load control to compensate the deficit
in DR, which would allow the utility to compare the usefulness of the
proposed approach vis-à-vis these alternatives. Here, the hardware cost
is zero as the proposed scheme only involves making software changes
(e.g., the implementation of new compliance monitoring queries and
incentive-design method) to the utility’s existing DR system and does
not require any new hardware. More specifically, the utility already has
in place smart meters and DR messaging infrastructure for communi-
cating DR tasks to the consumers—the same systems can be utilized
to schedule the second event as well. Therefore, the condition for
profitability for the proposed DR design is obtained from (5) as:

𝜅 ≤
𝐶𝑠𝑎𝑣𝑒𝑑 − Monitoring cost

(𝜆𝑛𝑒𝑤 − 𝜆𝑜)
. (6)

Second, to ensure participants provide a compliant response during
the first event and do not wait for a higher incentive during the
second event (i.e., game the DR program), a penalty 𝐶𝑛𝑐 is imposed on
participants who are non-compliant in the first event. Fig. 5 shows the
expected payoffs under different possible scenarios. This figure shows
that by stipulating:

𝜆𝑜 > −𝐶𝑛𝑐 + 𝑝𝑖𝑛𝑐 𝜆𝑛𝑒𝑤 , or (7)
𝐶𝑛𝑐 > 𝑝𝑖𝑛𝑐 𝜆𝑛𝑒𝑤 − 𝜆𝑜 , (8)

the utility can ensure that the dominant strategy for each participant
is to fully participate in the initial event (i.e., Strategy-1) and thereby
maximize their expected payoffs.

2.2.2. Mapping additional incentive to consumer response
The responses of the various participants to the second DR event

would not be uniform. On the one hand, consumers who respond to
the first event with high enthusiasm may not have additional flexibility
left to provide, and therefore, any additional incentive may not result in
meaningful returns. On the other hand, consumers who do not respond
at all to the first event may be reluctant to respond during the second
event as well, even for an increased incentive. These are respectively
represented by the lower and upper bounds of the hatched region in
Fig. 6, considering an affine mapping between the incentive offered

and the response (similar models have been widely adopted, especially
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Fig. 6. Mapping the incentive offered by the utility to the consumer response.

for thermostatic loads, e.g., see [14,21]). The second event targets
those consumers in the middle of the above spectrum, i.e., those whose
characteristic lies within the hatched region in Fig. 6. As we show later
in Section 3.2, a majority of consumers in reality likely fall into this
category, underscoring the usefulness of the proposed DR design.

3. Performance evaluation

This section presents simulation results evaluating the performance
of the proposed dual-event DR design using a case study. The simula-
tion procedure and case study are first described, followed by results
highlighting the merits of the proposed scheme.

3.1. Simulating residential load profiles

This subsection describes how the load profiles for the home appli-
ances and the EVs in the system were obtained in our simulations.

3.1.1. Home appliance load profiles
The load profile of the home appliances for each of the residences

is simulated in a bottom-up fashion, using the model and specifications
introduced and validated in [18,19]. In brief, this approach uses the
probabilities of starting an appliance at a given time of the day to
generate the load profile for the residence. The appliance-use timings
are randomly generated at each time step based on the above proba-
bilities, and the sum of the individual powers results in the residential
load profile. If a DR event is requested by the utility, the appliance-use
probabilities are modified to reflect the consumers’ actions in deferring
their energy usage away from the specified DR event period. Here, a
variable 𝜃𝑓𝑡 ∈ [0, 1] is used to define the degree of follow-through of
the resident, with 𝜃𝑓𝑡 = 1 indicating no use of deferrable appliances
(e.g., washers, dryers, and dishwashers) during the DR event period,
and 𝜃𝑓𝑡 = 0 meaning that the resident takes no action to change their
energy usage behavior. Mathematically, say a deferrable appliance has
a probability 𝑝𝑡 of starting at a time 𝑡. Then, if the time step 𝑡 falls within
the DR event period, the revised starting probability of that appliance
at time 𝑡 is given by the following:

𝑝∗𝑡 = 𝑝𝑡 (1 − 𝜃𝑓𝑡). (9)

This deferred probability,
∑

𝑡∈DR event period
(𝑝𝑡 − 𝑝∗𝑡 ) , (10)

is then added to a random time outside the event period so as to model
the deferred load being used at other times of the day.
5

Fig. 7. Average load profile for: (a) home appliances in one residence, and (b) charging
one residential EV.

Table 1
Simulation parameters.

DR event Monitoring Participant grouping

Parameter Value Parameter Value Group Consumers

𝑡𝑠𝑡𝑎𝑟𝑡 6:30 p.m No. of groups 5 G1 1–10,000
𝑡𝑒𝑛𝑑 8:30 p.m 𝑡𝑤𝑎𝑖𝑡 20 min G2 10,001–30,000

𝛿 5 min G3 30,001–35,000
𝑚 3 G4 35,001–60,000
𝛾𝑔𝑟𝑜𝑢𝑝 0.4 G5 60,001–100,000

3.1.2. Residential EV charging load profiles
As for the EV profiles, the simulation approach presented in [22] is

adopted to generate load profiles when no DR event is requested by the
utility. Based on one of the largest trials of residential EVs in Europe,
this study proposes a bottom-up approach, where the behavior of each
EV user (and thereby, the load profile of that EV) is parameterized by
the following variables: the probability distribution of the number of
charging events per day, probability that each charging event begins
at a given time of the day, and lastly, the probability distributions of
the initial and final state-of-charge values for the EV battery. When an
EV user participates in a DR event, the user defers the EV charging
away from the specified DR event period. In our simulations, this
behavior is modeled as a reduction in the probability of a charging
event commencing during the DR event period, similar to the home
appliances’ usage as described by Eqs. (9) and (10).

Fig. 7 illustrates the resulting average load profiles of appliances
in one residence and an EV while considering a DR event between
6:30–8:30 p.m, with 𝜃𝑓𝑡 = 0.3 as an example.

3.2. Case description

For the case study, we consider a system with 100,000 residential
consumers, all of whom are assumed to be enrolled in the utility’s
incentive-based DR program. Residents in the system are randomly
assigned EVs depending on the EV penetration level. This is taken here
as 22.48%, which is the 2030 forecast for EV adoption in the UK.
As explained in Section 3.1, the response of each of these consumers
is parameterized by a follow-through rate 𝜃𝑓𝑡 ∈ [0, 1]. In our study,
to ensure that the simulations are realistic, values for the consumers’
follow-through rates are obtained from an online survey [23]. Specif-
ically, the survey participants were shown a DR message, and asked
to specify how likely they were to follow-through on such a message.
Their responses indicated an average 𝜃𝑓𝑡 = 0.45, which aligns with
metrics reported from previous DR field trials such as [4]. Importantly,

about 52% of respondents indicate a follow-through rate of 0.5 ≤ 𝜃𝑓𝑡 <
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Fig. 8. Flowchart illustrating how the proposed dual-event DR scheme was simulated.

1, suggesting that they fall within the hatched region in Fig. 6 and
therefore can meaningfully contribute during the second event. In our
simulations, the follow-through rate of each household is assigned to a
randomly-chosen survey response.

Subsequently, the load profiles for each of the residences in the
system are simulated. In particular, the behavior of the residents (in-
cluding their appliance use and residential EV charging) is simulated in
Matlab, and the event-stream monitoring setup is implemented using
the Esper engine. The overall approach is illustrated in Fig. 8, and the
simulation parameters are listed in Table 1. Here, the parameters 𝑡𝑤𝑎𝑖𝑡,
𝛿, 𝑚, and 𝛾𝑔𝑟𝑜𝑢𝑝 were selected empirically so as to accurately detect non-
compliance for a 20% reduction in follow-through rates of consumers in
this case study. We note here that a limitation of our survey was that we
could not capture the participants’ incentive-response mapping, which
varies based on the location, demographics, and other factors. We
therefore consider a set of different maps, M1–M4, which are depicted
in Fig. 9(a) and study the performance of the proposed DR design for
each. These mapping functions are such that for the original incentive
offered by the utility (denoted by 𝜆𝑜), the resultant follow-through rate
for each consumer is their expected follow-through rate 𝜃𝑜 (i.e., when
their response is complete), which in our simulations is derived from
the survey.

3.3. Determining the new incentive for the second DR event

Consider a scenario where on a particular day, the consumers’
characteristics shift upwards as shown in Fig. 9(b), leading to a reduced
follow-through rate 𝜃𝑟𝑒𝑑 for the same incentive 𝜆𝑜. The task for the
utility now is to determine what new incentive 𝜆𝑛𝑒𝑤 would mitigate this
deficit in the response. To this end, the utility can leverage the system-
wide cumulative energy reduction profiles (similar to those depicted
in Fig. 3) to approximate the mean reduced follow-through rate of all
consumers, 𝜃𝑟𝑒𝑑 :

𝜃𝑟𝑒𝑑
𝜃𝑜

≈
Measured energy reduction (𝑡𝑛𝑐 )
Expected energy reduction (𝑡𝑛𝑐 )

, (11)

where 𝑡𝑛𝑐 is the time at which system non-compliance is predicted, and
𝜃𝑜 is the mean expected follow-through rate (i.e., equal to 0.45, which is
he mean follow-through reported in our survey). Here, the assumption
s that the ratio of the measured and expected energy reduction profiles
s approximately equal to that of the mean reduced and expected
ollow-through rates. Subsequently, the utility can construct a linear
apping similar to that shown in Fig. 9(b) between the incentive

ffered and the mean system-wide follow-through rate 𝜃𝑟𝑒𝑑 to obtain
he new incentive:

𝑛𝑒𝑤 = 𝜆𝑜 +
(𝑢 − 1)𝜆𝑜
1 − 𝜃𝑜

(𝛽 𝜃𝑜 − 𝜃𝑟𝑒𝑑 ). (12)

Here, 𝑢 > 1 is defined such that 𝑢𝜆𝑜 is the point where the linear char-
acteristic under normal conditions intersects with the line representing
unity follow-through rate (see Fig. 9(b)). The factor 𝛽 > 1 is used as an
6

overcompensation during the second event so as to mitigate the initial
deficit in the response (i.e., because 𝜃𝑟𝑒𝑑 < 𝜃𝑜). In effect, 𝛽 𝜃𝑜 becomes
he targeted follow-through rate during the second event so that during
he overall DR event, the expected energy reduction can be achieved.

To simulate how individual consumers react to the new incentive
𝑛𝑒𝑤, we use the characteristic presented in Fig. 9(b) to determine the
ew follow-through rate for each consumer:

𝑛𝑒𝑤 = 𝜃𝑟𝑒𝑑 +
(𝜆𝑛𝑒𝑤 − 𝜆𝑜)(1 − 𝜃𝑜)

(𝑢 − 1)𝜆𝑜
. (13)

By substituting (12) in (13), we derive the following:

𝜃𝑛𝑒𝑤 = 𝜃𝑟𝑒𝑑 +

(

1 − 𝜃𝑜
1 − 𝜃𝑜

)

(𝛽 𝜃𝑜 − 𝜃𝑟𝑒𝑑 ). (14)

his shows that by selecting (12) as the new incentive, the final follow-
hrough rates of consumers are independent of the initial incentive 𝜆𝑜
nd incentive-response parameter 𝑢, indicating the robustness of the
roposed incentive mechanism.

.4. Performance evaluation

.4.1. Effectiveness in achieving peak energy reduction
Consider a scenario where unexpectedly, the participants’ follow-

hrough rates are reduced by 40%. As a result, with no changes to
he incentive, the peak energy reduction reduces from the expected
3.28 MWh to 47.89 MWh; see Fig. 10 for the corresponding demand
rofiles. Here, the proposed group-based monitoring scheme analyzes
he real-time demand and predicts that only two of the five groups are
xpected to be compliant at 7:11 p.m. Given the threshold 𝛾𝑔𝑟𝑜𝑢𝑝 = 0.4,
t then predicts that the overall system would be non-compliant, and
chedules a DR event beginning ten minutes later with a new increased
ncentive calculated according to (12) with 𝜆𝑜 = 1 and 𝛽 = 1.8. The
esultant demand profile is then determined based on the new follow-
hrough rates from (13) and is illustrated in Fig. 10. We observe that
he energy reduction achieved by the proposed technique is 82.6 MWh,
hich is within 1% of the expected value of 83.28 MWh, thereby
emonstrating the effectiveness of the proposed DR design. Recall that
he incentive design in (12) results in follow-through rates that are
ndependent of the parameter 𝑢 and by extension the specific incentive-
esponse mapping function, which is why separate results are not
hown for M1–M4. We note here that the above results pertain to
ne simulation instance where participants’ follow-through rates and
oad profiles were generated randomly as detailed in Section 3.1. Here,
ote that while individual consumers’ demand profiles have variability
cross different simulation instances, when aggregated at the group
each comprising 5000–40,000 consumers) or system level (100,000
onsumers), the variability in the net demand profiles is small. There-
ore, for computational simplicity, all results hereon are also presented
or a single simulation instance.

Next, we simulate the system for varying levels of reduction in
he follow-through rates and compare the energy reduction achieved
y the proposed DR design with that of the traditional single-event
esign. Referring to Fig. 11, the proposed incentive determination
echnique may under- or over-compensate the peak energy reduction
eficit. Further, there is a limit to the compensation it can provide—
or instance, for a 50% reduction in the follow-through rates, there still
emains a 9.3% deficit in the response. This can be partly ascribed to
he simplistic method used in this study to determine the new incentive
𝑛𝑒𝑤; in practice, a utility could use more advanced methods such as
daptively tuning the factor 𝛽 in order to achieve perfect compensation.
egardless, there does exist a practical limit to the amount of response

hat can be elicited during the second event, as we address later in
ection 3.4.2.
Speed of Non-Compliance Detection: The effectiveness of the proposed

R design is dependent on the speed of non-compliance detection. This
s illustrated in Fig. 12 while assuming the same event parameters as
n Fig. 10. Notably, the faster the detection of non-compliance, the
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Fig. 9. (a) Incentive–consumer response mappings considered in the case study. (b) Reduction in the consumer response.
Fig. 10. Illustrating the proposed DR scheme for a DR event from 6:30 p.m–8:30 p.m.
(a) System non-compliance predicted at 7:11 p.m. (b) System demand for the baseline
scenario with no DR, expected DR, traditional single-event response (reduced), and the
proposed dual-event DR design.

Fig. 11. Comparing the effectiveness of the proposed dual-event DR design with the
traditional single-event response.
7

Fig. 12. Variation in the DR performance with the speed of non-compliance detection.
All other parameters except the time of non-compliance detection remain the same.

larger the window to mitigate the deficit in response. Conversely, a
higher incentive needs to be provided to consumers to achieve the same
performance when non-compliance is detected late; these results are
not presented here due to length constraints.

Impact of Increasing Demand Flexibility: The net residential demand
flexibility in the system is strongly dependent on the uptake of EVs
by the residents [22]. To study how varying EV adoption impacts
the benefits offered by the proposed DR scheme, we refer to Fig. 13.
Systems with higher EV adoption have a greater need to avoid unsatis-
factory DR, as the evidenced by the increasing difference between the
energy reduction achieved by the proposed and traditional DR designs.
For instance, for an EV penetration of 0%, the increased peak energy
savings from the proposed DR design over the traditional DR design
varies from 31%–90%, while for 50% EV penetration, the improvement
varies from 33%–94%.

3.4.2. Economic feasibility of dual-event DR
As shown in Eq. (6), there is a maximum limit on the total extra

incentive (𝜅 (𝜆𝑛𝑒𝑤 − 𝜆𝑜)) paid during the second DR event for it to
be economically feasible. Here, we determine exactly how much extra
incentive would fully compensate the energy reduction deficit for our
case study while considering the four different incentive–consumer
response mappings presented in Fig. 9(a). These results are shown in
Fig. 14. We observe that a higher incentive is required when consumers
are less engaged (mapping M1) when compared with those who are
more responsive (mapping M4). Furthermore, we find that the rate at
which the additional incentive increases grows dramatically when the



Applied Energy 326 (2022) 119998G. Raman et al.
Fig. 13. A comparison of the performance of the proposed and traditional DR designs as the demand flexibility increases.
F

Fig. 14. Additional incentive required during the second DR event to nullify the energy
reduction deficit.

initial consumer response reduces further and further. For instance,
depending on the mappings M1–M4, the extra incentive ranges from
4%–16%, 6%–22%, and 65%–75% for 30%. 40%, and 50% reduction
in the follow-through rates, respectively. Beyond a point in the 𝑥-axis
in Fig. 14, it becomes impossible to achieve the promised reduction for
any incentive offered, i.e., even if all consumers were to have unity
follow-through rate during the second event, it is not possible to meet
the energy reduction goal. In such cases, the proposed incentive-based
response would need to be supplemented with alternatives such as
direct load control.

3.4.3. Scalability
To illustrate the scalability of the proposed DR scheme, we present

the communication and computation costs involved in the monitoring
process. Specifically, the communication cost is defined as the number
of event transmissions, while the computation cost is defined as the
number of events (i.e., queries executed over the various event streams)
processed by the monitoring system. We simulate systems where the
number of DR participants is increased from 100,000 to 1.6 million. The
results are presented in Fig. 15, assuming every 10,000 consumers to
form one group. Evidently, the monitoring costs remain nearly constant
as the system size increases. This is because in the proposed distributed
monitoring system depicted in Fig. 4, the monitoring of the participants
is local within the group, allowing for parallel compliance assessments
within the various groups. Global communications are only required
between the group-level monitoring system and the utility. Therefore,
to scale out the system is to actually add more groups, which only
increases the number of global communications by the number of
newly-added groups. Furthermore, the resolution at which the smart
meter streams are monitored are reduced from 1 min intervals to
15 min intervals after non-compliance detection, which this further
8

minimizes the communication costs.
4. Conclusion

An effective DR program is only fair for all stakeholders, be it
the utility or the consumers. To this end, this paper has proposed a
flexible monitoring framework for assessing the performance of the DR
participants in real-time, and in the case of potential non-compliance
to the event goal, adaptively creating an additional event with higher
incentives for participation. This is implemented using a distributed
event-stream monitoring approach, which allows for scalable realiza-
tion with low computation and communication overheads. It does
not require new hardware and can be integrated easily into the DR
management system already in place, and can be modified by utilities
to suit their respective customer bases. Constraints have been derived
to avoid the potential gaming of the DR system by participants, and to
determine the profitability of the proposed scheme vis-à-vis alternatives
such as direct load control. The merits of the proposed DR design were
demonstrated for a system of 100,000 residential consumers, using
bottom-up simulations of home appliances and electric vehicles, and
realistic consumer behavior models.

CRediT authorship contribution statement

Gururaghav Raman: Conceptualization, Methodology, Software,
ormal analysis, Writing – original draft, Visualization. Bo Zhao: Con-

ceptualization, Methodology, Software, Formal analysis, Writing – orig-
inal draft, Visualization. Jimmy Chih-Hsien Peng: Conceptualization,
Validation, Formal analysis, Supervision, Project administration, Writ-
ing – original draft. Matthias Weidlich: Conceptualization, Validation,
Formal analysis, Supervision, Project administration, Writing – original
draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The research was conducted at the Future Resilient Systems at the
Singapore-ETH Centre, which was established collaboratively between
ETH Zurich and the National Research Foundation Singapore. This
research is supported by the National Research Foundation Singapore
(NRF) under its Campus for Research Excellence and Technological

Enterprise (CREATE) programme.



Applied Energy 326 (2022) 119998G. Raman et al.

R

Fig. 15. Communication and computation costs as the number of DR participants increases.
eferences

[1] Hale ET, Bird LA, Padmanabhan R, Volpi CM. Potential roles for demand
response in high-growth electric systems with increasing shares of renewable
generation. Tech. rep., National Renewable Energy Laboratory; 2018.

[2] Gils HC. Economic potential for future demand response in Germany–Modeling
approach and case study. Appl Energy 2016;162:401–15.

[3] Wang Q, Zhang C, Ding Y, Xydis G, Wang J, Østergaard J. Review of real-
time electricity markets for integrating distributed energy resources and demand
response. Appl Energy 2015;138:695–706.

[4] Jain M, et al. Methodologies for effective demand response messaging. In: IEEE
int. conf. smart grid commun. 2015, p. 453–8.

[5] Oracle. Delivering on the smart grid promise: How exelon utilities create
value for every customer with dynamic pricing. 2016, https://go.oracle.com/
LP=42823.

[6] Attari SZ, DeKay ML, Davidson CI, De Bruin WB. Public perceptions of energy
consumption and savings. Proc Natl Acad Sci 2010;107(37):16054–9.

[7] White LV, Sintov ND. Inaccurate consumer perceptions of monetary savings in a
demand-side response programme predict programme acceptance. Nature Energy
2018;3(12):1101.

[8] Tiefenbeck V, et al. Real-time feedback promotes energy conservation in the
absence of volunteer selection bias and monetary incentives. Nature Energy
2019;4(1):35.

[9] Smale R, Spaargaren G, van Vliet B. Householders co-managing energy systems:
Space for collaboration? Build Res Inf 2019;47(5):585–97.

[10] Good N. Using behavioural economic theory in modelling of demand response.
Appl Energy 2019;239:107–16.

[11] Kim Y-J, Norford LK, Kirtley JL. Modeling and analysis of a variable speed heat
pump for frequency regulation through direct load control. IEEE Trans Power
Syst 2014;30(1):397–408.
9

[12] McKenna K, Keane A. Residential load modeling of price-based demand response
for network impact studies. IEEE Trans Smart Grid 2016;7(5):2285–94.

[13] Ye M, Hu G. Game design and analysis for price-based demand response: An
aggregate game approach. IEEE Trans Cybern 2016;47(3):720–30.

[14] Pacific Northwest National Laboratory. Transactive system. 2017, https://tinyurl.
com/y3d5xxcf.

[15] Raman G, Peng JC-H, Zhao B, Weidlich M. Dynamic decision making for demand
response through adaptive event stream monitoring. In: Proc. IEEE power energy
soc. gen. meeting. 2019, p. 1–5.

[16] Dayarathna M, Perera S. Recent advancements in event processing. ACM Comput
Surv 2018;51(2):33.

[17] Goldberg ML, Agnew GK. Measurement and verification for demand response.
Tech. rep., US Department of Energy USA; 2013.

[18] Chuan L, Ukil A. Modeling and validation of electrical load profiling in residential
buildings in Singapore. IEEE Trans Power Syst 2015;30(5):2800–9.

[19] Raman G, Peng JC-H, Rahwan T. Manipulating residents’ behavior to attack the
urban power distribution system. IEEE Trans Ind Inf 2019;15(10):5575–87.

[20] Ben-Nun P. Respondent fatigue. Encycl Surv Res Methods 2008;2:742–3.
[21] Subbarao K, et al. Transactive control and coordination of distributed assets for

ancillary services. Tech. rep., Pacific Northwest National Laboratory; 2013.
[22] Quirós-Tortós J, Ochoa L, Butler T. How electric vehicles and the grid work

together: Lessons learned from one of the largest EV trials in the world. IEEE
Power Energy Mag 2018;16(6):64–76.

[23] Raman G, AlShebli B, Waniek M, Rahwan T, Peng JC-H. How weaponiz-
ing disinformation can bring down a city’s power grid. PLoS One
2020;15(8):e0236517.

http://refhub.elsevier.com/S0306-2619(22)01255-7/sb1
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb1
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb1
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb1
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb1
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb2
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb2
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb2
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb3
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb3
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb3
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb3
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb3
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb4
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb4
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb4
https://go.oracle.com/LP=42823
https://go.oracle.com/LP=42823
https://go.oracle.com/LP=42823
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb6
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb6
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb6
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb7
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb7
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb7
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb7
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb7
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb8
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb8
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb8
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb8
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb8
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb9
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb9
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb9
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb10
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb10
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb10
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb11
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb11
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb11
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb11
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb11
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb12
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb12
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb12
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb13
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb13
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb13
https://tinyurl.com/y3d5xxcf
https://tinyurl.com/y3d5xxcf
https://tinyurl.com/y3d5xxcf
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb15
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb15
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb15
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb15
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb15
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb16
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb16
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb16
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb17
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb17
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb17
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb18
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb18
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb18
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb19
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb19
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb19
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb20
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb21
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb21
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb21
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb22
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb22
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb22
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb22
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb22
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb23
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb23
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb23
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb23
http://refhub.elsevier.com/S0306-2619(22)01255-7/sb23

	Adaptive incentive-based demand response with distributed non-compliance assessment
	Introduction
	Proposed monitoring scheme and DR design
	Real-time monitoring and compliance assessment
	Utility intervention during an unsuccessful DR event
	Incentive for second DR event
	Mapping additional incentive to consumer response


	Performance evaluation
	Simulating residential load profiles
	Home appliance load profiles
	Residential EV charging load profiles

	Case description
	Determining the new incentive for the second DR event
	Performance evaluation
	Effectiveness in achieving peak energy reduction
	Economic feasibility of dual-event DR
	Scalability


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


