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This class

@ The fundamental theorem
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No arbitrage

We use a model with two points in time, s possible states (61, ..., 0s) and

n traded assets. p = (pi, ..., pn) is the price vector, Z is the payoff matrix
(rows are states, columns are assets).

e A portfolio n = (91, ...nn) costs pn. The payoff vector is Zn.

@ An arbitrage opportunity is a portfolio n that (i) requires no

investment, (ii) will not yield a loss, and (iii) may return a strictly
positive gain.

pn <
Zn > 0

where x > y means that all (some) components of a vector x are
greater or equal to (strictly greater than) the corresponding
components of a vector y.
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The fundamental theorem

The following statements are equivalent:
(i) There do not exist any arbitrage opportunities.

(i) There exists a positive linear pricing rule g that prices all assets:
p = qZ, where all elements of g are strictly positive.
(iii) Each agent has a finite optimal demand for all assets.
Proof:
(ii)—(i): let n be an arbitrage opportunity. Then,
0> pn = (9Z)n = q(Zn). Since q is positive, we obtain a contradiction in
that Zn < 0.
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Proof: (i)—(ii) (sketch)

Absence of arbitrage implies that the set of feasible cost/payoff
combinations {x|3n, x = (pn, Zn)} intersects with Ry x RS at zero.

Since Ry x Ri is a cone, use a special version of the separating
hyperplane theorem: there exists a separating axis s.t. the projection of
any point in the set of feasible cost-payoff combinations onto the axis is
strictly smaller than that of any point in the interior of R} x Ri
For any such interior point x > 0 and any vector (1, q) representing
such a projection, we thus have (1, g)x > 0 (since zero is the
projection of the zero cost/payoff combination).
Since x > 0, g > 0.

Moreover, for any x € {x|3n,x = (pn,Zn)}: (1,q9)x = (1,9)An < 0 and
(since —n is also feasible) (1, g)An = 0, where

=(7)
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Uniqueness of the pricing rule

If the market is complete, Z has full row-rank, and p = gZ has a unique
solution:
g=pZ""

In an incomplete market, the securities’ payoff vectors don’t “span” the
state space, and the pricing rule is not unique.
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This class

© The representation theorem
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Representation theorem

The representation theorem

The following statements are equivalent:
(i) There exists a positive linear pricing rule.

(i) The martingale property: there exist martingale or risk-neutral
probabilities (or a density) and an associated riskless rate.

(iii) There exists a positive pricing kernel or state price density.

We will see the requisite definitions as we go along...
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Risk-neutral probabilities / martingale probabilities

We start by valuing a riskless payoff.

1
——=ql=) qi
1+ rfet1 Z

Define: risk neutral probabilities as normalized prices:

* q

7'(' =
qu'

Now we value a payoff X with a vector of realizations x:

1 1

* *
p=gx = gnix=—"—n'"x= —»+—
Z ’ 1+ rfe 1+ rfes

E*x

where i is the index for states.

Alex Stomper (MIT, IHS & VGSF) Finance March 2010

9/15



Representation theorem

Pricing kernel / state price density

A pricing kernel has been defined by:
p=EMX = mmx

where M denotes the pricing kernel (with a vector of realizations m) and
7 denotes the probability vector.
Since p = gx, we can define the pricing kernel as a vector with components

_ g

T

m;j

Will the components of the pricing kernel sum to one?
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This class

e Applications
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Applications

Measuring the state-price density

What is the value of a security that yields a unit payoff in state i and zero
in any other state?

Suppose that the state space consists of 6 states in which the payoff of a
stock is {8,9,...,13}. Here is a table of call prices of calls on the stock
with different strike prices.

strike price
call price

7 8 9 10 11 12 13
3221232 (154|094 | 053|028 |0.14
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Applications

Measuring the state-price density: ctd.

Construct butterfly spreads:

strike | call bfly Payoff if stock price is... 1st diff | 2nd diff
89|10 11|12]13
7 3.22
-0.9
8 2.32 0.12
-0.78
9 154|154 (0|0 1 |2 |3 ]| 4 0.18
-0.60
10 094 |-188|0|0| 0 |-2]|-4]|-6 0.19
-0.41
11 053|053 |0|0| 0| 0] 1] 2 0.16
-0.25
12 0.28 0.11
-0.14
13 0.14
019 |o|0| 1|0 | 0] O
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Applications

Option pricing with the binomial model

We want to value an option on a stock that is currently worth ps and may

be worth either ups or dps when the option expires. How can we value
the option?

@ There are two states and three assets: the stock, the riskfree asset,
and the call option. Local market completeness.
@ What is the pricing rule? Solve:

pPs = Quups+ qadps
1 = qu(l+r)+qa(l+rr)

_ _1tr—d
W A mu—d) T

Why is it true that g = (qu, gq4) > 07

u— (14 rf)
@+ r)(u—d)

Alex Stomper (MIT, IHS & VGSF) Finance March 2010 14 /15



Option pricing continued

We had:
1+rf—d u—(].—l—l’f)
W T —d) ™% A - d)
Both are positive since no arbitrage requires that u > 1+ rr > d.
@ Risk-neutral probabilities:

* * * qu dd 1+rr—d U—(].—i-ff)
mT=n, 47T, = + = =1
YT g+t e qut g (u—d) (u—d)

@ Pricing kernel:
my B Ltrod g G u- (1)
YT ry T w1+ re)(u— d) T wg ma(l+re)(u—d)

@ Let the option payoff be either x, or x4. The option price is:
Ty Xu + TyXd
1+ rf
Finance March 2010 15 /15
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