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Datasets on e+e− reactions from the L3 experiment at CERNs LEP accelerator are reprocessed in order to
compute the cross section σ of said reactions, the characteristic constants of the Z0 boson Mz, τz of its mass
and lifetime, as well as the weak mixing angle ΘW corresponding to the Weinberg angle in the theory of the
electroweak interaction. From the evaluation of the datasets, values of Mz = (91.2 ± 0.04)GeV,Γz = (2.59 ±
0.07)GeV, τz = (2.48±0.1) ·10−25s and sin2 ΘW = {0.22±0.01, 0.28±0.01} were computed and remain consistent
with the predictions made using the standard model of particle physics.

I Introduction and Theory
During e+e− interactions, neutral current interactions
mediated by the Z boson -the messenger particle re-
sponsible for the weak force alongside the W+ and
W− bosons- provide a mechanism for the annihila-
tion of the e+e− pair into fermions f = q, e, µ, τ, ν
and their respective antifermions f by means of the
reaction e+e− → Z0 → ff . These neutral currents
of Z bosons were first theorized as a way to describe
the elastic scattering of neutrinos with other particles
µN → Z0 → µN in the standard model. Without them,
scattering processes like the conversion of neutrinos to
W bosons νµ + νµ → W+W− would break the unitar-
ity limit by means of the proportionality to E2 of their
cross sections dσ

dΩ ' s = (pν = pν)2 = E2
CM . For it to

work within the stablished quantum mechanical laws,
an additional step νµ + νµ → Z0 →W+W− needs to be
defined such that the cross section dσ

dΩ ≈ s→∞1
s com-

pensates for it -the additional step being the Z boson.

Figure 1: Production and decay of a Z0 boson during a e+e− anni-
hilation [1]

Depending on their energy, e+e− pairs can decay
into fermion and antifermion pairs either via QCD by
exchanging a photon if their center-of-mass energy

√
s

is far below the energy threshold
√
s << MZ for the

production of Z0 bosons, or on the contrary annihi-
late primarily through the Z0 channel if

√
s ∼ MZ ,

at which point the Z0 resonance dominates during the
production of further fermions. In this case, the char-
acteristic values for the Z0 boson, namely its cross sec-
tion σZ mass MZ and lifetime τZ , can be extracted
from the different events produced by e+e− annihi-
lations. In addition, the weak mixing angle ΘW -or
Weinberg angle as it is also called- which describes
the relation between the mass of the Z and W bosons,
can also be determined. For this experiment, the an-
alyzed data includes decays into both hadrons from
the resulting e+e− → Z0 → qq as well as muons
e+e− → Z0 → µ+µ−.

II L3 Setup
The L3 detector was one of 4 main Detectors at the for-
mer LEP (Large Electron Positron Collider) at CERN.
LEP was shut down on November 2. to make way for
the construction of the LHC (Large Hadron Colider)
and thus L3 was replaced by the ALICE (A Large Ion
Collider Experiment) experiment. [8] The data used
in this analysis originates from this detector.

L3 was designed to study e−e+ collisions at ener-
gies of up to 200 GeV, however this potential was not
fully realized, as the highest energy beam created in
the LEP was of 104,5GeV in May 2000. For our pur-
poses, collisions at around 90 GeV are relevant.

L3 housed a multitude of sub detectors, in order to
detect and measure various particles and their decays.
Starting from the center, the first subdetectors are the
Vertex chamber and Time Expansion Chamber, which
measure the trajectory of charged particles. This is fol-
lowed by the electromagnetic calorimeter (also known
as BGO as it is made of Bismuth Germanium Ox-
ide) measuring the energy of leptons, along with the
hadron calorimeter measuring the energy of hadrons.
Calorimeters are made of dense materials, and stop
most particles, thus releasing and measuring their en-
ergy. Finally, the muon chambers, where muons are
detected, are located between the hadron calorimeter
and the Magnet coils, which generate a magnetic field
within the detector, which in turn enables energy mea-
surements of particles through their deflection. All of
these detectors are placed concentrically, in the form
of cylinders, around the collision chamber, which is
capped by luminosity monitors measuring the lumi-
nosity of the incoming beams.

Figure 2: Schematic of the L3 experiment[4]

This order is preferable, as heavier and more en-
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ergetic particles, muons, require more material than
the calorimeters provide to be stopped and thus de-
tected. Ergo the placement of the muon chambers as
last detectors was chosen. Similarly, the electromag-
netic calorimeter is exposed to the particle fallout be-
fore the hadron calorimeter, as electrons and positrons
for example are more likely to be detected here, and
hadrons more likely to pass. Finally, the scintillators
are placed between the calorimeters, as it is expected,
that close to none of the gamma rays generated in the
collision may pass beyond this point. This is to fil-
ter out gamma ray events caused by high energy cos-
mic rays which otherwise may interfere with measure-
ments.

III Selection of Hadron and
Muon Events

III.1 Hadronic Events
The selected hadronic events were chosen based on
three criteria; first, the total calorimetric energy of the
selected hadrons needed to be around the same value
of the center-of-mass energy

√
s. With an energy of

EV is =

n∑
i=1

Ei =

n∑
i=1

√
~pi

2 +m2
i ≈

n∑
i=1

√
p2
xi + p2

yi + p2
zi

(1)
for a total of n particles, the following relation for the
ratio must hold true

0.5 <
EV is√
s
< 1.5 (2)

as according to [3]. According to the same source, the
energy imbalances along the beam direction ∆E‖ and
perpendicular to it ∆E⊥ as given by the formulas

∆E⊥ =

√√√√(

n∑
i=1

pxi)2 + (

n∑
i=1

pyi)2 (3)

∆E‖ =

n∑
i=1

pzi (4)

need to also stay within a range of

|∆E‖|/Evis < 0.6 (5)

∆E⊥/Evis < 0.5 (6)

in order to be qualified as valid hadronic events from
a Z decay process.

III.2 Muon Events
For the selected muon events, three different criteria
were also chosen. First, as according to [3], the muon
event must be within the angular range

0 < |cos(Θ)| < 0.8 (7)

with
cos(Θ) =

pz√
p2
x + p2

y + p2
z

(8)

Then, their energy in the form of their momentum
Emu ≈

√
p2
xi + p2

yi + p2
zi should be roughly 1/2

√
s since

most of the beam energy is conserved and thus

40GeV ≤ Emu ≈
√
p2
xi + p2

yi + p2
zi ≤ 50GeV (9)

In addition, the total impulse of both muons must lie
below 5GeV since their opposite directions due to en-
ergy conservation would make their total impulse add
up to 0.

ptot =
√
~pµ + ~pµ ≤ 5G (10)

III.3 Systemic deviation

The events selected according to these criteria for an
experimental set of data are compared to the data
from Monte-Carlo simulations in the figure below.

Figure 3: Data Cuts compared with the MC data

The efficiency ε of the cuts can be calculated accord-
ing to the formula

ε =
N ′MC

NMC
(11)

where N ′MC is the number of selected events in the
Monte-Carlo simulation used as a sample for the selec-
tion algorithm and NMC is the total number of events.

Evis√
s

|∆E‖|
Evis

∆E⊥
Evis

89GeV 91GeV 93GeV

0.5 << 1.5 < 0.6 < 0.5 1780 3984 2127
0.6 << 1.4 < 0.5 < 0.4 1762 3928 2096
0.4 << 1.6 < 0.7 < 0.6 1790 4010 2141

Table 1: Data selection with different criterias for Hadrons

In order to determine the systemic uncertainties of the
hadron and muon events selection algorithms, some of
the cuts were varied in order to check on the varia-
tion in selected events and estimate a systemic uncer-
tainty from them. For hadron cuts, this uncertainty
was roughly ascertained to be around uhadr ≈ 25 and
for muons umu ≈ 7 by looking at the rough distribution
between numbers of selected events.
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IV Cross Sections of Hadron
and Muon Events

For calculating the cross sections of the hadrons and
muons, the selected hadron and muon events are eval-
uated together with the efficiency ε (11) of the selec-
tion, acceptance A of the detector and the luminosity
L of the beams arriving at the detector. These lumi-
nosities are given (see Table 5) for each dataset with a
relative uncertainty of 1%.

√
s(GeV) L(n b−1)
89,48 179,3
91.33 135,9
93,02 151,1

Table 2: Given Luminosities of datasets by energy

The cross sections are yielded using the following
relation

σ =
Nobs
ε A L

(12)

where Nobs is the number of observed events.
However, as efficiency and acceptance are calcu-

lated through an extrapolation from data generated
using a Monte-Carlo simulation, (12) may be simpli-
fied as follows;

σ =
N ′ −NB

ε L
(13)

HereN ′ is the number of events andNB the estimated
number of background events, after the application of
criteria from III. By applying a Gaussian propagation
of , the uncertainty for the computed cross sections σ
becomes

uσ =

√√√√ m∑
i=1

(
∂y

∂xi
· ui
)2

= (14)

√(
1
εL · uN ′

)2
+
(

1
εL · uNB

)2
+
(
N ′−NB
ε2L · uε

)2

+
(
N ′−NB
εL2 · uL

)2

(15)
Due to the strong agreement between the Monte Carlo
datasets seen in figure 3 and the selected experimen-
tal data, a background signal NB can be neglected
without compromising the results from the computa-
tions. Thus, both NB = 0 and uNB = 0 are set a priori
for the next steps. This then yields the following val-
ues for the cross sections of hadrons and muons with
the uncertainties uσ

√
s(GeV) L(n b−1) σhadr(n b) σµ(n b)
89, 48 179, 3 10± 0.6 0.4± 0.03
91.33 135, 9 29, 4± 0.8 1.18± 0.03
93, 02 151, 1 14, 2± 0.7 0.46± 0.03

Table 3: Cross sections for Hadrons and Muons

V Breit Wiegner Fit
The cross section distribution σ(s) as a function of the
square of the center-of-mass energy

√
s for both the

hadron and muon events takes the form of a Breit-
Wigner curve as expressed by the formula

σ(s) = σ0 ·
sΓ2

Z

(s−M2
Z)2 +M2

ZΓ2
Z

(16)

In order to fit this model function to the data, a non
linear fit to the convolution integral

σcorr(s) =

∫ s

0

σ(s′) · r(s, s′)ds′ (17)

is conducted by means of a least-squares method
where for the previously computed σi with i ∈ {1, 2, 3}
and the fitted σcorr(s) the expression

χ2 =

3∑
i=1

(σi(s)− σcorr(s))2

u2
σ

(18)

becomes minimal. The convolution integral corrects
the Breit-Wiegner model with a function r(s, s′) for
the probability of a photon emission, in which case
the squared center-of-mass energy s would be reduced
from s to s′ < s. From this model, the fitted parame-
ters σ0 =,Mz =,Γz = giving the characteristic values
of the Z boson can be determined. Running this fitting
algorithm for the cross sections computed above, the
Breit-Wiegner fit for hadron events follows below.

V.1 Hadron Cross Sections

Figure 4: Breit Wigner Fit for Hadrons

The dotted red figure shows the fit without corrections,
while the black one compensates for the energy loss
discussed above. From the plot, a good agreement be-
tween the model and the data can already be observed,
with the following characteristic parameters of the Z
resonance

Parameter Value
σ0 (36.9± 0.6)nb
MZ (91.2± 0.04GeV
|ΓZ | (2.59± 0.07)GeV

Table 4: Parameters computed from the Breit-Wigner Hadron Fit
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V.2 Muon Cross Sections

Figure 5: Breit Wigner Fit for Muons

The same fit can then also be computed for the selected
muon events and computed cross sections σmu, yield-
ing the figure above. For it, the fitted parameters are
returned as

Parameter Value
σ0 (1.5± 0.6)nb
MZ (91± 0.8)GeV
|ΓZ | (2.3± 1.4)GeV

Table 5: Parameters computed from the Breit Wigner Muon Fit

where both the mass MZ and partial width ΓZ of the
Z boson for the hadron and muon fits overlap very
well, with the parameters determined by the hadron
fit yielding a lower uncertainty than the ones from the
muon fits. Lastly, the lifetime τZ of the Z boson can be
computed from the inverse value of the decay width
ΓZ as according to

τZ =
1

ΓZ
= 0.38± 0.01GeV −1 · 6.582 · 10−25s/GeV −1

(19)
τZ = 2.48± 0.1 · 10−25s (20)

VI Partial Width of Electron Γe

VI.1 From Muon Cross Section
The partial width of the electrons Γe can also be in-
ferred through the characteristic fitted parameters for
the Z boson, either through the muon or the hadron
data. In the former case, the relationship between the
maximum value of the cross section max(σ(s)) = σ0,
which is given as

σ0 =
12π

M2
Z

· ΓeΓf
ΓZ

(21)

can be utilized for events where the resulting particle
is a fermion such as a muon f = µ such that Γf = Γµ.

Since according to the universality of leptonic decays
the relation Γl = Γτ = Γe = Γµ holds true, the formula
could be simplified for Γe = Γµ as follows

σmu0 =
12π

M2
Z

· ΓeΓµ
ΓZ

=
12π

M2
Z

· Γ2
e

ΓZ
(22)

Thus, solving for Γe delivers

Γe = MZΓZ

√
σ0

12π
(23)

with the uncertainties resulting from Gaussian error
propagation being

uΓe =

√
(TZ

√
σ0

12π · uMZ
)2 + (MZ

√
σ0

12π · uTZ )2 + (MZTZ

√
12π
σ0
· uσ02 )2

(24)
and thus the resulting value for the partial width as
calculated using the muon cross section being

Γe = (76± 6)MeV (25)

There is another way to determine the partial width
too however, by using the hadron cross sections.

VI.2 From Hadron Cross Section
As the total width of the Z-Resonance may be obtained
through the sum of all partial widths, Γe = Γl may be
obtained using following relation.

ΓZ = Γhadron + 3Γl + 3Γνl (26)

Here the factors 3 are obtained through the universal-
ity’s of leptons and neutrinoes.

Furthermore, solving 21 for Γf and substituting
f = hadron, delivers a method of calculating the par-
tial width of hadron decay.

Γhadron =
M2
Z σ

hadron
0 Γ2

Z

12π Γe
(27)

Substituting 27 into 26, and solving for Γe

Γe =
ΓZ/3− Γνe

2
−

√(
ΓZ/3− Γνe

2

)2

− 4
M2
ZσΓ2

Z

36π
(28)

leads to a final requirement to solve: Γνe, which is
calculated using following equation and substituting
f = νe and Qνe = 0 as neutrinos are not charged, thus
eliminating the need for the Weinberg angle for this
calculation.

Γf =
GFM

3
Z

24
√

2π
· [1 + (1− 4|Qf |sin2ΘW )2] (29)

ergo

Γνe = 2
GFM

3
Z

24
√

2π
(30)

Through this method Γe == (75.44 ± 13.28)eV was
calculated. However, a Gaussian uncertainty propa-
gation failed, due to complex values being attained.
More on this topic in the discussion.
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VII Weinberg Angle ΘW

In the standard model, the electroweak mixing angle,
also called the Weinberg angle, gives the decay widths
of fermions according to 29.

sin(Θ)2 can thus be computed by means of the par-
tial width derived above from the muon and hadron
events. By rewriting the equation for the Weinberg
angle ΘW , the following expression

sin2(ΘW ) =

1±

√√√√ Γf
GFM3

Z

24
√

2π

− 1

 · 1

4|Qf |
(31)

returns the desired value, with Γf = Γe = (83.35±0.08)
being the decay width computed in IX, GF = 1.166 ·
10−51/GeV 2 the Fermi constant and MZ = (91.2 ±
0.04)GeV the mass of the Z boson determined in IV.
Since the root within the equation can be positive or
negative, two possible values for sinΘ2 are given as
follows;

sin(Θ)2
1 = 0.22± 0.01 sin(Θ)2

2 = 0.28± 0.01 (32)

VIII Quark Colors
In order to determine the amount of quark colors NC ,
first the cross section Γhadr needs to be determined.
This cross section follows from the relationship be-
tween the decay width of the Z boson the rest of the
decay widths adding up to it

ΓZ = Γhadr + 3Γν + 3Γl (33)

where there is three components to the lepton and
neutrino decay width due to universality meaning all
neutrino flavors also sharing the same decay width.
Γl = Γe is already known and Γν can be computed
through

Tν =
GFM

3
Z

12
√

2π
= (0.165± 0.1)GeV (34)

since neutrinos are electrically neutral and so Qf =
Qν = 0. From these known values, the decay width of
the hadrons follows as

Γhadr = ΓZ − 3Γν − 3Γl = (1.86± 0.1)GeV (35)

From this, the color factor NC which quantifies the
quark colors can be computed through the formula

Γhadr = NC ·KQCD · (2Γu + Γd) (36)

where the decay widths of the up and down quarks are
given for a known Weinberg angle Θ and their charges
Qu = 2/3, Qd = −1/3 as

Γd = (0.124±0.06)GeV Γu = (0, 097±0.06)GeV (37)

Thus, rewriting for NC and with KQCD ≈ 1.04 -which
is a factor taking into account the possibility of gluons
being emitted by the quarks- the color factor NC yields
the following value

NC =
ΓHadr

KQCD · (2Γu + 3Γd)
≈ (3.2± 0.3) (38)

IX Discussion
From the calculations above and results Mz =
(91.2± 0.04)GeV,Γz = (2.59± 0.07)GeV and sin2 ΘW =
{0.22 ± 0.01, 0.28 ± 0.01}, the comparison with the lit-
erature values [9] M lit

Z = (91.195 ± 0.006)GeV,Γz =
(2.49 ± 0.01)GeV and sin2 ΘW = 0.2283 ± 0.0032 yields
a favorable verdict on the correct computation of the
results above.

Due to a failure of obtaining an uncertainty through
a Gaussian uncertainty propagation in VI, the uncer-
tainty of Γe attained through hadron data was esti-
mated, by multiplying the sum of the relative uncer-
tainties of the parameters and multiplying this sum
by the number of parameters and the value attained.
A likely source of this failure lies in the calculation of
σhadron0 , ΓZ or Γνe. Attempts to rectify this remained
unfruitful.

A better selection of events in order to maximize
the efficiency and thus reduce the error of the ini-
tially computed cross sections, as well as a more ac-
curate assessment of the uncertainties would have
likely provided better results, since the values from
literature seem to provide further accuracy on their
measurements. In addition, the convergence of the
Breit-Wigner fit could have been improved for further
center-of-mass energy

√
s measurements and cross

section values σ(s) to feed into the fitting algorithm.
As it stands, the produced χ2 are far below any other-
wise minimum standards.

But nonetheless, both the measurements as well as
the results from the data processing seem to com-
pletely remain in agreement with the predictions by
the standard model. The applied cuts and criteria on
the data were also selectively able to filter out most
non-relevant events and keep those already simulated
by the Monte-Carlo datasets, confirming the hypothe-
sis even further. Thus the results from the experiment
and data processing further support the validity of the
standard model in particle physics.
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