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Abstract
We study the impact of bursts on spike statistics and neural signal transmission. We propose a stochastic burst algorithm
that is applied to a burst-free spike train and adds a random number of temporally-jittered burst spikes to each spike. This
simple algorithm ignores any possible stimulus-dependence of bursting but allows to relate spectra and signal-transmission
characteristics of burst-free and burst-endowed spike trains. By averaging over the various statistical ensembles, we find
a frequency-dependent factor connecting the linear and also the second-order susceptibility of the spike trains with and
without bursts. The relation between spectra is more complicated: besides a frequency-dependent multiplicative factor it also
involves an additional frequency-dependent offset. We confirm these relations for the (burst-free) spike trains of a stochastic
integrate-and-fire neuron and identify frequency ranges in which the transmission is boosted or diminished by bursting. We
then consider bursty spike trains of electroreceptor afferents of weakly electric fish and approach the role of burst spikes as
follows. We compare the spectral statistics of the bursty spike train to (i) that of a spike train with burst spikes removed and
to (ii) that of the spike train in (i) endowed by bursts according to our algorithm. Significant spectral features are explained
by our signal-independent burst algorithm, e.g. the burst-induced boosting of the nonlinear response. A difference is seen in
the information transfer for the original bursty spike train and our burst-endowed spike train. Our algorithm is thus helpful to
identify different effects of bursting.
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1 Introduction

Neurons encode information about sensory stimuli in se-
quences of action potentials. This process is strongly shaped
by both the nonlinear neural dynamics of neurons that can
lead to different kinds of spike patterns (Izhikevich, 2007)
and the intrinsic stochasticity of neurons (Tuckwell, 1989).
With respect to the latter aspect we note that several sources
of noise lead to a certain degree of unreliability of the encod-
ing process, limiting the transmission of information (Faisal
et al., 2008). Many studies have focussed on the interplay of
nonlinear dynamics of neurons, intrinsic noise sources, and
time-dependent stimulation (Longtin, 1993; Greenwood et
al., 2000; Lindner & Schimansky-Geier, 2001; Fourcaud &
Brunel, 2002; Fourcaud-Trocme & Brunel, 2005; Longtin,
2009; Gai et al., 2010; Richardson & Swarbrick, 2010;
McDonnell &Ward, 2011; Tchumatchenko et al., 2011; Ali-
jani & Richardson, 2011; Doose et al., 2016; Voronenko &
Lindner, 2017; Richardson, 2018; Schwalger, 2021; Franzen
et al., 2023; Gowers & Richardson, 2023).
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A striking feature seen in the spike trains of many cells
is bursting: Action potentials occur in groups of narrowly
spaced spikes led by a reference spike and extending over
an (often random) number of burst spikes. There are many
dynamical mechanisms for the generation of bursts already
in deterministic (noise-free) models (Coombes & Bressloff,
2005; Izhikevich, 2007). It has been found by different types
of input-output analyses that burstsmayhave a specific role in
the encoding of information about particular kinds of stimuli
(Oswald et al., 2007; Krahe & Gabbiani, 2004; Zeldenrust et
al., 2018). However, we are far from a complete understand-
ing of the role of bursts for neural signal transmission.

Herewewant to contribute to a better understanding of the
effects of bursting on signal transmission in a purely statisti-
cal manner. We are not interested in the nonlinear generation
of bursts but choose to add bursts stochastically to a (burst-
free) spike train. The advantage of this procedure is that we
can relate input-output statistics of the bursting neuron to that
of the non-bursting neuron and thus directly access certain
effects of bursting on signal transmission both for the linear
and the weakly nonlinear input-output signal transmission.

We deliberately do not take into account how the driving
signal affects bursting but still obtain significant effects of
the added bursts (and their variability, i.e. their stochastic
features) on signal-transmission characteristics such as the
linear and nonlinear susceptibilities and on the characteris-
tics of the spontaneous activity, such as the power spectrum
of the spike train. This was inspired by the approach cho-
sen in the companion paper (Barayeu et al., 2024) for the
analysis of bursting neurons, which we will here extend by
systematically investigating the role of the number of burst
spikes, its stochasticity, as well as the role of temporal jitter
of the burst spikes.

In the following, we first introduce the spike train and sig-
nal transmission measures that will be used in this study. We
then relate in a theoretical section these measures applied to
the bursting spike train to that of the (non-bursting) reference
spike train.

Using not yet precisely defined quantities (all statistics of
interest are introduced in detail in the next section), wewould
like to give an anticipatory impression of the theoretical sim-
plicity of our results. First of all, we find a multiplicative
relation between the linear susceptibility with burst spikes,
χb
1 (ω), and that without burst spikes, χ1(ω), of the form

χb
1 (ω) = χ1(ω) f (ω) (I)

(see Eq. (23) and its derivation below). Here f (ω) is a
frequency-dependent factor that is completely determined
by our burst algorithm but independent of the reference spike
train or any property of the neuron.

Similarly, the second-order susceptibilities (describing the
weakly nonlinear response of the neuron) are as well con-

nected by a purely multiplicative relation in terms of our
function f (ω):

χb
2 (ω1, ω2) = χ2(ω1, ω2) f (ω1 + ω2) (II)

(see Eq. (29) and its derivation below).
For the power spectrum Sbxx (ω), we find a somewhat more

complicated relation with amultiplicative factor and an addi-
tional frequency-dependent offset g(ω) scaled by the firing
rate r0

Sbxx (ω) = Sxx (ω) | f (ω)|2 + r0g(ω) (III)

(see Eq. (44) and its derivation below); the offset function
g(ω) is completely determined by the burst statistics but inde-
pendent of the burst-free spectrum or other properties of the
neuron. Although the structures of the relations Eq. (I)-(III)
are simple, their derivations are not trivial, and we take our
time to carefully outline how to arrive at these mathemati-
cally exact results.

We illustrate our analytical results for a simple stochastic
leaky integrate-and-fire (LIF) model (non-bursting) to which
we add bursts with algorithms of increasing complexity.

We finally apply our method to recordings of electro-
sensory afferents in the weakly electric fish, the P-units,
that do burst (Bastian, 1981a). Extending on the work in
Barayeu et al. (2024), we first remove burst spikes but rein-
troduce them according to our most general algorithm. By
comparison with the signal transmission properties of this
surrogate burster to the original spike trains, we can identify
aspects of the signal transmission that are simply related to
adding stochastic burst spikes and those that are related to a
more dynamical burst process that takes into account the neu-
ron’s refractory period and, most importantly, the stimulus.
Whereas deviations in the different response functions and
power spectra between the original bursty spike trains and the
surrogate bursters are onlymoderate, the differences aremore
pronounced in the spectral coherence function and themutual
information rate. The strongest differences are observed in a
low-frequency band (below50Hz) and aremost likely related
to neglecting the spike frequency-adaptation mechanism in
our statistical burst algorithm. Our strategy here (to develop a
statistical bursting algorithm that captures key features of the
data but clearly cannot capture certain other features) might
be uncommon but thus provides useful insights.

Returning to the issue of neural information transmission,
we note that the differences in the mutual information rate
illustrate uniquely that real bursts in P-units increase the
information transmission compared to the burst-free spike
trains, whereas our (signal-unrelated) surrogate bursts can
only lower the information transfer. Our results suggest that
the physiology of P-units is suited to increase the information
transmission by bursting.
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2 Measures of neural signal transmission

The basic problem addressed in our paper is sketched in
Fig. 1: a time-dependent signal (left) is transmitted by a spike-
generating neuron, that is in addition subject to a dynamical
noise (bottom). The spike train generated (right) may be sub-
divided into tonic spikes (dark blue) and burst spikes (light
blue). We are interested in the role of these burst spikes for
the linear and nonlinear signal transmission by the neuron.

In the following, we recall briefly the spectral characteris-
tics of spike trains and in particular measures of information
transmission.We do not yet distinguish between bursting and
non-bursting spike trains.

The mathematical representation of a spike train x(t) is
given by a sum of Dirac delta functions

x(t) =
N∑

k=1

δ(t − tk) , (1)

where N is the total number of spikes and tk are the time
instances at which the spikes occur. In this work, we will
consider Eq. (1) mainly in the Fourier domain since we are
interested in the spectral statistics. The Fourier transform of
the spike train over a time window [0, T ] is given by

x̃(ω) =
T∫

0

dt eiωt x(t) =
N∑

k=1

eiωtk . (2)

We note that the choice of the time origin of thewindow (here
t = 0) is immaterial to the spectral analysis of a stationary
time series. The variance of the different Fourier components
of the spike train can be quantified by the spike-train power

neuron

signal s(t)
bursty
spike train x(t)

noise ξ(t)

Fig. 1 Signal transmission by a spiking (bursting) neuron. The neu-
ron may fire packages of bursts (blue dashes on the right indicating the
instances of spikes), i.e. each reference spike (dark blue) may be com-
plemented by a (random) number of (randomly jittered) burst spikes
(light blue dashed). We are interested in the effect of these additional
spikes on the neural transmission of the time-dependent signal (on the
left)

spectrum for ω �= 0

Sxx (ω) = lim
T→∞

〈
|x̃(ω)|2

〉

T
= lim

T→∞
〈x̃(ω)x̃∗(ω)〉

T
, (3)

where the asterisk denotes the complex conjugate. The brack-
ets 〈·〉 indicate an ensemble average, which means in this
work either, for stochastic neuron models, different realiza-
tions of the intrinsic noise ξ and the broadband stimulus s(t)
or, for experiments, a trial average over recorded spike trains.
Similarly, other stochastic time series can be characterized
by their power spectrum, e.g. the Gaussian signal s(t) by its
power spectrum Sss(ω). For both the theoretical model and
the experimental stimuli, bandpass-limited white Gaussian
noise is used with a power spectrum

Sss(ω) =
{
1, for |ω| ≤ ωcut

0, for |ω| > ωcut
. (4)

Here, ωcut is the cut-off frequency.
The transfer of the signal can be captured by linear and

nonlinear cross-correlations between input and output. Here
wewill consider specifically the second-order and third-order
cross-spectra defined by

Sxs(ω) = lim
T→∞

〈x̃(ω)s̃∗(ω)〉
T

, (5)

Sxss(ω1, ω2) = lim
T→∞

〈x̃(ω1 + ω2)s̃∗(ω1)s̃∗(ω2)〉
T

. (6)

From these spectra, we can calculate the first- and second-
order susceptibilities:

χ1(ω) = Sxs(ω)

Sss(ω)
, (7)

χ2(ω1, ω2) = Sxss(ω1, ω2)

2Sss(ω1)Sss(ω2)
. (8)

We recall that the weakly nonlinear mean response of the
output (i.e. the instantaneous firing rate) to the input signal
s(t) can be, to second order, expressed by

〈x(t)〉 ≈ 〈x(t)〉0 +
∫

dt ′ K1(t − t ′)s(t ′)

+
∫

dt1

∫
dt2 K2(t − t1, t − t2)s(t1)s(t2) . (9)

The linear and nonlinear response functions K1 and K2 are
the time versions of the above susceptibilities, i.e. the Fourier
transforms with respect to one or two time arguments; the
index 0 indicates the unperturbed state without a stimulus.

For very weak stimulation with Gaussian statistics, the
information rate can be estimated by the lower bound formula
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(Rieke et al., 1993; Gabbiani, 1996; Rieke et al., 1996)

Rinfo = −
ωcut∫

0

dω

2π
log2 [1 − C(ω)] , (10)

where the spectral coherence function is given in terms of
the above introduced power and cross-spectra of output and
stimulus:

C(ω) = |Sxs(ω)|2
Sxx (ω)Sss(ω)

. (11)

This is essentially the squared correlation coefficient between
the Fourier coefficients of stimulus and output, i.e. at each
frequency a number between zero (no linear correlations)
and one (perfect correlation for the corresponding frequency
components).

3 Stochastic algorithm to add bursts
to a spike train

Assuming that a non-bursting (reference) spike train x(t) is
given, we may endow x(t) with burst spikes and thus create
a burst spike train xb(t). Here we choose simple stochastic
burst algorithms that still permit to analytically relate the
spectral statistics of bursting and non-bursting spike trains.

The algorithms are motivated by the kind of stochastic burst
patterns seen in experimental data.

The most general form of the burst spike train is given by

xb(t) = x(t) +
N∑

k=1

Nb
k∑

n=1

δ

(
t −

(
tk +

n∑

m=1

I bm,k

))

= x(t) +
N∑

k=1

yk(t) . (12)

Here yk(t) is a finite number of burst pulses added to the k-
th reference spike. Different versions of the burst algorithm
are illustrated in Fig. 2, and we explain the formula above in
terms of those. In the simplest case (panel A), a single spike
is added to each reference spike after a fixed delay τ ; i.e. the
number of burst spikes Nb

k = 1, ∀k. The intra-burst interval
(IBI), i.e. the interspike interval (ISI) within a burst, is given
by the fixed delay I b = τ yielding yk(t) = δ (t − tk − τ).

As a first generalization, we include a temporal jitter
(panel B); the number of burst spikes is still Nb

k = 1 and the
IBIs I bk are drawn independently from a distribution ρ(I b)
for each reference spike at tk (i.e. yk(t) = δ(t − tk − I bk )).
A simple example for an IBI distribution is a Gaussian with
mean value 〈I b〉 = τ and standard deviation σ :

ρ
(
I b
)

= 1√
2πσ 2

exp

[
−
(
τ − I b

)2

2σ 2

]
. (13)

Fig. 2 Illustration of generating the burst spike train. Top panel
Reference spike train (spikes in dark blue).A Burst spike train with one
burst spike (light blue): I b = τ . B Burst spike train with jittered IBIs

I bk . C Burst spike train with Nb burst spikes and jitter. D Burst spike
train with different number of burst spikes for each reference spike. The
case of having no burst spikes at a reference spike tk is also possible
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To prevent overlapping IBI’s in case of adding multiple burst
spikes, the standard deviation σ of the IBI distribution is
chosen such that the probability ρ

(
I b
)
will be sufficiently

small for I b = τ ± τ/2, which is, for the Gaussian example,
realized for σ < τ/4.

In the next step (panel C), instead of a single burst spikewe
add a fixed number Nb

k to each reference spike (Nb
k = 4, ∀k

in panel C). Again, for each burst spike I bm,k is drawn inde-
pently and the corresponding burst-spike time is given by
the sum of the reference-spike time tk and the sum of all pre-
vious IBIs within this burst. Put differently, we add a local
renewal spike train yk(t) (a point process with statistically
independent intervals between adjacent spikes) to each ref-
erence spike.

The last statistical feature incorporated (panel D) is to
draw the burst spike number Nb

k for each reference spike
independently from a burst-spike distribution with probabil-
ities Pj , j ∈ N, which leads us to Eq. (12) in its most general
form. We note that the case of having only a reference spike
without a burst spike for a certain k is also possible by setting
Nb
k = 0 (the corresponding k-th term in the second sum in

Eq. (12) will then not contribute). In any case, here and in the
following, the lower-case letters n,m, . . . represent always
summation indices; only the upper-case letters, N and N
with index and/or superscripts, represent random (integer)
variables.

We would like to point out that although we have added
burst spikes as a local renewal process (Cox, 1962), the result-
ing burst spike trains are non-renewal processes. This is most
obvious for the version shown in Fig. 2A andB,where a short
interval is always followed by a long interval, yielding nega-
tive ISI correlations, but is also true in a more subtle manner
for the other versions of the algorithm. Last but not least,
we emphasize that we have made an implicit assumption of
time-scale separation: themean IBImultiplied with themean
number of burst spikes is typically much shorter than the ISI
of the reference spike train such that the burst spikes of one
reference spike do not fall into any other ISI than that fol-
lowing the reference spike.

4 Relations between spectra of bursting
and non-bursting spike trains

Given a set of reference spike trains xi (t), the correspond-
ing set of burst spike trains xbi (t), and a corresponding set
of stimuli si (t) for i = 1, . . . , Nr , we would like to relate
the spectral statistics introduced in Section 2 for the origi-
nal (reference) spike train and for the burst spike train (burst
spikes added according to the algorithm introduced in the
preceding section).

We start with the burst-induced change in the linear
susceptibility, then continue with the relation for the second-

order susceptibility, and finally derive the relation between
the spike train power spectra with and without bursting.

The linear susceptibility describes how a weak time-
dependent stimulus affects the time-dependent firing rate
(the instantaneous mean value of the spike train). The mag-
nitude of the susceptibility |χ1(ω)| at a certain frequency
can be interpreted as scaling the amplitude of the firing
rate modulation, r(t) = r0 + ε|χ1(ω)| sin(ωt − φ), in
response to a very weak sinusoidal stimulus, ε sin(ωt); of
interest is here, whether stimulus-unrelated burst spikes may
boost (|χb

1 (ω)| > |χ1(ω)|) or merely diminish (|χb
1 (ω)| <

|χ1(ω)|) the linear response.
The next-order (nonlinear) response is characterized by

the susceptibilityχb
2 (ω1, ω2) (or, for the reference spike train,

χ2(ω1, ω2)) that depends on two frequency arguments and
would describe the response up to second order in a small
signal amplitude ε. Also here, we would like to know the
effect of additional burst spikes on the response.

Last but not least, we also aim at the power spectrum
for the case without stimulus (spontaneous activity). This
statistics (in combination with the linear susceptibility) is
useful to compute a lower bound on the neural information
transmission (with and without burst spikes).

4.1 Linear response function

First, we want to study the effect of burst spikes on the linear
response function χb

1 (ω). Only the spike train is modified
by the bursts (but not the signal) and hence only the cross-
spectrum changes, Sxs → Sbxs , yielding

χb
1 (ω) = Sbxs(ω)

Sss(ω)
. (14)

The Fourier transform of the burst spike train, Eq. (12), is
given by

x̃b(ω) = x̃(ω) +
N∑

k=1

Nb
k∑

n=1

e
iω

(
tk+

n∑
m=1

I bm,k

)

, (15)

which inserted in Eq. (5) yields the burst cross-spectrum:

Sbxs(ω) = lim
T→∞

〈x̃(ω)s̃∗(ω)〉
T

+

lim
T→∞

1

T

〈
N∑

k=1

Nb
k∑

n=1

e
iω

(
tk+

n∑
m=1

I bm,k

)

s̃∗(ω)

〉
. (16)

Due to the additional randomness associated with the jittered
IBIs and the burst-spike distribution, the brackets imply now
not only an average over the intrinsic noise ξ and the stochas-
tic signal s but also over I b and Nb: 〈·〉 = 〈·〉ξ,s,I b,Nb . The
first term in Eq. (16) is the cross-spectrum between stimulus
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and reference spike train. This leaves only the calculation of
the second term. First, we carry out the average with respect
to the IBIs. Since the random numbers I bm,k are drawn inde-
pendently for each burst spike (they form the local renewal
process yk(t)), the average factorizes:

〈
e
iω

n∑
m=1

I bm,k

〉

I b

=
n∏

m=1

〈
eiωI bm,k

〉

I b

=
n∏

m=1

∫
dI bm,k e

iωI bm,kρ
(
I bm,k

)

=
n∏

m=1

ϕI bm,k
(ω) = ϕn

I b (ω) . (17)

Here in the last line we used the definition of the charac-
teristic function ϕ(ω), the Fourier transform of ρ(I bm,k), and

that the I bm,k are all drawn from the same distribution ρ
(
I b
)
.

For the example of the Gaussian, the characteristic function
is well known:

ϕG(ω) = eiωτ− ω2σ2
2 . (18)

To average over the burst spikes we again use that the
number Nb

k of burst spikes is drawn independently for each
reference spike tk in each realization (trial). For the total
number of realizations Nr we have for the k-th reference
spike (assuming that it exists in every realization):

〈 Nb
k∑

n=1

ϕn
I b (ω)

〉

Nb

= 1

Nr

[(
ϕI b + ϕ2

I b + . . . + ϕ
Nb
k,1

I b

)

+
(

ϕI b + ϕ2
I b + . . . + ϕ

Nb
k,2

I b

)

+ . . .

+
(

ϕI b + ϕ2
I b + . . . + ϕ

Nb
k,Nr

I b

)]

= 1

Nr

(
p1NrϕI b + p2Nrϕ

2
I b + . . .

)

=
∞∑

n=1

pnϕ
n
I b (ω) . (19)

Here we suppressed, for the ease of notation, the limit Nr →
∞ that should be taken for a proper ensemble average. We
arranged the terms to illustrate how the probability pn to
have at least n burst spikes, emerges. The latter probability
can be calculated from the probability Pj to have exactly j
burst spikes as follows:

pn =
∞∑

j=n

Pj , (20)

and we may also easily invert this relation and write

Pk = pk − pk+1. (21)

The remaining averages for the second term in Eq. (16)
are now the same as for the cross-spectrum 〈·〉 = 〈·〉ξ,s , and
we obtain for the burst cross-spectrum:

Sbxs(ω) = Sxs(ω) + lim
T→∞

1

T
×

〈
N∑

k=1

eiωtk
∞∑

n=1

pnϕ
n
I b (ω)s̃∗(ω)

〉

= Sxs(ω) + lim
T→∞

〈x̃(ω)s̃∗(ω)〉
T

∞∑

n=1

pnϕ
n
I b (ω)

= Sxs(ω)

(
1 +

∞∑

n=1

pnϕ
n
I b (ω)

)
. (22)

Therefore, we find for the linear response function with burst
spikes Eq. (14)

χb
1 (ω) = χ1(ω)

(
1 +

∞∑

n=1

pnϕ
n
I b (ω)

)

= χ1(ω) f(ω), (23)

which is the linear response function given by Eq. (7) mul-
tiplied by a frequency-dependent factor. The latter depends
on ω solely through the characteristic function, i.e. f (ω) =
F(ϕ(ω)), where F(ϕ) is a function of the characteristic
function ϕ. Using the Gaussian approximation for the IBI
distribution, the factor reads

fG(ω) = 1 +
∞∑

n=1

pne
n
(
iωτ− 1

2ω2σ 2
)

, (24)

which assumes the form of a complex-valued damped
oscillation with respect to the frequency argument ω. The
“frequency” of this undulation has the physical dimension of
a time, corresponding to multiples of the delay τ ; the damp-
ing in turn is determined by the standard deviation of the
jitter, σ .

We finally note that there is also a different interpretation
for the terms in f (ω) that should also become apparent from
our derivation above. For the nontrivial sum term we can
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write

∞∑

n=1

pnϕ
n
I b (ω) =

∞∑

n=1

∞∑

j=n

Pj

∞∫

0

dT eiωT ρn(T )

=
∞∑

j=1

Pj

j∑

n=1

∞∫

0

dT eiωT ρn(T )

In the first line of the above equation, we have used the n-
th order interval density ρn(T ); in the second line we have
exchanged the sums and obtained for a given burst count n
a sum over all n-th order intervals giving us the probability
to obtain any spike after the reference spike. The outer sum
then averages this over all possible total numbers of burst
spikes.

We can further simplify the right hand side by exploiting
the fact that the probability density of spiking after the (arbi-
trarily chosen) k-th reference spike is the ensemble average
of the renewal train yk(tk + T ), leading to

∞∑

n=1

pnϕ
n
I b (ω) =

∞∫

0

dT eiωT 〈yk(tk + T )〉

=
∞∫

0

dT eiωTmB(T ) = m̃B(ω), (25)

wheremB(T ) is the conditional firing rate for a burst spike in
the k-th burst at time tk +T . In the last step of Eq. (25) it also
becomes clear that for ω = 0 the Fourier transform, turn-
ing into a pure integral over the conditional rate, yields the
full mean number of burst spikes (for one burst and without
counting the reference spike). Furthermore, the factor f (ω)

can then be interpreted as the Fourier transform of

δ(T ) + mB(T ), (26)

i.e. the conditional firing rate within a burst which includes
(by the delta function) the reference spike itself.

4.2 Nonlinear response function

Next, we would like to study the effect of burst spikes on the
nonlinear response function Eq. (8):

χb
2 (ω1, ω2) = Sbxss(ω1, ω2)

2Sss(ω1)Sss(ω2)
. (27)

As before, the power spectrum of the signal Sss(ω) is unaf-
fected by the burst spikes, which leaves only the calculation
of the third-order burst cross-spectrum Sbxss(ω1, ω2). We

obtain Sbxss(ω1, ω2) by inserting Eq. (15) now evaluated at
ω → ω1 + ω2 in Eq. (6):

Sbxss(ω1, ω2) = lim
T→∞

〈
x̃b(ω1 + ω2)s̃∗(ω1)s̃∗(ω2)

〉

T

= Sxss(ω1, ω1)

(
1 +

∞∑

n=1

pnϕ
n
I b (ω1 + ω2)

)
.

(28)

We can directly write down the result for the third-order
burst cross-spectrum, because only the spike train is affected
by the burst spikes, and all steps from the calculation of
the second-order cross-spectrum Eqs. (16)-(22) apply in the
same manner. For the nonlinear response function with burst
spikes we then obtain:

χb
2 (ω1, ω2) = χ2(ω1, ω2)

(
1 +

∞∑

n=1

pnϕ
n
I b (ω1 + ω2)

)

= χ2(ω1, ω2) f (ω1 + ω2) , (29)

which is the nonlinear response function given by Eq. (8)
multiplied with the same frequency-dependent factor as in
Eq. (23), evaluated now at ω → ω1 + ω2.

We note that for the Gaussian approximation the same
applies as for the linear response: the factor fG(ω1 + ω2)

introduces a damped oscillation into the nonlinear response
function. Furthermore, the factor will be constant along the
antidiagonal ω = ω1 + ω2 = const, which suggests to con-
sider a nonlinear response averaged over the anti-diagonal:

Pχ2(ω)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω∫

0
dω1 |χ2(ω1, ω − ω1)|

ω∫

0
dω1

, 0 < ω ≤ ωcut

ωcut∫
ω−ωcut

dω1 |χ2(ω1, ω − ω1)|
ωcut∫

ω−ωcut

dω1

, ωcut < ω < 2ωcut

(30)

Because of the projection on the summed frequencies, this
function is considered in the interval (0, 2ωcut), i.e. up to
twice the cut-off frequency ωcut. Figure 3 illustrates how Eq.
(30) comes about.

4.3 Spike train power spectrum

The effect of burst spikes on the power spectrum of the spike
train is complicated due to the fact that it involves second-
order statistics of the spike train itself. Inserting Eq. (15) in
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Fig. 3 Projection of the nonlinear response function. The domain of
the nonlinear response functions is limited by ωcut . We integrate over
|χ2(ω1, ω2)| along the anti-diagonals ω = ω1 + ω2 = const and nor-
malize these values by the length of the corresponding anti-diagonal. In
the lower triangle we evaluate the projection for projection-frequencies
0 < ω ≤ ωcut (red), and the upper triangle gives us the evaluation for
the projection-frequencies ωcut < ω < 2ωcut (blue)

Eq. (3) yields

Sbxx (ω) = lim
T→∞

〈x̃(ω)x̃∗(ω)〉
T

+ lim
T→∞

1

T

[〈
x̃(ω)

N∑

k=1

ỹ∗
k (ω)

〉
+ c.c.

]

+ lim
T→∞

1

T

〈
N∑

k1=1

N∑

k2=1

ỹk1(ω)ỹ∗
k2(ω)

〉

= lim
T→∞

〈x̃(ω)x̃∗(ω)〉
T

+ lim
T→∞

1

T

⎡

⎣
〈
x̃(ω)

N∑

k=1

Nb
k∑

n=1

e
−iω

(
tk+

n∑
m=1

I bm,k

)〉
+ c.c.

⎤

⎦

+ lim
T→∞

1

T

〈
N∑

k1=1

Nb
k1∑

n1=1

e
iω

(
tk1+

n1∑
m1=1

I bm1,k1

)

×

N∑

k2=1

Nb
k2∑

n2=1

e
−iω

(
tk2+

n2∑
m2=1

I bm2,k2

)〉
. (31)

The brackets indicate an average over the intrinsic noise ξ ,
the IBIs I b and the burst-spike distribution 〈·〉 = 〈·〉ξ,I b,Nb .
The first term is the power spectrum of the reference spike
train. The averages over the IBIs and burst-spike distribution
in the second term can be calculated in the same way as for
the second-order burst cross-spectrum in Eqs. (17) and (19).

Therefore, we obtain for the first and second term in Eq. (31):

Sxx (ω)

(
1 +

∞∑

n=1

pn
[(

ϕI b (ω)
)n + (

ϕ∗
I b (ω)

)n]
)

= Sxx (ω)

(
1 + 2

∞∑

n=1

pn Re{ϕn
I b (ω)}

)
. (32)

To evaluate the third term, we distinguish between the
terms of the sum referring to the same reference spike
(
∑

k1=k2 ) or not (
∑

k1 �=k2 ). First, we want to focus on the
second case: because we are referring to different reference
spikes, tk1 and tk2 , the random numbers I bm1,k1

and I bm2,k2
are

independent. Therefore, the average over the IBI distribution
can be calculated independently:

〈
e
iω

n1∑
m1=1

I bm1,k1

〉

I b

〈
e
iω

n2∑
m2=1

I bm2,k2

〉

I b

= (
ϕI b (ω)

)n1(ϕ∗
I b (ω)

)n2 . (33)

Furthermore, this also allows us to compute the average over
the burst-spike distribution independently (Eq. (19)):

〈 Nb
k1∑

n1=1

(
ϕI b (ω)

)n1
〉

Nb

〈 Nb
k2∑

n2=1

(
ϕ∗
I b (ω)

)n2
〉

Nb

=
∞∑

n1=1

pn1
(
ϕI b (ω)

)n1
∞∑

n2=1

pn2
(
ϕ∗
I b (ω)

)n2 . (34)

It remains to calculate the exponential containing the spike
times:

〈
N∑

k1 �=k2

eiω(tk1−tk2 )

〉
=
〈

N∑

k=1

(N − k)
[
eiωTk + c.c.

]〉

=
〈

N∑

k=1

(N − k)
[
p̃k(ω) + p̃∗

k (ω)
]
〉

.

(35)

Here we have rewritten the differences of the spike times
bymeans of the k-th order interval Tk = ti+k−ti and assumed
that the average over

〈
eiωTk

〉
does not depend on the spike-

time index i; this is reflected by the suppression of the index
in the notation of Tk and by the prefactor N−k of the number
of identical terms appearing in the sum. Furthermore, in the
second line we used the fact, that the average of the phase
factor

〈
eiωTk

〉
for fixed k over different realizations of the

intrinsic noise ξ will result in the Fourier transform of the
k-th order-interval density p̃k(ω) (Holden, 1976). We keep
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the averaging brackets because the total spike count N is
still a stochastic variable; in the limit T → ∞, the prefactor
(N − k)/T approaches the firing rate r0 and we may omit
the averaging brackets. Combining all steps, Eqs. (33)-(35),
in consideration of the last sum in Eq. (31), we obtain for the
terms referring to different spike times:

lim
T→∞

1

T

〈
∑

k1 �=k2

Nb
k1∑

n1=1

Nb
k2∑

n2=1

Ak1,n1 A
∗
k2,n2

〉
=

r0
∑

k

[
p̃k(ω)+ p̃∗

k (ω)
] ∞∑

n1=1

pn1
(
ϕI b (ω)

)n1
∞∑

n2=1

pn2
(
ϕ∗
I b (ω)

)n2,

(36)

where Ak,n = exp
[
iω
(
tk +∑n

m=1 I
b
m,k

)]
. For the terms of

the sum referring to the same reference spikes,we have to dis-
tinguish additionally between the terms of the sum referring
to the same burst spikes (

∑
n1=n2 ) or not (

∑
n1 �=n2 ), yielding:

〈
N

Nb
k1∑

n1=n2

1 + N

Nb
k1∑

n1 �=n2

e
iω

n1∑
m1=1

I bm1,k1
e
−iω

n2∑
m2=1

I bm2,k1

︸ ︷︷ ︸
L

〉
(37)

The second sum L can be rewritten as follows:

L =
〈Nb

k1∑

n=1

(
Nb
k1 − n

)
⎡

⎣e
iω

n∑
m=1

I bm,k1 + c.c.

⎤

⎦
〉

I b

(38)

Note, that we used here the fact, that the IBI’s are drawn from
the same distribution and only the length of the sequence and
not the explicit index m1 or m2 is important. Evaluating the
averages 〈·〉I b,Nb yields:

〈Nb
k1∑

n=1

(
Nb
k1 − n

)
⎡

⎣e
iω

n∑
m=1

I bm,k1 + c.c.

⎤

⎦
〉

I b,Nb

=
〈
2Re

⎧
⎪⎨

⎪⎩

Nb
k1∑

n=1

(
Nb
k1 − n

)
ϕn
I b (ω)

⎫
⎪⎬

⎪⎭

〉

Nb

=
〈
2Re

⎧
⎪⎪⎨

⎪⎪⎩

ϕI b

(
ϕ
Nb
k1

I b
− Nb

k1
ϕI b + Nb

k1
− 1

)

(
1 − ϕI b

)2

⎫
⎪⎪⎬

⎪⎪⎭

〉

Nb

= 2
∞∑

n=1

Pn Re

⎧
⎨

⎩
ϕI b

(
ϕn
I b

− nϕI b + n − 1
)

(
1 − ϕI b

)2

⎫
⎬

⎭ , (39)

where we used in the second last step the result of the finite
series

M∑

n=1

(M − n)an = a
(
aM − aM + M − 1

)

(1 − a)2
. (40)

As for the other terms, the ratio N/T approaches the firing
rate in the limit of an infinite timewindow T . With the above,
we obtain for the terms of the sum referring to the same spike
times:

lim
T→∞

1

T

〈
∑

k1=k2

Nb
k1∑

n1=1

Nb
k2∑

n2=1

Ak1,n1 A
∗
k2,n2

〉
= r0

∞∑

n=1

pn+

2r0

∞∑

n=1

Pn Re

⎧
⎨

⎩
ϕI b

(
ϕn
I b

− nϕI b + n − 1
)

(
1 − ϕI b

)2

⎫
⎬

⎭ .

(41)

Using the general result for a stationary spike train
(Holden, 1976)

Sxx (ω) = r0

(
1 +

∑

k

[
p̃k(ω) + p̃∗

k (ω)
]
)

, (42)

and our results in Eqs. (32), (36) and (41), we obtain for the
burst-spike-train power spectrum:

Sbxx (ω) =Sxx (ω)

[
1 + 2

∞∑

n=1

pn Re
{
ϕn
I b (ω)

}+

∞∑

n1=1

pn1
(
ϕI b (ω)

)n1
∞∑

n2=1

pn2
(
ϕ∗
I b (ω)

)n2
⎤

⎦

+ r0

⎡

⎣
∞∑

n=1

pn−
∞∑

n1=1

pn1
(
ϕI b (ω)

)n1
∞∑

n2=1

pn2
(
ϕ∗
I b (ω)

)n2

+ 2
∞∑

n=1

Pn Re

⎧
⎨

⎩
ϕI b

(
ϕn
I b

− nϕI b + n − 1
)

(
1 − ϕI b

)2

⎫
⎬

⎭

⎤

⎦

(43)

This can be further simplified to yield

Sbxx (ω) = Sxx (ω) | f (ω)|2 +

r0

⎡

⎣
∞∑

n=1

pn

⎛

⎝1 + 2Re

⎧
⎨

⎩
ϕI b

(
1 − ϕn−1

I b

)

1 − ϕI b

⎫
⎬

⎭

⎞

⎠− | f (ω) − 1|2
⎤

⎦

= Sxx (ω) | f (ω)|2 + r0g(ω) . (44)

Here we have used Eq. (21), performed a few of algebraic
manipulations, and expressed the sum term with the factor
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f (ω) via

∞∑

n1=1

pn1
(
ϕI b (ω)

)n1 = f (ω) − 1 .

Unlike the response functions we do not obtain in Eq. (44)
the burst-spike-train power spectrum by a pure product of the
reference spike-train spectrum and a frequency-dependent
factor. Besides the original spectrum (first line) being multi-
plied with the squared absolute value of the factor introduced
in Eq. (23), we have now also an additional term that includes
the firing rate r0 multiplied by a function g(ω) of the burst
characteristics.

Whenwe inspect the high-frequency limit of the spectrum,
it is useful to know the limits for the characteristic function
ϕI b (ω) and the factor f (ω). In the case of jittered IBI’s with
a smooth probability density, we can assume that

lim
ω→∞ ϕI b (ω) = 0 ⇒ lim

ω→∞ f (ω) = 1 , (45)

i.e. the probability density does not change in an infinitely
fast manner, and hence its Fourier transform decays for very
high frequencies.

The additive term in Eq. (44) ensures the saturation of Sbxx
in the large frequency limit at an increased firing rate

lim
ω→∞ Sbxx (ω) = lim

ω→∞ Sxx (ω) + r0

∞∑

n=1

pn

= r0
(
1 +

〈
Nb
〉)

= rb0 , (46)

which is then just the burst firing rate rb0 . Notably, we recog-
nize from Eq. (44) that without a jitter (when ϕG(ω) = eiωτ )
the burst-spike-train power spectrum will not saturate at rb0
but oscillate around this value.

From our derivation it is also evident that the additive term
in Eq. (44) can never be negative,

g(ω) =
∞∑

n=1

pn

⎛

⎝1 + 2Re

⎧
⎨

⎩
ϕI b

(
1 − ϕn−1

I b

)

1 − ϕI b

⎫
⎬

⎭

⎞

⎠

− | f (ω) − 1|2
≥ 0 . (47)

This inequality is not obvious but can be understood by

considering the burst yk(t) =
Nb
k∑

i=1
δ(t − tk,i ), i.e. the finite

(stochastic) number of burst spikes added to the k-th spike.
Then its mean value is given by

〈yk(t)〉 = mB(t − tk) , t > tk . (48)

The (one-sided) Fourier transform of this function is given
by f (ω) − 1. From our derivation it has become clear that
the infinite sum in the first line of Eq. (47) is equal to the
second moment of ỹk(ω), cf. the first line in Eq. (31) and
in particular the terms in the last double sum with k1 = k2.
Hence, the left hand side of Eq. (47) can be regarded as a
variance

g(ω) = 〈
ỹk(ω)ỹ∗

k (ω)
〉− 〈ỹk(ω)〉 〈ỹ∗

k (ω)
〉 ≥ 0 , (49)

which cannot be negative.

4.4 Coherence function

The seemingly exotic non-negativity of the additional term
in the power spectrum is consistent with the insight that by
adding burst spikes in a signal-unrelated manner to a spike
train, we can only degrade the information that the spike train
carries about the stimulus. At the level of a linear approxima-
tion this becomes apparent in terms of the coherence function
between burst spike train and stimulus

Cb(ω) =
∣∣Sbxs(ω)

∣∣2

Sss(ω)Sbxx (ω)
=
∣∣χb

1 (ω)
∣∣2 Sss(ω)

Sbxx (ω)

= |χ1(ω)|2 | f (ω)|2 Sss(ω)

Sxx | f (ω)|2 + r0g(ω)

= Sxx (ω)

Sxx (ω) + r0g(ω)/ | f (ω)|2C(ω) , (50)

where C(ω) is the coherence between the stimulus and the
reference spike train. From the structure of the prefactor it
is clear that as long as g(ω) ≥ 0, which was shown in the
relations Eqs. (47)-(49), we have

Cb(ω) ≤ C(ω) , (51)

i.e. we never increase the correlation coefficient between
input and output by adding burst spikes to the spike train in
a signal-unrelated manner. Likewise, we can conclude that
by adding burst spikes in this way we cannot increase the
lower bound of the mutual information rate, Eq. (10), which
is a monotonic function of the coherence function. We will
discuss these information-theoretic measures for the P-units
in Section 6.3.

123



Journal of Computational Neuroscience (2025) 53:37–60 47

5 Testing the relations for a stochastic
integrate-and-fire neuron

5.1 Neuronmodel driven by bandpass-limited noise

To test our derived formulas, we consider the LIF neuron
as an example for a non-bursting and stochastically spiking
neuronmodel (Holden, 1976; Tuckwell, 1989; Burkitt, 2006;
Vilela & Lindner, 2009) to which we can apply our bursting
algorithm. The dynamics of the i-th realization (trial), i =
1, . . . , Nr , is given by

v̇i (t) = −vi (t) + μ + √
2Dξi (t) . (52)

vi (t) denotes the membrane voltage, μ is the mean input
current, and time is measured in multiples of the membrane
time constant (i.e. we use a non-dimensional time variable).
Additionally, we apply a fire-and-reset rule: whenever vi (t)
hits a threshold vT , an output spike time tk is registered and
the voltage is reset to vR . The sum of delta functions at the
so determined spike times, x(t) = ∑

k δ(t − tk), constitutes
the main output of the LIF neuron. The voltage is given in
multiples of the threshold-reset difference, andwe set vR = 0
and vT = 1.

For the noise process in Eq. (52) we will use a bandpass-
limited white Gaussian noise with a power spectrum given
in Eq. (4) determined by a cut-off frequency that is much
higher than the firing rate of the neuron; here the effect of
the noise on the LIF dynamics is close to that of a true white
Gaussian noise with a delta correlation function, a version
of the LIF model that has been studied thoroughly in the
literature (Holden, 1976; Ricciardi, 1977; Tuckwell, 1989;
Lindner, 2002; Fourcaud & Brunel, 2002; Burkitt, 2006).

We aim for a measurement scheme to probe the whole
frequency range of the system. In our simulation, we know
the exact values of the noise and can regard a fraction of this
stochastic process as an input signal:

ξi (t) = √
1 − cξi,n(t) + √

cξi,s(t) , (53)

where ξi,n denotes the intrinsic background part and ξi,s is
the signal, and both parts are Gaussian distributed and sta-
tistically independent of each other (such a subdivision is
possible for Gaussian signals). The parameter c is a scaling
factor indicating how much of the full noise ξi is considered
to be the input signal.

As a consequence of the Furutsu-Novikov theorem (Novi-
kov, 1965) and its generalization to higher-order response
functions (Egerland, 2021), the equations for the first- and

second-order susceptibility Eqs. (7) and (8) read now:

χ1(ω; D) = Sxs(ω)

2Dc
, (54)

χ2(ω1, ω2; D) = Sxss(ω1, ω2)

2(2Dc)2
. (55)

Here, we have indicated the dependence of the response
functions on the total noise level - specifically, we want to
emphasize that the response functions do not depend on the
splitting parameter c (for a discussion of this problem, see
Vilela and Lindner (2009)). We furthermore note that the
power spectrum of the spike train is independent of c as well.

In the following, we inspect how the response func-
tions and the spectrum change upon addition of burst spikes
according to our algorithm and to the derived relations. We
choose one specific set of system parameters, μ = 0.9,
D = 0.005, corresponding to the excitable regime of the
LIF neuron with an intermediate noise level. Here, the sta-
tionary firing rate is r0 = 0.12 corresponding to a mean ISI
of 〈I 〉 = 8.33. For the IBI distribution we choose a Gaus-
sian with mean IBI τ = 0.5, which is much smaller than the
mean ISI, and we set the standard deviation either σ = 0.0
or σ = 0.13.

5.2 Linear response function

We start with the linear response function and show the
results in Fig. 4. The panels A-D correspond to the differ-
ent burst-algorithms depicted in Fig. 2. In the respective
upper panel (index 1) we plot the numerical estimation of
the absolute values of the susceptibility |χ1(ω)| (dark blue),
the burst-susceptibility

∣∣χb
1 (ω)

∣∣ (light blue) and the theoreti-
cal prediction of the absolute value of the burst-susceptibility
(black dotted line) givenbyEq. (23). In the lower panel (index
2) we show the absolute value of the numerical (red) and ana-
lytical (black dashed line) evaluation of the factor | fG(ω)|,
Eq. (24), for the corresponding burst algorithms.

First of all, we find an excellent agreement for our numer-
ical and analytical results. Furthermore, the addition of burst
spikes causes a periodic modulation of the linear response
function. Focusing first on the case of one burst spike with no
temporal jitter, i.e. the standard deviation of the jitter distri-
bution is zero, σ = 0 (panel A), this modulation with respect
to frequency has the period fτ = 1/τ = 2.0 (which has the
dimension of a frequency and not of a time). The modulat-
ing factor is fG(ω) = 1 + eiωτ , the absolute value of which
yields an undamped oscillation, | fG(ω)| = √

2 + 2 cos (ωτ)

(Fig. 4A2). By adding one burst spike without a jitter we can
double the absolute value of the linear response function for
each driving frequency equal to a multiple of fτ . A simi-
lar effect could be achieved by doubling the weight of each
output spike, x(t) → 2x(t).
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Fig. 4 LIF neuron: Effect of burst spikes on the linear response
function. A-D same as in Fig. 2. Upper panels [1]: Numerical mea-
surement of the susceptibility (dark blue) and burst susceptibility (light
blue) compared to the theoretical prediction of the burst susceptibility
(black dotted line), Eq. (23). Lower panels [2]: Numerical (red) and
analytical (black dashed line) estimation of the factor f (ω; σ). In all
panels, only the absolute values are plotted.Model parameters:μ = 0.9,
D = 0.005, τ = 0.5, σ = 0.0 in A and σ = 0.13 in B-D.DNumber of
burst spikes is drawn from a uniform distribution: Nb ∈ {0, 1, 2, 3, 4}

Including the jitter leads to a damping of the oscillation
that is determined by σ . In Fig. 4B we choose σ = 0.13,
which yields a strong suppression of the oscillation shortly
after the first cycle. For arbitrary values of σ and in accor-
dance with the general limit case Eq. (45), we find in the
high-frequency limit lim

ω→∞ fG(ω) = 1, which means that the

burst spikes have no effect on the linear response function
for ω → ∞ when the burst-spike times are jittered.

When we increase the number of burst spikes (Nb
k = 4,

∀k in panel C), we obtain subharmonic modes corresponding
to multiples of the delay time τ and specifically depending
on Nb

k . The high-frequent modulation hinges on the fact that
the number of burst spikes is always the same. If we random-
ize the number of burst spikes (uniform distribution over
Nb
k ∈ {0, 1, 2, 3, 4} in panel D), the ondulation of the sus-

ceptibility is strongly diminished. The remaining effect of
the burst spikes in this most general version of our algorithm
is a boost of the linear response at very low frequencies and
around the frequency fτ corresponding to the delay time and
a reduction between these two frequency ranges. Specifically,
for the boost at low frequencies, we find

lim
ω→0

fG(ω) = 1 +
∞∑

n=1

pn = 1 +
〈
Nb
k

〉
.

Therefore, the boosting effect of the burst spikes is here
increased by a larger mean number of burst spikes. In partic-
ular, the amplification is larger in panel C than in D because
the mean values

〈
Nb
k

〉
differ.

5.3 Nonlinear response function

Next, we want to verify our formulas for the nonlinear
response function. The results are depicted in Fig. 5 and,
as for the linear response, the panels A-D correspond to the
application of the different burst algorithms in Fig. 2. We
show the absolute value of the second-order susceptibility
|χ2(ω1, ω2)| in the leftmost panel (index 1), the absolute
value of the second-order burst-susceptibility

∣∣χb
2 (ω1, ω2)

∣∣
in the middle left panel (index 2) and the absolute value
of the theoretical prediction of the second-order burst-
susceptibility, Eq. (29), in the middle right panel (index 3).
The rightmost panel has the same structure as for the linear
response: we show the projections (introduced in Eq. (30)) of
the second-order susceptibility Pχ2(ω) (dark blue) and burst
susceptibility Pχb

2
(ω) (light blue) as well as the projection

of the theoretical prediction of the burst susceptibility (black
dotted line) in the upper subpanel (index 4). In the lower
subpanel (index 5) we compare again the numerical (red)
and analytical (black dashed line) evaluation of the absolute
value of the factor | fG(ω)|; in 4 and 5 the frequency range is
doubled, compared to the linear response, due to the projec-
tion to the sum of the frequency arguments, ω = ω1 + ω2.

For the nonlinear response function we make similar
observations as for the linear response: along the diagonal,
ω1 = ω2, it is modulated by the same factor as the linear
response function, only that the frequency argument of this
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Fig. 5 LIF neuron: Effect of burst spikes on the nonlinear response
function. A-D same as in Fig. 2. [1]: Absolute value of the second-order
susceptibility |χ2(ω1, ω2)|. [2]: Absolute value of the second-order
burst susceptibility

∣∣χ2
b(ω1, ω2)

∣∣. [3]: Absolute value of the theoreti-
cal prediction of the burst susceptibility, Eq. (29). [4]: Projection of the

susceptibility (dark blue) and burst susceptibility (light blue) compared
to the theoretical prediction of the projected burst susceptibility (black
dotted line). [5]: Numerical (red) and analytical (black dashed line) esti-
mation of the absolute value of the factor | f (ω; σ)|. Model parameters:
same as in Fig. 4
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factor is now ω = ω1 + ω2. As before, our numerical and
analytical results are in excellent agreement.

If we just add one burst spike with a fixed delay τ , we
observe a perfectly periodic modulation of the nonlinear
response with a maximum boost factor of two (Fig. 5A1-
A5). We note that we would exactly obtain this increase of
the nonlinear response at all frequencies if we would multi-
ply the output spike train with a factor of two, i.e. place the
additional burst spike at exactly the same spike time as the
reference spike.

If we add a jitter to the single burst spike (Fig. 5B1-B5),
the periodicmodulation is dampedwith increasing frequency
argument such that the added burst has practically no effect
anymore at high frequencies. If we add four jittered burst
spikes instead of one (Fig. 5C1-C5), we observe a higher
boosting factor (maximum is five, reached at small frequen-
cies) and still a pronounced damping effect. In addition, we
find a subharmonic modulation with a period of fτ /4 and
multiples of this frequency, which corresponds to the longer
time scale of 4τ .

Finally, if we randomize the number of burst spikes
(Fig. 5D1-D5), the subharmonic modulation is strongly
diminished.What survives in thismost realistic version of our
burst algorithm is an amplification of the nonlinear response
at small frequencies and at a sum frequency ω = 2π fτ , a
slight reduction for frequencies in between, and almost no
effect for frequencies higher than the delay frequency fτ .

5.4 Spike train power spectrum

The last test for the LIF model is the spike-train power spec-
trum, and we show the results in Fig. 6. As for the response
functions, the panel labels A-D correspond to the different
burst algorithms illustrated in Fig. 2. We show the power
spectrum of the reference spike train Sxx (ω) (dark blue), the
power spectrum of the burst spike train Sbxx (ω) (light blue)
and the theoretical prediction of the burst-powerspectrum
Sb,anaxx (ω) (black dotted line) calculated from Eq. (44). We
again find an excellent agreement of our numerical and ana-
lytical results for eachdifferent versionof the burst algorithm.

In the special case of adding always one burst spike with-
out a temporal jitter, i.e. σ = 0 (panel A), we obtain as
expected a periodic modulation of Sbxx (ω) around the burst-
firing rate rb0 = 2r0:

Sbxx (ω) = 2Sxx (ω)
[
1 + cos(ωτ)

]
. (56)

We note that this oscillation never ceases.
If we add a jitter, the oscillation is now damped with

increasing frequency (panel B) and the power spectrum sat-
urates at rb0 . If we add four burst spikes instead of one
(panel C), we increase the modulation amplitude and also
add subharmonic modulation with frequency fτ /4. Finally,

Fig. 6 LIF neuron: Effect of burst spikes on the spike train power
spectrum. A-D same as in Fig. 2. All panels: Numerical measurement
of the power spectra of the spike train (dark blue) and burst spike train
(light blue) compared to the theoretical prediction of the power spectrum
of the burst spike train (black dotted line), Eq. (44). Model parameters:
same as in Fig. 4

randomizing the number of burst spikes by drawing them
from a uniform distribution (panel D), largely eliminates the
subharmonic modulation and leaves an elevation of power
at low frequencies and a pronounced peak at fτ as the main
effects of adding bursts on the spike-train power spectrum.

6 Application to electroreceptor afferents

So far, we confirmed the derived relations between spectra of
bursting and non-bursting spike trains for the LIF model; we
expected this since we started from a non-burstingmodel and
strictly followed our assumptions in applying the different
versions of the burst-algorithm.
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Starting from the observed effects of bursts on second-
order susceptibility in electroreceptor afferents of weakly
electric fish described in our companion paper (Barayeu et
al., 2024) we here elaborated on the details of the burst algo-
rithms and provide, based on the LIF neuron model, precise
theoretical predictions. In this section we want to investigate
to what extent our derived formulas can help us to under-
stand features observed in the spectral statistics of bursty
electroreceptor afferents from weakly electric fish. For this,
we re-use data recorded in 75 bursting P-units (for details
on the electrophysiological procedures see e.g. Grewe et al.,
2017; Barayeu et al., 2023).

6.1 Biological background and our approach
to bursting

Weakly electric fish perceive their environment and com-
municate with conspecifics through an electrosense that
comprises their electric organ, emitting the electric organ
discharge (EOD), a precisely periodic signal, and thousands
of electroreceptor cells that line the fish’s skin. One class of
electroreceptor afferents are the probability units (P-units)
that phase-lock to the fish’s own EOD and encode ampli-
tude modulations of the self-generated electric field that are
caused by other fish or objects in the environment (Scheich
et al., 1973) by changes in their firing probability. Amplitude
modulations in the form of broadband stimuli can be applied
in the experiment, and long spike trains from the P-units in
response to these signals can be recorded (Gussin et al., 2007;
Grewe et al., 2017).

Typically, P-units already display a considerable spon-
taneous activity (i.e. in the absence of the stimulus) with
firing rates between 50 Hz − 400 Hz, relatively high coef-
ficient of variation (CV) of the ISI with values between
0.2−0.9 (Grewe et al., 2017; Hladnik & Grewe, 2023), and
multimodal ISI distributions with peaks at multiples of the
EOD period τEOD (Chacron et al., 2000). A sizable fraction
of P-units of the species Apternotus leptorhynchus dis-
plays bursting (Bastian, 1981a; Metzen et al., 2016), which
becomes apparent by a bimodal modulation of the multi-
modal ISI density – the left peak of this bimodal envelope
then defines the IBIs. Accordingly, bursts spikes are often
defined by the criterion that the interval between them is
smaller than 1.5 τEOD (Chan, 2005); here we occasionally
chose 2.5 τEOD for specific cells if this better separates the
two peaks in the envelope of the ISI distribution. The cor-
responding IBI distribution can then be approximated by a
weighted sumofGaussians, withmean values τ1, τ2 and stan-
dard deviations σ1, σ2, leading to the characteristic function

ϕ2G(ω) = (1 − w)eiωτ1− 1
2ω2σ 2

1 + weiωτ2− 1
2ω2σ 2

2 , (57)

where w is the small probability in the second Gaussian, i.e.
for a IBI that is about twice the EOD period. We note that
the mean value τ1 is close to but not necessarily identical to
τEOD.

We note that the spontaneous activity of P-units as well
as their response to different kind of time-dependent stimuli
has beenmodeled by different kinds of stochastic LIFmodels
(endowed with an adaptation variable and a prefilter dynam-
ics for the EOD inputs) (Barayeu et al., 2023). Also bursting
in P-units has been the subject of some modeling attempts
(Chan, 2005). Here, we do not aim at modeling bursting P-
unit activity but instead pursue a statistical approach to the
problem: We will remove the burst spikes from the original
spike train (OST), defined by the criterion explained above,
which yields the reference spike train (RST). By reintroduc-
ing burst spikes to the RST according to our burst algorithm
and to the burst statistics of the specific cell, we obtain a new
algorithmically created burst spike train (AST). By compar-
ing the signal-transmission properties of these three types of
spike trains,we can access the role of bursting in the encoding
of time-dependent signals by P-units.

Specifically, we analyzed the spike trains of 75 bursty P-
units of the species Apteronotus leptorhynchus, both during
baseline activity and under stimulation with a random ampli-
tude modulation. The spike trains and the respective EOD
were recorded for Tfull = 10s; the EOD-peak frequency,
combined with a fine-tuning based on the phase-locked fir-
ing, provided us with the EOD period τEOD of the fish for this
specific cell. To calculate the spectral statistics we split the
full length into smaller time windows of T = 0.5s, resulting
in a total of 20 trials for each cell.

According to the general recipe explained above, we
extract for the OST the ISI density, can then apply the burst
criterion, identify burst spikes and determine i) the burst-
spike distribution and ii) the IBI distribution.We then remove
the burst spikes to obtain the RST and finally add burst spikes
again according to our algorithm (using the measured burst-
spike and IBI distributions), to generate the AST.

6.2 Statistics of three example cells

In the following we show the results for three example cells
(Figs. 7, 8, and 9, respectively); the color scheme and panel
organization is the same in all threefigures: the baseline activ-
ity and the analyses performedon it is depicted in pink (panels
A-E) while the data referring to the stimulus-driven situation
are shown in blue (F-N). Results derived from the OST are
depicted in light colors, those of the RST in dark colors, and
those derived from the AST are shown in black. Panels A
and I show the first 50ms of the first three trials for the base-
line and stimulus-driven condition.We see that the spikes are
arranged in burstswith a couple of spikes in short succession
followed by a longer interval to the next burst. The number
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Fig. 7 Experimental data: Spectral statistics of a P-unit (cellA).
A-E Baseline activity with OST (light purple) and RST (dark purple).
F-N P-unit driven by an external stimulus with OST (light blue) and
RST (dark blue). The black line shows the result for the AST in both
cases (baseline activity and stimulus-driven).A/I Spike trains of 3 trials
for the first 50 ms. B/F Power spectrum for 0 < f < fcut . C Power
spectrum for 0 Hz < f < 5 kHz. D-E, J-K Interspike interval dis-

tributions. G Absolute value of the linear response susceptibility. H
Projection of the nonlinear response. L Absolute value of the nonlinear
response of the OST. M Absolute value of the nonlinear response of
the RST. N Absolute value of the nonlinear response of the AST. The
indicated period of the power spectrum’s undulation, 
 f ≈ 655Hz,
is roughly given by the inverse of the fit parameter τ1 from Eq. (57),
1/τ1 ≈ 653Hz

of spikes within a burst varies and also a single spike is possi-
ble; the burst-spike distributions are shown in the Appendix
Section A. The first spike (the reference spike) within each
burst is highlighted in dark colors; these spikes form the RST.

A clear manifestation of bursting can also be seen in the
ISI distributions of cell A (Fig. 7D and J) which display a
pronounced peak around the EOD period (corresponding to
the IBIs) and peaks at multiples of τEOD. The bimodal enve-
lope structure of this distribution is a hallmark of bursting. If
we remove the burst spikes, i.e. only consider the RST, the
ISI distribution looses its first peak and the peaks at higher
intervals are somewhat shifted to the right, both for the spon-
taneous firing (Fig. 7E) and under stimulation (K).

The power spectrum of the P-unit activity (thick light pink
in Fig. 7B and C) has a complex structure with peaks at the
firing rate of the RST, r0 = 56.4Hz (see Table 1), and its
higher harmonics, a dip at low frequencies (a consequence of
spike-frequency adaptation (Benda & Herz, 2003; Benda et
al., 2005)), an overall modulation with a frequency roughly
given by 1/τ1 (see captions for the numerical values), and

saturation in the high-frequency limit at rb0 = 160.7Hz. On
the contrary, the power spectrum of the RST (dark pink) is
flat: it also displays peaks at r0 and its higher harmonics at
low frequencies but otherwise reaches the saturation level at
r0 fast. Remarkably, key features of the OST spectrum are
reproduced by our statistical model, theAST: the sharp peaks
and the overall spectral shape in an intermediate frequency
range (50Hz−400Hz, see B), the high-frequency undula-
tion (500Hz−3000Hz, see C), and the high-frequency limit.
The only property not captured is the decreased power at
low frequencies, an effect that is presumably due to spike-
frequency adaptation and cannot be incorporated into our
statistical model.

Adding a weak broadband stimulus with power between
0Hz to 400Hz does not change the power spectrum dras-
tically in this cell (compare B and F), and the spectrum of
the AST still shares key features with that of the OST (see
agreement of light blue and black line). The linear response
(susceptibility) of this cell and stimulation condition is partic-
ularly weak (see G) and characterized by a sharp peak around
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Fig. 8 Experimental data: Spectral statistics for a second cell (cell B). Same panels as in Fig. 7. The indicated period of the power spectrum’s
ondulation, 
 f ≈ 860Hz, is roughly given by the inverse of the fit parameter τ1 from Eq. (57), 1/τ1 ≈ 864Hz

r0 that sticks out of the noise floor. This is well reproduced
by the AST (compare light blue and black lines), which is
surprising because our statistical model does not take into
account any effects of the stimulus on the bursting statistics.
Even more surprising, frequency-dependent modulations of
the nonlinear response of the OST (see L) that are absent for
the RST (seeM) arewell reproduced by theAST (seeN). The
frequency modulation of the nonlinear response becomes
best apparent by plotting the projection P, Eq. (30), which
illustrates how quantitatively accurate our statistical model
can reproduce the effect of bursting on the nonlinear response
(see H). We observe that by including burst spikes, the non-
linear response is boosted around the firing rate f1+ f2 = r0
and around 1/τ1, one of the characteristics of the IBI distri-
bution (here determined in the presence of the stimulus).

Turning to our second example, cellB, shown in Fig. 8, we
note several differences in the statistics. The multimodal ISI
density of the OST has many more peaks and the IBIs also
include values around 2τEOD. For the power spectrum under
baseline conditions we make similar observations as for cell
A: the power spectrum of the OST displays a peak at the fir-
ing rate of the RST, r0 = 53.5Hz, and its second harmonic,
a dip of power at low frequencies, an overall undulation with
frequency 1/τ1, and saturation in the high-frequency limit at

rb0 = 112.7Hz. Between 0Hz and 400Hz, the power spec-
trum of the RST displays the same peaks as the OST and
like cell A, the saturation level at r0 is reached fast. Also,
the AST for cell B nicely reproduces the key features of the
spectrum except for the lowered power at low frequencies.

Unlike cell A, we do not observe a submodulation of the
power spectrum for frequencies f < fEOD. Adding a weak
stimulus we observe a clear impact of this driving input sig-
nal on the bursting properties of cell B (cf. ISI histograms in
D and J) and the spectral statistics (cf. B and F). The linear
response is generally stronger than that of cellA (cf. suscep-
tibilities in G) whereas the nonlinear response is spectrally
broadened and not as pronounced (cf. the broad stripes along
the antidiagonal in L to the sharp lines in Fig. 7L). In all
measures this cell is consistent with a higher level of output
variability. The antidiagonal stripes of pronounced nonlinear
response seen in the OST vanish for the RST (see M) but can
be recovered by reintroduction of bursting in the AST (see
N). All measures are well reproduced by the simulated AST
spike trains with artificial (signal-unrelated) bursting (seeH).

The third example cell (cell C, statistics of interest in
Fig. 9), apparently has an even larger output variability than
cellB: the peak around the spontaneous firing rate of theRST,
that was sharp for cell B and very sharp for cell A, is now
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Fig. 9 Experimental data: Spectral statistics for a third cell (cell C). Same panels as in Fig. 7. The indicated period of the power spectrum’s
ondulation, 
 f ≈ 690Hz, is roughly given by the inverse of the fit parameter τ1 from Eq. (57), 1/τ1 ≈ 693Hz

rather broad (cf. B). Also, the power spectrum in the larger
frequency range exhibits, in contrast to the previous cases,
solely peaks at the EOD frequency and its multiples in com-
bination with characteristic surrounding troughs of power
and the familiar long-frequency undulation with period 1/τ1.
Stimulation with a broadband signal changes the ISI his-
togram of cell C drastically (cf. D and J for the OST and E
andK for theRST) and, correspondingly, the power spectrum
is additionally broadened (cf. F and B) and the susceptibility
is strong (G). Furthermore, in line with the comparatively
large variability of the cell, the nonlinear response is not pro-
nounced and spectrally broad (cf. L-N and H). Considering
only the RST, the observed structure of elevated nonlinear
susceptibility vanishes. In contrast to cells A and B, we see
discrepancies betweenOSTandAST for (i) the overall ampli-
tude of the linear response (cf. light blue and black in G)

and in the power spectrum at low frequencies (cf. B and F
for f < 40Hz). We would like to stress that the nonlinear
response, however, is largely captured by the AST.

From these three examples we can conclude that our
(signal-unrelated) stochastic bursting algorithm can restore
key frequency-dependent features in the spontaneous spik-
ing as well as the linear and nonlinear responses; for some
cells all features except for power spectra at low frequencies
are quantitatively well captured (cells A and B), addition-
ally, for some cells the linear response seems to be stronger
for the OST than for the AST (e.g. for cell C). In all cases,
the shaping of the nonlinear response is well captured for all
cells.

In Fig. 10 we look at the differences between the spectral
measures of OST and AST for all 75 bursting cells of our
sample. Deviations between spectral statistics F1 and F2(ω)

Table 1 Spike statistics of the three example cells without (left) and with (right) a broadband stimulus being present

Baseline activity External stimulation
Cells rb0 (Hz) r0 (Hz)

〈
Nb
〉

τ−1
1 (Hz) fEOD (Hz) rb0 (Hz) r0 (Hz)

〈
Nb
〉

τ−1
1 (Hz) fEOD (Hz)

A 160.7 56.4 1.85 652.97 754.56 166.6 54.7 2.05 661.69 755.42

B 112.7 53.5 1.11 863.92 760.45 199.7 49.7 3.02 885.97 760.11

C 305.8 83.1 2.68 692.64 683.15 319.9 78.9 3.05 691.81 683.77
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Fig. 10 Experimental data: Deviation to burst algorithm of 75 ana-
lyzed cells. A Power spectrum in baseline activity. B Power spectrum
with external stimulation. C Linear Response. D Projection nonlinear
response. [1]: 0Hz < f < 5kHz. [2]: f ≤ fcut . [3]: 50Hz < f ≤ fcut .
In all (labeled) panels we show the difference of the spectral statistics
from the OST to the AST (
y) and an estimation of the measurement
noise (
x) following the scheme in the top-left corner

are quantified by a relative squared deviation integrated over
a frequency band [ flow, fup]:


12 =

fup∫

flow

dω
(
F1(ω) − F2(ω)

)2

fup∫

flow

dω F2
1 (ω)

. (58)

There are uncertainties in the estimates of the different
spectral features that are due to the relatively small sample
size. To cope with this unavoidable problem in experimen-
tal data, we always compare the differences in one spectral
measure between OST and AST (
y) to the difference in
the same spectral measure estimated from the first and the
second half of the OST data (
x , see scheme in the top-left
corner of Fig. 10).

If our burst algorithm captures all effects, the points
(
x ,
y) should fall onto the diagonal. Points deviating
from the diagonal indicate that bursting in P-units is more
complicated than assumed in our burst algorithm. This is
definitely the case for the majority of cells when considering
the full power spectrum of the baseline activity (A1) or the
frequency range covered by the broadband stimulus in the
absence of the stimulus (A2) or the presence of the stimulus
(B2). Remarkably, if we take out the low-frequency range
associated with spike-frequency adaptation (< 50 Hz), the
deviations become comparable to the noise floor, 
y ≈ 
x ,
both for the baseline (A3) and the driven activity (B3). The
linear susceptibility is systematically stronger for the OST
than the AST (C). The difference between the nonlinear
response of OST and AST seems to be overall small for
about 90% of the cells (D). We also indicate in all panels
the three cells discussed above by colored symbols to give
the reader some intuition about the quantification of the devi-
ation. As can be expected, deviations for cells A and B are
not significant (symbols are on the diagonal) whereas cell C
is a representative of cells which deviate strongly from the
diagonal (except for power spectra with an excluded low-
frequency range).

6.3 Bursting affects coherence function andmutual
information rate

We have seen that many features of the P-unit statistics can
be well captured when we replace the true burst spikes by
some artificially generated burst spikes, spikes that entirely
ignore the driving stimulus and thus cannot improve but only
degrade the information transmission. In a next step we com-
pare the coherence functions for selected cells and mutual
information rates for all 75 data sets for the OST, RST and
AST.
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We start with our three example cells from the previous
subsectionA,B, and C. For cellA, we saw already above that
its linear response was very small. Accordingly, the coher-
ence (Fig. 11A) is very low for most frequencies and in that
also very similar for all three spike trains - here we do not
findmuch of a difference betweenOST (thick light blue line),
RST (blue line) and AST (black line). Similarly, for cell B
(Fig. 11B) the coherence functions of the three types of spike
trains are close to each other.We know from general theoreti-
cal considerations (cf. the inequality (51)) that the coherence

Fig. 11 Coherence functions forOST,RSTandASTforfive selected
cells A Cell A, which is not significantly different from zero (cell has
only little linear responsiveness); B Cell B, which agrees largely for all
three types of spike trains; C Cell C, which shows strong enhancement
of coherence by bursts and small reduction in the AST (black line below
dark blue); D and E: two more cells that show a similar enhancement
as cell C, though in different frequency ranges

of the AST has to be below that of the RST, and that is con-
firmed in the plots, however, the reduction of the coherence
by adding burst spikes is not very pronounced.

Turning to cell C (Fig. 11C) and two more examples
(Fig. 11D,E), the picture changes: the coherence of the OST
is substantially higher than those of the RST and AST. Also,
the coherence of the AST is reduced compared to that of the
RST, as can be expected by the inequality (51). Both features
are found for about 59 out of 75 data sets, i.e. the behavior
seen in Fig. 11C-E is far more typical than that of cells A
and B.

Deviations in the coherence come about by a systematic
underestimation of the susceptibility in the AST (entering
the numerator of the coherence) and by the differences in the
power spectrum (entering the denominator of the coherence).
On their own, the deviations in the two spectral characteris-
tics do not appear too strong (cf. the metastatistics discussed
in the last subsection), their combined effect in the coherence,
however, is significant and tells us that we miss something
essential about the role of bursts when we replace true burst
spikes with those coming from our simple algorithm. The
discrepancy between the AST and real bursting becomes
even more obvious when considering the lower bound esti-
mate of the mutual information rate in Fig. 12. We plot
the information rate for the OST over that of the RST of
the corresponding cell. Almost all data points (shown as
circles) are above the diagonal, i.e. the true bursts clearly
increase the information transmission rate and the effect is
most pronounced for those cells that have a high informa-
tion rate. We also show the selected cells from Fig. 11 with
colored circles and find, in line with the above discussion,
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Fig. 12 Lower bound for mutual information rates of OST (circles)
and of AST (triangles) vs that of the RST Five selected cells from
Fig. 11 are indicated by the respective colored symbols; lower bounds
were computed via Eq. (10) from the coherence functions such as those
shown in Fig. 11
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cell A and B falling onto the diagonal, while the remaining
cells deviate towards the top. Note that the range of infor-
mation rates for the RST (the range on the x axis, which
is about 0 bits/s−200 bits/s) is about the range found for
non-bursting cells (Wessel et al., 1996). This range is almost
doubled by bursting - a pronounced effect.

In marked contrast, endowing the RST artificially with
burst spikes in a signal-unrelated manner, i.e. generating the
ASTand considering itsmutual information rate vs that of the
RST, we do not increase the information transfer at all. Quite
to the opposite, information rates are substantially reduced.
This is particularly true for cells with higher values of the
RST information rate: most of the triangles are below the
diagonal.

7 Summary and discussion

In this paper we have introduced a stochastic algorithm
to endow a neural spike train with bursts that can repro-
duce important parts of the burst statistics extracted from
experimental recordings. Most importantly, because of the
simplicity of the algorithm of burst addition, we were able
to find exact relations between the spectral statistics of the
burst-free and the burst-endowed spike trains. This concerned
not only the spontaneous activity but in particular the linear
and weakly nonlinear response to time-dependent stimuli. In
this way, we could access main effects of bursting on neural
signal transmission.

After a detailed derivation of the relations between the
statistics of burst-free and burst-endowed spike trains, we
first tested our formulas for the spike trains of a stochastic
leaky integrate-and-fire neuron, i.e. we added burst spikes to
the spike trains of this model neuron, that was driven by a
broad-band stimulus. In this setup we could expect perfect
agreement because we exactly applied the burst algorithm as
assumed in our derivations. Still, it became evident in this
part of the study that adding a random number of jittered
burst spikes to each reference spike shaped in a nontrivial
frequency-dependent manner the statistics of the sponta-
neous firing (the spike-train power spectrum) as well as the
linear and nonlinear response characteristics. In particular, in
the nonlinear response certain frequency regions are strongly
boosted while others are systematically suppressed.

In the next step we re-analyzed experimental spike trains
from electroreceptor afferents, the P-units of weakly elec-
tric fish. We looked specifically at spike trains (the original
spike trains, OST) that display substantial bursting, removed
the bursts to obtain a reference spike train (RST) and added
bursts again according to our algorithm. Most importantly,
our stochastic algorithm does not incorporate the signal in
any form (except for the spike times of the RST, that are of

course affected by the signal). Despite this obvious short-
coming of the algorithm, the spike trains endowed with the
artificial bursts, the AST, display spontaneous and response
statistics that is very similar to those of theOST. This helps us
to understand why bursting can, for instance, boost the non-
linear response of a neuron (Barayeu et al., 2024) although
the signal may not even directly influence the bursting pro-
cess.

The burst algorithm put forward here is certainly not the
only one possible. Another version is obtained when a ran-
dom number of burst spikes follow the reference spike at tk
jittered around a lattice tk + nτ with the same standard devi-
ation around the respective lattice position for every burst
spike. We have calculated the formulas for this algorithm as
well, and this algorithm yields rather similar results for the
spectral burst effects. One disadvantage of this version is,
however, that the first intraburst interval (that still involved
the reference spike time) is less variable than the following
IBIs. This feature, in particular, makes it harder to apply this
version of the stochastic burst algorithm to the experimental
data. Another feature not included in our algorithm, is a sys-
tematic change in the IBI within the burst. Our analysis of
the spontaneous activity reveals a dependence of the mean
IBI vs its number within the burst: the IBIs tend to be longer
towards the end of the burst (not shown). A more compli-
cated statistical burst algorithm could take this effect into
account by drawing IBIs from distributions with mean val-
ues increasing with the burst spike index. Here, we abstained
from including such a systematic change of the mean IBI in
the interest of analytical tractability.

If we think of the phase-locked firing of P-units that follow
a rather precise external oscillation, the EOD, we might be
tempted to generate bursts in manner that reproduces this
feature, i.e. create burst spikes that are phase locked to the
EOD. If one does this (in this case purely numerically) one
obtains a spike train that might have spikes in very close
proximity, i.e. with unrealistically short ISIs, which leads to
artifacts in the spectral statistics. Our simple version inwhich
burst spikes are added as a short renewal process takes the
refractoriness of neuronsmuch better into account and is also
simpler to relate in its statistics to the reference spike train.

If we think not only of signal transmission but of the neu-
ral transmission of information we would like to see how
bursting affects this. Upon closer inspection, it becomes
quickly clear, though, that with our burst algorithms we
cannot improve the information transmission. The reason is
simply that adding burst spikes in a signal-unrelated manner
only adds noise to the output of the neuron; this can never
improve information transfer. Specifically, we could show
that the coherence may be decreased but never increased
by adding such burst spikes. This is in contrast to the dif-
ferent manifestations of stochastic resonance, for which a
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potentially beneficial noise is added on the input side of a
spike-generating system and may lead to an enhancement
of signal transmission (Longtin, 1993; Gammaitoni et al.,
1998; McDonnell & Ward, 2011). However, it is unclear at
the first glance whether the bursts exhibited by P-units add
more noise or more signal to the output and can thus improve
the information transmission.

Despite the success in the description of certain features
of the spectral statistics of P-units, for a large fraction of
these cells we observed also some quantitative discrepancies
between the spike trains: the spike-train spectrum of the OST
(both spontaneous and under a broad-band stimulus) dis-
played low power at low frequencies (below 50Hz), whereas
our spike train endowed with bursts, the AST, had much
higher power in this range. Furthermore, the linear response
was stronger for the OST than for the AST, i.e. the bursting is
(moderately) modified by the stimulus signal. These moder-
ate deviations have a strong combined effect in the measure
of information transmission, the spectral coherence function,
essentially the ratio of squared susceptibility (response func-
tion) and power spectrum: the original bursting spike train
carries substantiallymore information on the time-dependent
signal than the burst-free spike train (the RST) and evenmore
so than the spike train endowed with stimulus-unrelated arti-
ficial burst spikes, the AST. The gain in information by burst
spikes is most pronounced in the low-frequency range, i.e.
for slow components of the Gaussian stimulus. Superficially,
this may look similar to effects of bursting on the coherence
function found in other electrosensory cells, specifically the
pyramidal cells in the electrolateral line lobe of weakly elec-
tric fish, which has been studied by Oswald et al. (2004).
We note, however, that these authors performed a different
kind of data analysis, splitting the spike trains into a burst
train (taking only the reference spikes of bursts for which
Nb
k ≥ 1) and a train of single spikes (reference spikes with

Nb
k = 0), omitting completely the role of the burst spikes

that was in the focus of our study. This kind of approach pro-
vided insightful results on the role of burst spikes vs single
spikes which were both important in the statistics of pyrami-
dal cell’s firing. For the P-units studied here, the fraction of
single spikes was small and thus the subdivision into burst
reference spikes and single spikes (the sum of which does not
account for the full spike train) would be less meaningful.

The fact that the original spike train has a significantly
higher information rate than the RST shows the clear limita-
tions of our burst algorithm. It also demonstrates specifically
that bursting in P-units must originate in the spike genera-
tor (which is affected by the stimulus) and cannot be due to
processes at the measuring site (the axon far from the spike
generator). To study the role of bursting in P-units it is thus
necessary to further study dynamical models of burst gen-
eration that can be affected by stimuli (accounting thus for
the increased linear response) and for spike frequency adap-

tation (accounting for the reduced power in the spike-train
spectrum). One disadvantage of such a approach is that a the-
ory for the complex effects of bursting on spectral measures
becomes very difficult. The statistical approach pursued in
our paper gave at least a simple explanation for an essential
number of those effects.

A Burst-spike distributions of the three
example cells

Figure 13 shows the burst-spike distributions of the cells
A, B, and C discussed in Section 6.2. For once this plot
illustrates the large variability of these statistics in the P-unit

Fig. 13 Burst-spike distributions under baseline condition (pink) and
external stimulation (blue) of cell A (A), cell B (B) and cell C (C)
discussed in Section 6.2. The number of burst spikes corresponds to the
additional spikes to the first spike within a burst (reference spike), i.e.
we have a single spike in the case of zero burst spikes
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population. Furthermore, we also need these distributions for
our burst-algorithm and state them here for completeness.

For cellA (panel A) we find similar distributions in pres-
ence (blue) and absence (pink) of the additional stimulus.
This indicates that cellA responds very weakly to the exter-
nal stimulus, which is in accordance with the observations
discussed in Section 6.2.

Cell B (B) and C (C) show a clear impact of the external
stimulus on the bursting statistics: the blue distributions are
broadened compared to the pink ones. The stimulus causes
the cell to fire larger bursts, i.e. a higher number of burst
spikes. Comparing B and C this does not neccessarily mean
that the distribution is simply shifted to a higher burst spike
number (true for cell B but not for cell C).
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