
Fourier Optics

Santiago R. (598454), Birge Sükrü Tok (593452) 1

1 Physics Institute, Humboldt University to Berlin, Germany
Instructor: Dr. Shuwei Jin

(Protocol Date: May 11, 2021; Experiment Date: 19.April 2021)

Fourier optics involve the study of optical systems by using Fourier transforms to filter and otherwise manip-
ulate images in the spatial domain. Using a spatial light modulator (SLM) to modulate the phase φ of polarized
light from a monochromatic λ = 532nm laser, first the characteristic pixel pitch p = (15.8 ± 0.05)µm of the
SLM was determined, as well as the applied gray values for characteristic phase shifts A2π = 176, Amax = 65,
Amin = 21. After characterising the SLM, a set of Fourier transformations of spatial images by a lens, to-
gether with software masking/filtering and holography were performed and compared to computational models.
Finally, a series of orbital angular momentum beams (OAM) were generated and qualitatively described.

I Introduction

I.1 Theory

Spatial light modulators (SLMs) are optical devices ca-
pable of modulating the phase φ and/or intensity I of
light beams, thus finding a large amount of applica-
tions in fields such as holography or microscopy, with
the former being useful for the study of optical systems
using methods such as mask filtering or Fourier trans-
formations by a lens -this is known as Fourier optics.

Figure 1: Design of the Hamamatsu X15213 SLM [1]

SLMs can all work very differently from each other
and modulate multiple characteristics of light waves
other than just their phase, but for these experiments
using a liquid-crystal-on-silicon Hamamatsu X15213
SLM, only the phase φ of the beams was modulated.
The Hamamatsu SLM works herein by having a liq-
uid crystal layer above a pixelated, reflecting silicon
substrate with an active matrix circuit and pixel elec-
trodes built in and sitting below another glass sub-
strate with a transparent electrode. The liquid crys-
tals can then be reoriented on a per pixel basis by us-
ing the electric fields between the pixels in the silicon
and the transparent electrode after applying a voltage
between difference them, thus also changing the tilt-
dependant extraordinary refractive index ne(θ) of each
point in the liquid crystal layer. This behavior is de-

scribed [1] by the equation

1

ne(θ)2)
=

�
cos(θ)

ne(0)

�2

+

�
sin(θ)

no

�2

(1)

with no being the constant ordinary refractive index
and θ ∝ 1

V for any given area in the crystal layer cov-
ered by a pixel. From this, a phase difference Δφ of all
light incident on an area covered by a pixel of applied
voltage V2 is generated according to

Δφ =
2π

λ
(ne(V1)− ne(V2)) · 2d (2)

with V1 being the voltage applied on the upper trans-
parent electrode and d the thickness of the crystal
layer. Due to manufacturing constraints, the output
wave also acquires a curve-like phase due to the SLM
liquid crystal layer and silicon substrate also not being
perfectly flat.

I.2 Setup

Figure 2: Initial Setup [1]

Although the setup changes multiple times for each
part of the experiment, some elements in the optical
path remain constant in order for the SLM to oper-
ate properly. First, a λ = 532nm monochromatic laser
which has its beam of light spread out over a larger
area by a telescope beam expander is used as a light
source for the SLM throughout the whole experiment.
From there, the expanded laser beam goes through a
polarizer as well as a λ/2 gate which respectively serve
the purpose of polarizing and changing the polariza-
tion direction of the light waves arriving on the SLM.
After that, a beam splitter redirects part of the light
towards an absorber and another towards the SLM
where it is modulated. The phase shifted light beams
are then redirected once more by the beam splitter to-
wards a target camera/mirror/screen below.

1

II Characterization of the SLM

For the first set of experiments, the Hamamatsu
X15213 SLM itself is characterized by measuring the
pixel size and determining the characteristics of its
phase modulation in relation to applied grey values.

II.1 Pixel Pitch

Figure 3: Setup with screen and aperture [1]

The pixel pitch determines the average distance p be-
tween pixels within the spatial light modulator, mea-
sured from the middle of a pixel to the middle of an-
other. By having the pixelated structure of the SLM
act as a 2D diffraction grating - and thus the pixel
pitch serve as the spacing g = p - the resulting diffrac-
tion pattern of maxima on a screen below the beam
splitter satisfies the equation

psin(θM) = mλ (3)

During this experiment, an additional circular aper-
ture is put in front of the expanded laser beam be-
fore the polarizer so as to produce a point-like beam
that can be utilized for measuring the angular sepa-
ration between diffraction orders. A screen with mil-
limeter paper in front of it is also placed at a distance
D = (278 ± 2)mm below the beam splitter which is
M = (31 ± 2)mm away from the SLM, so that the an-
gular distance can be inferred through the relation

θm = arctan

�
d

D +M

�
, uα =

��
∂θm
∂d

ud

�2

+

�
∂θm
∂D

uD

�2

(4)
Measuring the angular distance θm of the vertical and
horizontal diffraction orders and performing two lin-
ear fits according to equation (3) and a least squares
algorithm with a = λ

p delivers

� � � � � � � � �

�������������������

����

����

����

����

����

����

�
�
�
��
��
��
�
�
�

��������������������������

���������������������������

�������������������������

���������������������������

Figure 4: Linear Fit sin(θm) = am+ b

with the outputted fit parameters

Parameter Value
aH (0.0339± 0.0001)
aV (0.0335± 0.0001)
bH (0.0011± 0.00035)
bV (−4.024e− 9± 0.0003)

Table 1: Fit-Parameter for sin(θ)

such that the resulting pixel pitch p = λ
a after com-

puting the arithmetic mean of both measurements be-
comes

p = (15.8± 0.05)µm (5)

II.2 Amplitude Modulation

Figure 5: Setup with polarizer and photodiode [1]

For the second part of the SLMs characterization, the
phase shift Δφ in relation to the applied gray scale
value A is evaluated. For the setup in this occasion, an
additional polarizer in crossed configuration towards
the first one is placed below the beam splitter. In ad-
dition, the light is then redirected by a mirror and fo-
cused by a lens onto a photodiode connected to an oscil-
loscope for measuring the modulation of the incoming
photon intensity. This intensity follows the equation
[1]

I(A) = (Imax − Imin)cos
2(sA+ δ) + Imin (6)

which can be used to model the voltage-time measure-
ment U(t) ∝ I(A) of the oscilloscope as the SLM pro-
gressively increases its applied gray values by reeval-
uating the expression as

U(t) = (Umax − Umin)cos
2(wt+ δU) + Umin (7)

2

Here, the expression holds true that

wt ∝ sA ⇔ A ≈ t

4.14
· 256− 1 (8)

where t is chosen such that an interesting phase shift
ΔφU = wt ⇔ ΔφU

w = t in the intensity modulation
takes place- in this case for ΔφU = [π4 ,

3π
4 , 2π], which

each correspond to the first minimum, maximum and
2π cycle. Performing a non-linear fit according to equa-
tion (7) using a least squares algorithm and assuming
an uncertainty for the measured voltages of uV = 3%
results in

� � � � � � �

������

���

���

���

���

���

���

�
��

�
��

�
��
�
�

�������� ����

����

�����������

Figure 6: Non Linear Fit Amplitude Modulation

Due to convergence issues with the algorithm, only
the w and δU parameters were fitted, while (Umax −
Umin) and Umin were directly computed from the max-
imum/minimum voltage values within the experimen-
tal data. In addition, only the data points between the
two cutoff spikes left and right of the data set were
used for the fit, since the SLM resets at those points,
causing the data to no longer converge with the model
before and after them. The computed and fitted pa-
rameters are then

Parameter Value
(Umax − Umin) (3.04± 0.09)V

w (2.1965± 0.0055)
δU (0.12± 0.007)

Umin (0.18± 0.005)V

Table 2: Fit-Parameter for U(t)

Thus, the gray values for the characteristic phase
shifts computed according to equation (8) with the fit-
ted parameter w as according to ΔφU

w = t become

A2π = 176 , Amax = 65 , Amin = 21 (9)

III Fourier Optics
III.1 Theory

As known from many fields and its applications, by
applying a Fourier transformation, a function or mea-
sured signal can be broken down to a superposition
of different periodic functions (or modes) and then de-
scribed by the sum or integral of these individual func-
tions. This is achieved in the case of a continuous 2D

function f(x, y) through evaluation of the integral

f(x, y) =

� � ∞

−∞
F (νx, νy)exp[i2π(νxx+ νyy)]dνxdνy

(10)
where F (νx, νy) is the Fourier transformation of the
original function as computed through the integral

F (νx, νy) =

� � ∞

−∞
f(x, y)exp[i2π(νxx+νyy)]dxdy (11)

or in the case of a set of data points through Discrete
Fourier Transformation algorithms (DFT, with one of
the most used examples being a Fast Fourier Trans-
formation algorithm or FFT). In a 1D data set, this
returns a set of sinusoidal waves with given ampli-
tude, frequency and phase. In 2D data, such as im-
ages, these phases, which are complex number values,
result in an angle with respect to the axes, whereas in
1D data, these phases, in this case real number val-
ued, result in a shift of the waves.

Figure 7: Depiction of a 2D Fourier Transformation.

When making use of the Fourier transformation,
it is favorable to transform the data to the frequency
domain (from here on, the Fourier transform of an im-
age). This results in a representation of the frequen-
cies and amplitudes of its modes. For a more graphi-
cal example, the Fourier transformation of a 2D image
represents reoccurring shapes and patterns within the
image as lines while sharply defined border and other
characteristic appear as high frequency components
closer to the center. This is specially noticeable when
applying low or high pass filters by masking the high
or low frequency components of the Fourier trans-
form before reconverting it into a conventional image
through an inverse Fourier transformation F−1.

A common use case for such a transformation is in
image (JPEG) and audio (mp3) file compression in
computers. In the former, the image is broken down
to 8X8 pixel blocks which are Fourier transformed.
In the latter, a similar principle is applied, where
samples, depending on the so called quality, normally
at 44100Hz are taken of which frames consisting of
1152 samples are Fourier Transformed. The result-
ing Fourier Transform is then stored. Both meth-
ods reduce the amount of data from the amplitude
data at any given time to a limited amount of modes.
However, in both methods continuity is ignored. The
blocks/frames are treated in isolation, leading to pos-
sible corruption of the data. Along with the fact that
the smallest modes are not stored in JPEG, is the rea-
son why high compression ratios cause corruption in
image files and why a clicking may be heard in some
audio files. [2]

3

III.2 Fourier Transformations by a
Lens

Lenses are able to perform a Fourier transform of an
image by focusing the incident plane waves coming
in at the angles (θx, θy) onto a focal plane such that
(θx, θy) → (x, y) = (θxf, θyf), where the complex ampli-
tude of these points (x, y) is proportional to the Fourier
transform F (νx, νy) = F (x

λf ,
y
λf) evaluated at the fre-

quencies corresponding to those points.

Figure 8: Plane waves being projected onto points (x, y)

For this part of the experiment, the Fourier trans-
formations from various pictures were projected with
such an optical setup onto a camera sensor for image
capturing and then compared with the numerical com-
putations recreating the same Fourier transforms us-
ing a FFT algorithm on the image data.

Figure 9: Abstract Black-White pattern

The first such image contains a repeating pattern
in black and white with an overarching, curved shape
that is captured in the Fourier transforms below due
to their periodic nature.

Figure 10: Spatial (left) and numerical fast (right) Fourier trans-
form of Figure 8

Observing the spatial Fourier transform by the
lens and comparing it to the numerical prediction by a
FFT algorithm, a resemblance in the overall shape of
the center from both images can be inferred. The spa-
tial Fourier transform sharply declines in brightness
away from the center however, making the shapes to-
wards the edges of the image plane shown by the FFT
prediction impossible to make out. Furthermore, the
spatial Fourier transform has the intensity maximum
in the center further spread out and less defined than
the FFT, with details overall being resolved much less
sharply due to imperfections in the optical setup pro-
jecting the Fourier transformation on the image sensor
limiting this when compared to the numerical FFT.

Figure 11: Two Harmonic lines pattern

For the second image, an image of repeating pat-
terns was chosen, where two different sets of parallel
lines continuously intersect. For this image, the spa-
tial and numerical Fourier transforms become

Figure 12: Spatial (left) and numerical fast (right) Fourier trans-
form of Figure 10

where the diagonal outline from upper-left to
lower-right is the most recognizable shape the two
Fourier transforms have in common. Asides from that,
the intensity of the projected pattern sharply declines
away from the center again in the spatial Fourier
transform like with the first picture, and the strong
diffraction-cross like shapes of the computational FFT
are completely absent/only the vertical lines in the
center maxima can be made out in the left Fourier
transform. In addition, a sharp intensity maximum
in the center is present in both transformations, with
the one in the spatial transform being once again more
spread out than the pixel-like maximum predicted by
the FFT.

4

Figure 13: Fractal pattern

The last image involves a fractal repeating pattern
which when projected onto their Fourier domain pro-
duces another repetitive pattern resembling the origi-
nal fractal. From the Fourier transformations below

Figure 14: Spatial (left) and numerical fast (right) Fourier trans-
form of Figure 12

it follows again that the spatial transformation re-
solves much less details of the resulting fractal than
its computational peer. Nonetheless, the same resem-
blance from the upper examples is preserved, with the
same rough, hexagonal layout of intensity maximums
in the left spatial transform as the smaller fractals in
the FFT to the right. The diffraction-like cross start-
ing from the middle in the FFT is completely absent
however, and beyond the layout of the maxima, not
much of the shape of the smaller fractals is resolved in
the spatial Fourier transform.

III.3 Mask filtering in the Fourier
Plane

Data may be filtered using a Fourier transform, mak-
ing use of the fact that the Fourier transform maps
the modes of an image on a plane, depending on the
frequency, angle (for 2D Data) and magnitude of the
mode.

x = λνxf =⇒ νx =
x

λf
y = λνyf =⇒ νy =

y

λf
(12)

This mapping can also be used to calculate the cut-
off frequency for a circular filter. With this particular
SLM, the cutoff frequency is calculated by transform-
ing the mapping equations of a lens using the fact that

all points on a circle have the same distance to the ori-
gin.

r = λν(c)f =⇒ νc =
r

λf
(13)

or for a filter of diameter D pixels:

νc =
Dp

2λf
(14)

Using this property, limitations may be applied to
the data through educated guesses. For example; in
a 1D data set consisting of a measurement of regular
oscillations with random noise, a threshold may be ap-
plied to the magnitude data of the Fourier transform,
thus taking only the ”strong” regular oscillations into
account. Meanwhile, in astronomy and microscopy,
regular imperfections in the image caused by natu-
ral phenomena or known regular imperfections in the
data capture device (lenses, coatings, sensors) may be
filtered out with a high precision, assuming the fre-
quencies of these are known.

Figure 15: Depiction of a basic 4f system. Every element is 1 f
apart from the next.

In this part, this method is made use of to show
that lenses can not only Fourier transform images, but
also invert this transformation along with filters ap-
plied. To achieve this, a so called ”4f system” is con-
structed, where the SLM is used to apply a circular
high- or low pass filter (HPF or LPF), or a linear slit-
or bar filter.

Figure 16: Depiction of the 4f system utilized. The SLM is used to
apply filters onto the image from the transparency. The thus pro-
duced image is then captured using a camera.

The resultant images are then compared to com-
puter generated filtered images. The generation of

5

such is achieved by Fourier transforming the origi-
nal image and multiplying the intensity values of the
resultant image by a matrix, where the indices cor-
responding to the values to be filtered out are equal
to zero. Since only the frequency and angle filtering
are being observed, this multiplication suffices to ap-
ply the filter to the Fourier transformed image. Once
the inverse Fourier transform is applied to this filtered
Fourier transform, the filtered Image is yielded.

For this experiment, 3 Images were utilized

Figure 17: Images Used

The logo of the Humboldt university, as this has
sharp edges, and may be beneficial in visualizing edge
detection; a silhouette of a cat, obscured by a grating,
which shows the linear filtering of regular imperfec-
tions; and finally a picture of The Great Wave of Kana-
gawa, a prime example of the Ukio-e movement in
Japan from the 1830s depicting a large wave -likely a
rouge wave, mistakenly assumed to be a tsunami- with
Mount Fuji in the background located in the trough of
the wave. The latter was chosen as an example of a
more complex image. For each 3 measurements were
taken using visually interesting filter sizes.

Figure 18: Depiction of the Humboldt University Logo filtering pro-
cess with a HPF of width 130px.

Looking at the Logo of the university only from a
single filter type, the effect may not be discerned eas-
ily from the captured image as it is rather dim. How-
ever, putting images of a HPF next to that of a LPF

along with the numerically generated filtered images,
the difference may be observed more easily.

Figure 19: Depiction of the Humboldt University Logo filtering pro-
cess with a LPF of width 130px.

Looking at the numerically generated filtered im-
ages, the HPF removes the infill, whereas the LPF
is slightly blurring the edges. This implies that the
infill was generated by the lower frequency compo-
nents, whereas the details or edges -the steep gradi-
ent parts- were generated by higher frequency compo-
nents. From this we can gather that just as in a Tay-
lor series, the higher order -in this case frequency- the
better the image detail. Judging by the brightness and
thickness of the lettering, one can assume that indeed
only the borders are left in the HPF. Whereas the LPF
obscured the edges, which is especially apparent look-
ing at the faces depicted. The higher diameters led to
a moderation of the effect on a LPF and to a larger ef-
fect on the HPF; meaning thinner edges on the HPF
displayed by a dimmer image with thinner looking let-
ters, and more detail in the faces of the LPF captured
image.

In the case of the cat silhouette, the difference
seems nonexistent if the view is limited to the silhou-
ette and comparing vertical LPF and HPF at the same
width. However, with a narrow vertical LPF, the grat-
ing almost disappears.

6

Figure 20: Depiction of the cat silhouette image filtering process
with a barfilter of width 56px.

Figure 21: Depiction of the Humboldt University Logo filtering pro-
cess with a slit filter of width 56px.

This implies that the detailed grating is generated
by lower frequencies. With a narrow bar filter, the
silhouette which was broken up by the grating looks
like a complete silhouette. The slit filtered image con-
trasts this with the clearly visible black bands, break-
ing up the silhouette. A possible explanation for this
would be, that a bar filter causes a 1D blurring of an
image, similar to the blurring and detail loss we ob-
served in the LPF above. With both filters however,
the rough grain texture of the grating could no longer
be observed-the wider bands of dark and bright bars of
the grating about half the size of the cat, looking like

a freshly mown football field. Looking at the computer
generated Fourier transform of this image, it would
have been interesting to view the image with horizon-
tal slit- and bar filters.

Finally, when observing the same process on a
more complex image -The Great Wave of Kanagawa-
, similar effects as described above can be observed.
The edge filtering aspect of the HPF however, is in-
ferred just as with the Humboldt University logo,
whereas the blur effect of the LPF was clearly observ-
able.

III.4 Holography
Holography is the method of recording a wave front
such that it may be reproduced later. It is well know
for the application of recording and reproducing 3D
images. Here the SLM as is used as a hologram
source, which then in turn projects the image from
which it was generated at the focal point of a lens.
The hologram is generated by means of an error reduc-
tion algorithm, specifically the Gerchberg-Saxton al-
gorithm, which for repeated iterations delivers higher
accuracy holograms via phase masks numerically gen-
erated from a source image.

Figure 22: Schematic of an error reduction algorithm like the
Gerchberg-Saxton.

Here a random phase matrix is used as the initial
hologram data alongside the Fourier transform of the
source image. The transferring function (A) reads

A = I ∗ eiφ

and can be implemented through Python code as a
function with inbuilt for-loop as follows

1 def GXalg(image, iterations):
2 phase_mask_source =

np.random.rand(*img.shape)�→

3 phase_mask = np.ones(img.shape)
4 amplitude_img = img
5 amplitude_func = np.ones(img.shape)
6

7 input_signal =
amplitude_img*np.exp(phase_mask_
source * 1j)

�→

�→

8

7

9 for i in range(iterations):
10 print("iteration ", i+1,

"of", iterations)�→

11 signal, amplitude_signal =
dft(input_signal)�→

12

13 phase_mask =
get_phase(signal)�→

14 signal_init = amplitude_func

* np.exp(phase_mask * 1j)�→

15 signal[:,:,0] =
np.real(signal_init)�→

16 signal[:,:,1] =
np.imag(signal_init)�→

17 input_signal, amplitude =
idft(signal)�→

18 phase_mask_source =
get_phase(input_signal)�→

19 input_signal = amplitude_img

*
np.exp(phase_mask_source

* 1j)

�→

�→

�→

20

21 clear_output()
22 return phase_mask

The full dependencies alongside the output from
the code can be found attached below as a Jupyter
Notebook. For one iteration, the algorithm returns the
following phase mask and reconstructed image

Figure 23: Generated Hologram for 1 Iteration

where even for a single iteration, one already gets
an image similar to the original when reconstructing
the outputted phase mask. There is a lack of con-
trast in the mapped intensity which can be seen in
the darker color of what would have been white in the
original image, as well as a grain-like gray pattern in
its stead.

Figure 24: Generated Hologram for 2 Iterations

Further applying a second iteration, this lack of
contrast is noticeably improved, with the white of the

original image now being displayed as a much clearer
gray color in the reconstruction from the phase mask.
The grain-like pattern is still present nonetheless.

Figure 25: Generated Hologram for 5 (top) and 20 (below) Itera-
tions

Iterating even further between five and twenty
times, the contrast does not noticeably improve any
more however. This is due to the convergent nature
of the algorithm, which noticeably decreases the error
in the first two or three iterations and then doesn’t
decrease it much further even after dozens more. In
order to compare and make an estimate of the error
σ and its reduction as a function of the amount of it-
erations N , the difference between the matrix norms
of the original image MS and the reconstructed image
MT (N) out of the phase mask may be compared such
that

σ(N) = abs(||MS ||− ||MT (N)||) (15)

Plotting these differences then delivers

Figure 26: Estimated error σ(N)

which is consistent with the observed effects on the
images above, where the computation of a second iter-
ation strongly reduces the error already, and where ex-
tra iterations seem to stagnate in reducing it further.

8

Figure 27: Setup for holography with the SLM [?]

In order to compare the above prediction from the
Python algorithm with actual holograms produced us-
ing the SLM, the setup was modified as in Figure 27
and the SLM used as a pure phase modulator project-
ing the light with the help of a lens onto a camera sen-
sor. Using the SLM ToolBox program with a Correc-
tion Bitmap for compensating the uneven shape of the
SLMs surface and an inbuilt phase mask generator
based on the same Gerchberg-Saxton algorithm, the
following hologram was then displayed and captured

Figure 28: Hologram of the HU logo, 1 iteration

The image generated by the SLM from a phase
mask computed with only one iteration is observed to
have much the same graininess as the ones computed
above, both due to the computational model, but also
now due to the limits imposed on the overall resolu-
tion by the pixelated structure of the SLM and other
optical imperfections within the setup. Likewise due
to the later reason, an intensity maximum absent in
the computational predictions is observed in the mid-
dle of the image due to diffraction effects in the optical
setup.

Figure 29: Hologram of the HU logo, 10 iterations

Iterating the phase masks further for a total of
ten times, the projected hologram improves slightly in
quality. Specially for the resolved details, finer fea-
tures which were completely absent in Figure 28 -like
eyebrows, face- or hairlines- can now be somewhat
made out. The intensity maximum from diffraction at
the center of the image is not affected by this, however.

III.5 Orbital Angular Momentum
Beams

Figure 30: Axicon pattern with doghnut shaped intensity profile
beam to the right

Orbital angular momentum beams (OAM) are a form
of higher order spatial light modes known as Laguerre
Gaussian beam, where only the azimuthal component
has been modified by the SLM. Such beams have a
vortex-shaped phase structure and their projected in-
tensity profile appears to have a doughnut-like shape,
as seen in one of the profiles to the right of Figure 14.
These OAM beams can be generated with the SLM-
Toolbox program using either a vortex-shaped profile
or as in this case an axicon profile.

9

Figure 31: Intensity profile of an OAM beam with different az-
imuthal orders

Changing the azimuthal order AZ by modifying the
topological charge of beam -which signifies the amount
of azimuthal transitions in steps of 2π- changes the
form of the intensity profile by either enlarging the cir-
cumference of the circular doughnut with increasing
AZ or making it smaller until the hole in the middle of
the ”doughnut” is closed completely.
OAM modes are of interest for applications like mi-
croscopy below the diffraction limit of light or high
bandwidths communications, and their feasibility in
fiber-based links is currently under research for high
speed communication purposes.

IV Discussion
The experimental findings support most of the theory
involving the SLM characterization and the theory on
spatial Fourier transformations, masking and holog-
raphy by behaving as predicted by the mathematical
models and computational predictions.

Starting with the characterization of the SLM, the
computed value for the Pixel Pitch of p = (15.8 ±
0.05)µm is in line with the reference value pref =
12.5µm [3] from the literature, with the deviation out-
side the uncertainty boundary likely corresponding
to a measurement error for the distance between the
beam splitter and the SLM, which was difficult to
measure during the experiment due to obstructions.
Furthermore, the computed gray scale values for the
characteristic phase shifts A2π = 176, Amax = 65,
Amin = 21 also agree with the predicted values dur-
ing the experiment, where a first computation of these
from time readouts in the oscilloscope delivered initial
estimates of A2π.est = 174, Amax.est = 61, Amin.est = 18.

Proceeding towards the imaging of the spatial Fourier
transformation, the numerical FFTs showed a good
degree of agreement with the overall outline of the
Fourier transformations by the lens optical system,
with an overall loss in detail and intensity maxima
further spread out and compromising surrounding
features in the spatial transformation. These can be
attributed to imperfections in the optical setup how-
ever and were to be expected, owing also to the limited
pixel resolution of the SLM.

As for the mask filtering in the Fourier plane, it
was observed that the lenses do indeed behave like a
Fourier and inverse Fourier transformer if set up ap-

propriately. Some of the effects were inferred however.
In order to observe the full effects, a higher resolution
camera, or a larger image may be used -that is assum-
ing the lenses can provide such resolutions.
What is interesting however, is to observe the 1D blur-
ring effect hypothesized above. With a more complex
image this effect becomes more apparent.

Figure 32: Depiction of the The Great Wave of Kanagawa filtering
process with a horizontal slit filter of width 65px.

When looking at the computer generated image,
the vertical blur effect is visible. The same is not en-
tirely valid for the captured image. A blur effect is
visible, but the detail captured is so little, that a dis-
crimination between horizontal or vertical cannot be
made. This does hint to the hypothesis being correct.
However, to say for certain a better quality capture
image is needed.

Regarding the results from the holography seg-
ment, the Gerchberg-Saxon algorithm behaves as ex-
pected in finding a suitable phase mask that when
inverse Fourier transformed delivers a reconstruction
of the original image such that the phase mask can
be used for holography in combination with the SLM.
It converges quickly too and doesn’t deliver many im-
provements to the error reduction for iterations be-
yond two or three. Finally, although the algorithm
didn’t work at first, further improvements to the orig-
inal code via comparisons with [4] brought it to a us-
able state where the returned phase masks could be
reconstructed again into a similar image to the source.
The introduced graininess also matches the one found
in the captured holography images using the SLM,
with only characteristic optical aberrations from the
SLM and laser setup deviating significantly from the
predicted computational reconstructions of the phase
mask.

10

Lastly, the generated OAM beams also responded
as expected to increases and decreases in their az-
imuthal order, with the only difficulty during the ex-
periment arising with acquiring a proper doughnut-
shaped intensity profile using the vortex-shaped pro-
file within the SLM-Toolbox software, thus leading to
the need of generating this through the alternative
axicon profile. Nonetheless and despite the difficul-
ties and uncertainties described for the experiment
above, the results shown further support the predicted
behavior for the SLMs modulation of polarized light
beams and the resulting applications in the field.

V References
[1] Daniel Lechner, Lucas Pache, Shuwei Jin : Fourier

Optics Spatial Light Modulator Lab Course, 2007

[2] John Peacock, University of Edinburgh:
Compression of data using Fourier methods,
https://www.roe.ac.uk/japwww/teaching/
fourier/compression.html, last accessed: May
11, 2021

[3] Hamamatsu: LCOS-SLM (Liquid Crys-
tal on Silicon - Spatial Light Modulator,
https://www.hamamatsu.com/resources/
pdf/lsr/x15213_E.pdf, last accessed: May 11,
2021

[4] wxwang0104: Phase retrieval single constraint,
https://github.com/wxwang0104/Phase_
retrieval_single_constraint, last accessed:
May 11, 2021

11

Gerchberg-Saxton Algorithm

May 11, 2021

[1]: import numpy as np
%matplotlib inline
from matplotlib import pyplot as plt
from IPython.display import clear_output
import cv2

[2]: def dft(data,shift=True,mag=True,cmplx=True):
if cmplx==True:

dft = cv2.dft(np.float32(data), flags = cv2.DFT_COMPLEX_OUTPUT)
else:

dft = cv2.dft(np.float32(data))

if shift == True:
dft_shift = np.fft.fftshift(dft)

else:
dft_shift=dft

if mag == True:
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:

�→,0],dft_shift[:,:,1]))
return dft_shift, magnitude_spectrum

else:
return dft_shift

def idft(data,shift=True,mag=True):
if shift == True:

idft_shift = np.fft.ifftshift(np.float32(data))
else:

idft_shift=np.float32(data)

idft = cv2.idft(idft_shift)

if mag == True:
magnitude_spectrum = cv2.magnitude(idft[:,:,0],idft[:,:,1])
return idft, magnitude_spectrum

else:
return idft

1

[1]: def get_amplitude(data):
return cv2.magnitude(data[:,:,0],data[:,:,1])

def get_phase(data):
mag,ang = cv2.cartToPolar(data[:,:,0],data[:,:,1])
return ang

def norm_compare(img,phase_mask):
signal_plt = np.ones(phase_mask.shape+(2,))
signal_plt[:,:,0] = np.real(np.exp(phase_mask*1j))
signal_plt[:,:,1] = np.imag(np.exp(phase_mask*1j))
recovered_img,recovered_img_mag = idft(signal_plt)
factor = np.max(img)/np.max(recovered_img_mag)
return (np.absolute(np.linalg.norm(img) - np.linalg.

�→norm(factor*recovered_img_mag)))

def GXalg(image, iterations, err_reduction_plot=False):
phase_mask_source = np.random.rand(*img.shape)
phase_mask = np.ones(img.shape)
amplitude_img = img
amplitude_func = np.ones(img.shape)

input_signal = amplitude_img*np.exp(phase_mask_source * 1j)

if err_reduction_plot==True:
variance = np.ones(iterations)
for i in range(iterations):

print("iteration ", i+1, "of", iterations)
signal, amplitude_signal = dft(input_signal)

phase_mask = get_phase(signal)
signal_init = amplitude_func * np.exp(phase_mask * 1j)
signal[:,:,0] = np.real(signal_init)
signal[:,:,1] = np.imag(signal_init)
input_signal, amplitude = idft(signal)
phase_mask_source = get_phase(input_signal)
input_signal = amplitude_img * np.exp(phase_mask_source * 1j)

variance[i] = norm_compare(image,phase_mask)

x = np.arange(1,iterations+1,1)
plt.plot(x,variance)
plt.title("Error/Iteration")
plt.xlabel("iterations")
plt.ylabel("Difference of Norm")

else:

2

for i in range(iterations):
print("iteration ", i+1, "of", iterations)
signal, amplitude_signal = dft(input_signal)

phase_mask = get_phase(signal)
signal_init = amplitude_func * np.exp(phase_mask * 1j)
signal[:,:,0] = np.real(signal_init)
signal[:,:,1] = np.imag(signal_init)
input_signal, amplitude = idft(signal)
phase_mask_source = get_phase(input_signal)
input_signal = amplitude_img * np.exp(phase_mask_source * 1j)

clear_output()
return phase_mask

0.0.1 1 Iteration

[4]: img = cv2.imread(r"C:\Users\birge\Documents\Fourrier Optics\IMG\3.bmp", 0)
phase_mask= GXalg(img,1)
signal = np.ones(phase_mask.shape+(2,))
signal[:,:,0] = np.real(np.exp(phase_mask*1j))
signal[:,:,1] = np.imag(np.exp(phase_mask*1j))
recovered_img,recovered_img_mag = idft(signal)

[5]: fig = plt.figure(figsize=(16,16))
ax1 = fig.add_subplot(2,3,1)
ax1.imshow(img,cmap="gray")
ax1.title.set_text("Input Image")
ax2 = fig.add_subplot(2,3,2)
ax2.imshow(phase_mask,cmap="gray")
ax2.title.set_text("Phase Mask")
ax3 = fig.add_subplot(2,3,3)
ax3.imshow(recovered_img_mag,cmap="gray")
ax3.title.set_text("Recovered Image")
fig.savefig("1Hologram.png")
plt.show()

3

0.0.2 2 Iterations

[6]: img = cv2.imread(r"C:\Users\birge\Documents\Fourrier Optics\IMG\3.bmp", 0)
phase_mask= GXalg(img,2)
signal = np.ones(phase_mask.shape+(2,))
signal[:,:,0] = np.real(np.exp(phase_mask*1j))
signal[:,:,1] = np.imag(np.exp(phase_mask*1j))
recovered_img,recovered_img_mag = idft(signal)

[7]: fig = plt.figure(figsize=(16,16))
ax1 = fig.add_subplot(2,3,1)
ax1.imshow(img,cmap="gray")
ax1.title.set_text("Input Image")
ax2 = fig.add_subplot(2,3,2)
ax2.imshow(phase_mask,cmap="gray")
ax2.title.set_text("Phase Mask")
ax3 = fig.add_subplot(2,3,3)
ax3.imshow(recovered_img_mag,cmap="gray")
ax3.title.set_text("Recovered Image")
fig.savefig("2Hologram.png")
plt.show()

4

0.0.3 5 Iterations

[8]: img = cv2.imread(r"C:\Users\birge\Documents\Fourrier Optics\IMG\3.bmp", 0)
phase_mask= GXalg(img,5)
signal = np.ones(phase_mask.shape+(2,))
signal[:,:,0] = np.real(np.exp(phase_mask*1j))
signal[:,:,1] = np.imag(np.exp(phase_mask*1j))
recovered_img,recovered_img_mag = idft(signal)

[9]: fig = plt.figure(figsize=(16,16))
ax1 = fig.add_subplot(2,3,1)
ax1.imshow(img,cmap="gray")
ax1.title.set_text("Input Image")
ax2 = fig.add_subplot(2,3,2)
ax2.imshow(phase_mask,cmap="gray")
ax2.title.set_text("Phase Mask")
ax3 = fig.add_subplot(2,3,3)
ax3.imshow(recovered_img_mag,cmap="gray")
ax3.title.set_text("Recovered Image")
fig.savefig("5Hologram.png")
plt.show()

5

0.0.4 20 Iterations + Error plot

[10]: img = cv2.imread(r"C:\Users\birge\Documents\Fourrier Optics\IMG\3.bmp", 0)
phase_mask= GXalg(img,20, err_reduction_plot=True)
signal = np.ones(phase_mask.shape+(2,))
signal[:,:,0] = np.real(np.exp(phase_mask*1j))
signal[:,:,1] = np.imag(np.exp(phase_mask*1j))
recovered_img,recovered_img_mag = idft(signal)

6

[11]: fig = plt.figure(figsize=(16,16))
ax1 = fig.add_subplot(2,3,1)
ax1.imshow(img,cmap="gray")
ax1.title.set_text("Input Image")
ax2 = fig.add_subplot(2,3,2)
ax2.imshow(phase_mask,cmap="gray")
ax2.title.set_text("Phase Mask")
ax3 = fig.add_subplot(2,3,3)
ax3.imshow(recovered_img_mag,cmap="gray")
ax3.title.set_text("Recovered Image")
fig.savefig("20Hologram.png")
plt.show()

7

