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Abstract

The Regression Discontinuity Design (RDD) has become a popular method for

program evaluation in recent years. While it is compelling in its simplicity and

requires little in terms of a priori assumptions, it is vulnerable to bias introduced by

self-selection into treatment or control group. The purpose of this article is to discuss

the issue of non-monotonic self-selection, by which similar numbers of individuals

select into and out of treatment simultaneously. This kind of selection has not

been discussed in detail so far in the literature, and can be hard to detect with the

commonly used methods for data-driven RDD specification testing. The focus of

this article lies on selection in the context of close elections, since those are popular

natural experiments for RDD applications, and because in this context the issue

of non-monotonic selection is rarely considered in practise. I will present a slightly

modified approach to specification testing, designed to detect non-monotonic self

selection and based on the density test by McCrary (2008). In order to demonstrate

how RDDs can be affected by the issue, two existing RDD applications are analysed

with respect to non-monotonic sorting. In the first, this article follows up and

expands on the remarks made by Caughey & Sekhon (2011) about selection issues in

the well known RDD application by D. Lee (2008). The second application is based

on the Mexican mayoral election RDD by Dell (2015).

1 Introduction

The Regression Discontinuity Design (RDD) has rapidly risen in popularity among re-

searchers in recent years.1 It allows for causal inference on treatment effects from natural

experiments. Much like other causal program evaluation methods the RDD can be biased

by endogenous selection and lose internal validity. Therefore, it is of concern to researchers

how cases of self-selection can be detected in advance.

In the case of the Regression Discontinuity Design, self selection invalidates the identifying

assumption that the sub-populations near the assignment threshold are perfectly compar-

able in the absence of treatment.2 When implementing RDDs, it is common practice in the

1See Cook (2008).
2See Lee (2008).
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literature to consider channels of influence trough which units of observation can influence

their treatment status and perform data-driven tests of the identifying assumption.3

We have to distinguish between monotonic and non-monotonic sorting dynamics. Non-

monotonic sorting occurs when some individuals select into treatment while similar numbers

of individuals select out of treatment. Such sorting can also happen in the form of forced

deselection by an external influence, even if all the individuals have the same treatment

preference. In the literature, two kinds of tests for internal validity of the RDD are typically

applied: The density based test by McCrary (2008) and cheks for balanced covariate levels.

Non-monotonic sorting can not be detected with current implementations of the former

and is sometimes difficult to identify with the latter.

I will motivate the importance of finding selection issues in advance, by presenting several

likely channels of influence through which individuals can manipulate their treatment

assignment in an RDD. This article contributes to the literature by discussing non-

monotonic selection in the RDD and developing a modified application of the McCrary

specification test which can reliably detect non-monotonic sorting at the threshold. To

my knowledge, the problem of non-monotonic sorting dynamics in RDD applications

has, not been studied in detail before. The test for non-monotonic selection works by

identifying sub-samples of data whose likelihood of sorting in one direction is higher than

their likelihood of sorting in the other. I then perform the density analysis on these

sub-samples. If the sub-samples display an uneven density at the threshold while the full

sample does not, then non-monotonic sorting is present at the threshold.

In order to illustrate the considerations for using and the workings of the specification test,

I have applied it to two RDD analysis, one by Lee (2008), about the incumbency advantage

in United States Senate elections. By applying the test to this dataset, I follow up on the

findings of Caughey & Sekohn (2011), which indicate that results of close elections for

US congressmen are not as randomly distributed as one would expect them to be. Also,

this application illustrates that selection problems can be present even in well-established

RDDs and in environments where one would, at first glance, think them unlikely. The

second application is based on the first stage RDD of Dell (2015), which is also an RDD

which exploits close elections.

In election settings, such as this, it is not intuitively obvious why non-monotonic selection

should be an issue. The individual units of observation only have incentives to attain

higher election outcomes and therefore sort themselves monotonically. However, the data

contains only candidates from one party. In this case, successful monotonic sorting by

each party’s candidates amounts to non-monotonic sorting in the analysed sample. When

applying the modified test to the election data, a suitable sub-sample which is likely to

be more successful at sorting themselves above the threshold, are those candidates who’s

party was already in office at the time of the assignment process. The results from testing

of this sub-sample indicate that a degree of sorting appears to be present. The magnitude

of the estimated density discontinuity depends in part on the exact specification of the test,

3See Imbens & Lemieux (2008).
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but the overall indications point strongly towards sorting effects. The reason why such

sorting should be present is not clear cut. I arrive at the conclusion that no single factor

seems to be primarily responsible, but rather a the cumulative effect of several actions

with individually limited influence on election results.

The remainder of the text is organised as follows: The next section provides a quick

overview of the bias introduced by endogenous selection in the Regression Discontinuity

Design. It also establishes the distinction between monotonic and non-monotonic selection.

This is followed by a description of the density based validity test and the modification

which enables it to detect non-monotonic selection, in Section 3. Section 4 is dedicated to

selection issues in the RDD application about incumbency advantages and also provides

possible explanations for the testing results. Finally, conclusions resulting from the

discussed properties of the test and applications are drawn.

2 Monotonic and non-monotonic selection in the RDD

The RDD exploits discontinuous rules, or events with discontinuous effects, to estimate

local average treatment effects (LATE). Treatment is assigned according to a deterministic

function, which is often a policy, law, or institutional program which assigns resources

or sanctions. In addition to the outcome variable and treatment status, an independent

variable is observed. This is also called the running, assignment or forcing variable.

Selection into treatment is determined by a function of this variable.4 In the Sharp

Regression Discontinuity Design, assignment is completely determined by this function.

In the Fuzzy Regression Discontinuity Design, the value of the running variable only

partly determines participation in treatment. Since the same sorting dynamics create

identification issues for both Sharp and Fuzzy RDD, this section will focus on the Sharp

version of the design.

Let X ⊂ R denote the assignment variable, with xi ∈ X the realization of this variable for

individual i and yi ∈ Y the outcome variable. If an individual’s realization of X is above

a specific threshold value c, then the individual is assigned treatment. Let Ii(xi) ε [0, 1]

denote treatment status. This treatment assignment mechanism implies that no overlap

exists between treatment and control groups in terms of the independent variable X.

If the location of c is determined exogenously, individuals with very similar realizations of

the assignment variable are likely to be similar in those characteristics which determine

the outcome in the absence of treatment. In the limit, when comparing individuals directly

at the threshold, the control individuals should, on average, be perfectly comparable to

those receiving treatment. Identification of the LATE requires an assumption about the

smoothness of counterfactual outcomes at the threshold: The conditional expectation

functions E[yi(1)|xi = c] for treated and E[yi(0)|xi = c] for non-treated individuals must

be continuous in c.

4For the purpose of this paper, only a single assignment variable is considered. An extension of the
RDD with multiple assignment variables is discussed in Papay, Willet and Murnane (2011).
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When this assumption holds, the LATE is identified as: LATE = limx↓cE[yi|xi = x]−
limx↑cE[yi|xi = x]

Figure 1 shows an example of a fictional RDD, where the counter-factual expectations are

smooth across the threshold: The above assumption is fundamental for causal inference

Figure 1: Counter-factual expectations, Sharp RDD
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from RDD results. Violation of this assumption skews the RDD estimates with systematic

selection bias of unknown magnitude and makes LATE estimates invalid.

In an applied setting, it might not be intuitively clear what would cause the continuity

condition to be plausible. In its pure form, it is empirically untestable. To remedy this

problem, Lee (2008) has linked the continuity assumption to the degree of control that

individuals have over their realization of the assignment variable.

In many empirical settings, observed persons have some control over their realization

of the assignment variable. They will take action to influence their realization of the

assignment variable in accordance to their personal motives and underlying abilities. If

individuals only roughly influence the assignment variable, then this function will include

a stochastic error component. Individuals have imprecise control over X, when the density

of X conditional on characteristics is continuous. This characteristic enables the empirical

specification test discussed in section 3.

With imprecise control, treatment assignment in an area close to the threshold is “as good

as randomized”, meaning that the probabilities of having a value of X slightly above or

below the cut-off are the same for an individual with given characteristics.5 The continuity

5Lee (2008), p. 676.



5

assumption for the potential outcomes yi(Ii) is satisfied as a consequence of random

assignment near the threshold. 6

In many applications it is assumed that all individuals have the same preference regarding

treatment status. There might be a clear benefit from participation or non-participation. If

individuals have uniform treatment preferences and the ability to precisely manipulate the

assignment variable, then they will only shift their realization of the assignment variable

in one direction.

However, this is not true for all applications. What I call Non-monotonic manipulation

occurs when some individuals realization of the assignment variable is shifted in one

direction, while that of others is shifted towards the opposite. This can happen when the

population consists of heterogeneous groups with different preferences regarding treatment

assignment. A situation where this kind of manipulation was suspected was the introduction

of the new German parental leave benefit (Elterngeld) on Jan. 1. 2007. The reform created

incentives for some parents to postpone the birth of their child and for others to accelerate

it. Birth-shifting to exploit cut-off dates is often considered unlikely, but the results of

Tamm (2013) , Dickert-Conlin & Chandra (1999) and Gans & Leigh (2009) indicate that it

is actively practised. This finding is of high importance, since several articles about policy

evaluation use the timing of births as the cutoff for RDD analysis.7 In this case, Tamm

(2013) finds evidence of selection into the new parental leave system, but the results for

the group of parents who are expected to profit from the old system are less clear.

If both groups are of comparable size, similar numbers of individuals sort themselves to

each side of the threshold. Therefore, the manipulation taking place at the threshold will

not result in a jump in the density of the running variable, while still leading to systematic

differences between treated and control groups.

Individual treatment preferences are not the only source of non-monotonic selection. It

can also occur when realizations of the assignment variable are precisely manipulated by

outside forces with contrasting preferences. In the application of Section 4, the sample

individuals have strictly monotonic treatment preferences and some of them appear to

be able to shift their assignment variable slightly above the threshold. For some other

individuals however, their assignment variable is precisely manipulated to slightly below

the threshold by non-sample individuals with opposing preferences. Both mechanisms

can lead to problems with internal validity of the RDD, because the commonly used

specification tests have trouble detecting non-monotonic manipulation.

3 Specification Testing

Since sorting dynamics in RDDs are often not immediately apparent, data driven specific-

ation tests are commonly used to rule out selection bias.

6It is important to note that some forms of random components in the running variable are not sufficient
for the continuity assumption to hold. If the random component is censored at the threshold, endogenous
sorting may still be a threat to the validity of the RDD.

7See for example Dustmann & Schönberg (2011) and Lalive (2008).
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Two general data-driven approaches to testing RDD assumptions are available. One is to

check observed covariates for smoothness at the threshold. If clear imbalances in covariate

levels exist between individuals slightly below and above the threshold, the smoothness of

counterfactual outcomes is unlikely. This approach relies on the availability of high-quality

covariate data relevant to potential selection dynamics, which is often not available. In

those cases where the characteristics affecting selection are unobserved or mismeasured,

covariate tests can not rule out sorting dynamics.

A more generally applicable method for testing the identifying assumption of an RDD

is the density based test developed by McCrary (2008). Applying this test to the entire

sample will not detect non-monotonic sorting at the threshold. But the method used for

finding discontinuous jumps in the density is also used for testing sub-samples to identify

non-monotonic sorting.

The object of analysis for this test is the density function of the assignment variable.

Uncensored random components in each individual’s value of X imply continuity of

the cumulative distribution function, conditional on underlying characteristics of each

individual. And therefore imply continuity of the conditional density of the assignment

variable. Continuity of the conditional density also implies continuity of the overall density

of the assignment variable across the population.

If precise sorting or other types of non-random selection into treatment take place at the

threshold, the density of X will not be smoothly distributed at the cut-off. It is therefore

possible to check for violation of the identifying assumption by testing for continuity of

the density function of the running variable at the threshold. This is done by estimating

the size of a potential discontinuity in the density at the cut-off, which, in principle, is

similar to performing a RDD-analysis on the density function of the assignment variable,

with the treatment effect being equivalent to the deviation from continuity. Consequently,

the techniques used for the density based specification test are closely related to those

used in conventional RDD settings.

Under certain conditions a variation of the density testing procedure can be used to detect

non-monotonic sorting. The size of the bias introduced by this kind of sorting dynamics

is in direct proportion to the share of the two subgroups with contrasting treatment

prefrences in the sample. Within each treatment-preference group, a discontinuity in the

density of observations would be present at the threshold. Therefore, testing separately

for each sub-group would allow the researcher to discover these sorting dynamics.

Precise identification of the subgroups can be challenging, since the mechanics of manipu-

lation and the individuals involved are rarely observable. If they were, data driven tests

would not be required. If group membership can not be precisely determined for each

individual, it is still possible to find evidence of non-monotonic manipulation. For this

purpose it is sufficient to identify elements of the population for which the probability of

belonging to one group is higher than that of belonging to the other group. As long as

one of the sub-groups is over-represented in the tested sample and the sorting dynamics

are sufficiently strong, the density test can detect those dynamics.
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This approach requires additional information about the individuals compared to the

straight density test, in order to determine group membership. It does however have

two distinct advantages over simple tests of covariate smoothness. First, covariate data

does not need to be of high quality and missing observations pose less of a problem. For

example, categorial data can be used to determine subgroups suspected of self-selection.

Second, this approach is helpful when self selection can not be identified in terms of a

single covariate level but instead depends on interactions between covariates.

3.1 Estimation

For the specification test, a histogram of the density function is created, by finely binning

the running variable and assigning the frequency counts to the bin midpoints. The bins

are constructed in such a way that no bin contains values of X from both sides of the

threshold.

Then a Local Linear density smoother is applied separately to the histogram on each side

of the threshold.8 9 A kernel-weighted linear regression is applied to small sections of

the data. Each section is defined by an evaluation point x0 and the bandwidth h. The

bin midpoints are used as regressors and the counts per bin, as regressands. 10The kernel

function that is most beneficial for RDD-applications is the triangle kernel, which shows

optimal performance at boundary points.1112 Weights are assigned in a linear way, with

the peak of the weight distribution at the evaluation point. At the boundary, the weight

distribution is truncated and its peak lies at the boundary point itself.

A potential discontinuity in the density function will be found by performing separate

regressions on both sides of and estimating the outcomes at the cut-off. The discontinu-

ity would show up as the difference of the boundary estimates at the threshold being

significantly different from zero.

The specification test is then performed as a Wald-Test with the null-hypothesis that the

jump in the density is zero.

It is necessary to select two tuning parameters for the estimation process: The size of the

histogram bins and the bandwidth for Local Linear estimation.

The binsize has only minor effects on the results. In most applications, the estimator

described above is very robust to changes in binsize, under the condition that a sufficient

8A detailed discussion of the asymptotic properties of local linear estimation can be found in Fan and
Gijbels (1996). It has been shown by Hahn, Todd and Van der Klaauw (2001) that, for the purposes of
the RDD, local linear estimation is highly efficient.

9As discussed by Lee and Card (2008), the treatment effect is asymptotically not identified for non-
parametric estimation without functional form assumptions in conventional RDD applications with discrete
running variables. However, this issue is not present in the density based specification test, if the running
variable has continuous support. The binned running variable is not discrete in the conventional sense,
because it can be defined by the researcher and the bin width can asymptotically shrink to zero when the
data density approaches infinity.

10A detailed description of the Local Linear estimator as described in McCrary (2008) is included in the
Appendix section A.3.

11See Cheng, Fan and Marron (1997).
12See Lee and Lemieux (2010) for a discussion about the merits of different kernels in the RDD.
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number of bins are covered by the bandwidth of choice.13I employ the binsize selection

rule suggested by McCrary (2008), which is a variation of the widely used Scott’s rule for

binsize selection.14

Both more critical and more difficult is the choice of the bandwidth. It is a measure of the

flexibility of the local linear model. For each evaluation point, the bandwidth determines

which bins, and therefore which observations, are used for the point estimator. In RDD

applications, this means that the bandwidth determines how close to the threshold the

data is evaluated for the discontinuity estimate.

The choice of bandwidth is essentially a trade-off between reduced bias and precision

of the estimates. A small bandwidth for Local Linear estimation will result in a better

approximation of the underlying function and reduce the bias, since only observations

closer to the cut-off are used for estimation purposes. However, the estimate will be based

on a smaller number of observations, which will reduce the precision of the result. 15

Bandwidth choice for non-parametric estimation has been analysed in detail in the literature

and a number of solutions have been proposed.16When ease and speed of implementation

is a priority, as it is in the case of specification testing, so called ‘rule of thumb’ (ROT)

bandwidth selectors are commonly used. A ROT bandwidth for the special case of density

estimation at boundary points has been proposed by Fan, Gijbels (2006) and by McCrary

(2008). Using the suggested procedure, I fit a fourth-order polynomial model to each side

of the histogram and choose the bandwidth depending on the mean squared error and the

curvature of the fitted model.17 However, since the suggestions for the best bandwidth

selection technique vary wildly in the literature, I treat the ROT bandwidth as a starting

point and calculate tests for a wide range of bandwidths. The results which we can be

most confident in, do not depend on specific choices of the tuning parameters.

4 Empirical Applications

The applications analysed in this section are an RDD by D. Lee (2008), about the political

landscape in the United States, and an RDD by Dell (2015), about the effects of the

partisanship of mayors on violent crime in Mexico.

Lee determines the inherent vote share advantage which candidates for the House of

Representatives receive if their party is the incumbent at the time of election. The

13This robustness has been formally shown by McCrary (2008) and the results found in Section 4 are in
line with those conclusions.

14The suggested binsize is b = 2σ̂N− 1
2 , with σ̂ being the standard deviation of the assignment variable

in the sample. See Scott (1979).
15As part of a discussion of the asymptotic properties of local linear estimation at boundary points, it

has been shown by Hahn, Todd and Van der Klaauw (2001) that the optimal bandwidth converges to

zero at a rate of N− 1
5 , when the sample size approaches infinity. Implying that the bandwidth should be

proportional to N− 1
5 .

16See Pagan and Ullah (1999) for practical results from subjective bandwidth choice. Cheng (1997) and
Imbens, Kalyanaraman (forthcoming) for presentations of plug-in methods. Fan and Gijbels (1996) for a
“rule of thumb” for bandwidth selection. And Ludwig & Miller (2005) for a cross-validation technique.

17See Appendix A.4 for a description of the ROT.
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hypothesis is that, individual characteristics being equal, those candidates whose party is

in office at the time of the election have advantages over their competitors in terms of the

vote share. Specification tests for the whole sample reject the presence of sorting effects.

However, when applying the sub-sample test for non-monotonic sorting, the results indicate

some level of precise selection at the threshold. This is an instance where the selection

preferences of sample individuals are monotonic, but where the assignment variable can

be subject to manipulation by exogenous agents, in this case the opposing Republican

candidates.

Dell (2015) treats the average vote share of different party candidates as a proxy for socio-

economic characteristics of the mayoral district. The hypothesis is then that districts in

which a party barely won are, on average, comparable to those where the party barely lost.

In contrast to the article by Dell, who uses election results for the Partido Acción Nacional

(PAN), I consider election results for the Partido Revolucionario Institucional (PRI), which

allow for higher numbers of observations. While Mexican elections are, in principle, not

immune to experiencing manipulation of vote shares, results of the specification test

indicate no sorting issues in this sample. 18 Both applications showcase why we should be

aware of the unexpected ways in which non-monotonic sorting can affect RDDs.

4.1 Testing the full sample of the incumbency Regression Dis-

continuity Design

Treatment, in the form of incumbency, is assigned when the vote share difference of a party

crosses the threshold at zero percent. The vote share difference is defined as the percentage

difference in vote shares between a candidate and his next closest contender. This value is

positive for the winner of the election and negative for the losers. Only candidates of the

Democratic Party are included in the sample. The results for Republican candidates are

expected to reversely mimic those of the Democrats in the majority of cases.

The assignment variable is the vote share difference at time t. This value is centred by

definition, so that the threshold value c lies at zero. All districts with Democrat vote share

differences to the right of the cut-off have Democrat incumbents at the time of the next

election in period t + 1. The indicator Iit+1 = 1[V Sit = 0.5] describes the incumbency

status of the candidate’s party.

The outcome variable is the party vote share in the election at time period t + 1. In

the application, Democrat vote share in the following election (V Sit+1) is regressed on

the Democrat vote share difference in the previous one and on a vector of candidate

characteristics (wit+1).

V Sit+1 = αt+1wit+1 + βt+1Iit+1 + γt+1V Sit + eit+1 (1)

with E[eit+1|wit+1, V Sit] = 0. The RDD is necessary because wit+1, V Sit and Iit+1 are all

correlated with wit. By performing parametric regressions separately on both sides of the

18Compare Grant (2012)
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Figure 2: Density estimates for Democratic candidates
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Note: b = 0.0048, h = 0.1061, 95% confidence bands in thin lines.

cut-off, Lee (2008) finds that there is an incumbency advantage of about 7.8 percent of

the vote share in the data.

The identifying condition of f(V Sit|wit) being continuous in V S depends on the assumption

that election results contain a substantial random component, because many factors

influencing election outcomes are beyond any candidate’s control. For example, weather

or traffic conditions can influence election turnouts. Limited opportunities for precise

manipulation in political elections have been known however, and I discuss them in Section

4.5.

A small range of available covariates, past political experience, number of election runs,

party vote share in t− 1 and the probability of the party winning the election in t− 1,

show balanced levels within a 5 percent margin of the cutoff.

When applying the density based specification check described in Section 3 to the data,

no significant sorting can be detected.1920 To establish the robustness of the results for

different values of the tuning parameters, I performed the test with the reference binsize

and bandwidth, as well as fractions and multiples of both reference values. Table 1 shows

the discontinuity estimates for all combinations of tuning parameters and Figure 2 shows

the fitted model. The version in this graph provides, upon visual inspection, the best

approximation of the data close to the cut-off of all tested variations. 21

The results indicate a very smooth distribution of election results at the threshold. No

discontinuity estimate exceeds two standard deviations and the estimated differences in

19A dataset containing the information for the Lee study has been obtained from the Mostly Harmless Eco-
nometrics Data Archive: http://economics.mit.edu/faculty/angrist/data1/mhe (last visited 15.05.2014).

20The sample is trimmed at the extreme ends of the forcing variable to remove outliers and improve the
clarity of plots without affecting local linear estimators.

21Related testing is performed in chapter IV of McCrary (2008).
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Table 1: Estimated discontinuities in the density at the threshold, test results for the full
sample of Democratic candidates

Results are estimated discontinuities in the density at the threshold, standard errors in
brackets, p-values in italics.

Quarter
the

reference
bandwidth

0.0531

Half the
reference

bandwidth
0.1061

Reference
bandwidth

0.2123

Twice the
reference

bandwidth
0.4245

Four times
the

reference
bandwidth

0.8491

Reference
binsize
0.0097

0.1359
[0.1871]
0.4676

0.0844
[0.1247]
0.4985

0.1258
[0.0856]
0.1417

0.0484
[0.0605]
0.4237

-0.0108
[0.0414]
0.7942

Half the
reference
binsize
0.0048

0.1004
[0.1851]
0.5875

0.0800
[0.1245]
0.5205

0.1163
[0.0856]
0.1743

0.0454
[0.0605]
0.4530

-0.0116
[0.0414]
0.7793

Twice the
reference
binsize
0.0194

0.1831
[0.1827]
0.3163

0.0968
[0.1247]
0.4376

0.1304
[0.0856]
0.1277

0.0484
[0.0604]
0.4229

-0.0104
[0.0414]
0.8017

log-densities at the threshold range between 0.0104 and a maximum of 0.1831. For the

entire range of bandwidths and binsizes, t-tests do not reject the null hypothesis of a

smooth distribution. On the aggregate level, the density function is continuous at the

threshold.

4.2 Testing the sub-sample of incumbent Democratic candidates

In a recent article, Caughey and Sekhon (2011) have questioned whether the outcome of

close elections to the U.S. House really is as randomised as Lee (2008) assumes. They show

that a number of relevant covariates are not well balanced at the threshold.22 Covariate

imbalance is greatest away from the threshold, diminishes when looking at observations

closer to the threshold, and increases again for extremely close elections. They report

that covariates become more balanced within shrinking margins around the threshold,

down to a margin of five percent. This finding is in line with the results from Lee (2008).

However, for smaller margins, especially those of less than one percent, covariates become

less balanced.

As causes for this behaviour, Monotonic manipulation of the running variable is ruled out

by the density based test. Non-monotonic sorting issues in the sense that equal numbers

of individuals with opposing treatment preferences sort themselves to each side is also not

22These covariates include, among others, the political experience advantages for Republican and
Democratic candidates, campaign money spent and donation funds received.
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possible, because the sample of Democratic candidates have strict monotonic treatment

preferences.

An explanation could be a combination of monotonic manipulation by sample individuals

and external forces with different treatment preferences: From the perspective of each

party, manipulation is always strictly monotonic positive, since winning the election is

the primary goal of any candidate running for office. However, the aggregate situation

is not as clear, since both Democrat and Republican candidates engage in manipulative

activities.23 If a Democrat party candidate was able to precisely control his vote share, he

would realize a vote share margin of victory marginally above the threshold. As a direct

consequence, his Republican contender would receive a vote share slightly below that of

the Democrat candidate, and therefore marginally below the threshold.

If some candidates from one party have the ability and opportunity to manipulate their

vote shares, we have to assume that the other party would possess the same capabilities.

Consequently, a number of Republican candidates would also be able to precisely manipulate

their vote share. Those candidates would win a disproportionate number of close elections,

causing a similar number of Democrat candidates to barely lose the elections. This would

lead to a discontinuous jump downwards in the density of Democrat vote shares.

If comparable amounts of successful precise manipulation were achieved by both Democrats

and Republicans, the effects would mask each other over the entire sample and make

detection by means of the density test impossible.

We can not identify in which elections which candidate might have successfully engaged in

precise sorting. However, it is enough to identify sub-samples of candidates who have an

above-average probability of precisely manipulating their assignment variable or having it

manipulated by the opposing candidate.

One such sub-group would be those candidates whose party already was the incumbent

party at the time of the election which determines assignment. This is in line with the

finding that the covariate imbalances in close elections found by Caughey and Sekhon

(2011) are especially pronounced between candidates running for the incumbent party and

the candidates of the challenging party. The incumbent party is more deeply interwoven

with the administrative institutions and therefore has potentially greater influence on the

election process.

Another possible subgroup with a higher chance of successful manipulation would be

those candidates who’s party holds the office of secretary of state, who is in charge of the

elections, or who’s party provides the state governor.24

One might ask if the increase in the probability of winning of incumbent party candidates

is not just the expected effect of the incumbency advantage from the previous election.

Indeed, when looking at the aggregate of all incumbent party candidates, they have

substantially higher chances of winning the next election. However, under the identifying

23For this argument, a strict two-party system is assumed. This assumption closely but not entirely
reflects the political realities of post-war elections to the U.S. House of Representatives.

24In the case of the state governour, I could not detect similar evidence of sorting mechanisms.
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assumption of the RDD, this should not be true for close elections. Instead, incumbent

party candidates should be winning more often with higher margins of victory, since the

incumbency advantage is reflected in a higher vote share.

If the incumbent party candidates are more successful at shifting their vote share precisely

upwards, the mechanics leading to a discontinuity in the subgroup density would work as

follows:

I take Equation 1 as starting point, with the vote share at t+ 1 as the outcome of interest

for the RDD. For the specification test, the density of the democrat vote share at time t is

analysed. And t− 1 is the election which determines incumbency status for the purpose

of subgroup testing. The density of the winners of the election in t− 1, who will be the

incumbents in time period t, f(V Sit−1|Iit−1 = 1), is truncated at zero (compare Figure 3).

If no selection process is at work, then the distribution of election results in the next

period, t, will appear like that of Figure 4. The results for incumbent party candidates,

the winning party of the election in t− 1, are concentrated at the upper end, because βt,

the vote share advantage from incumbency, shifts them upwards. The model determining

vote share for this election follows the same concept as Equation 1:

V Sit = αtwit + βtIit + γtV Sit−1 + eit

Under the no-sorting assumption, since individual characteristics w are continuously

distributed, f(V Sit|wit) is continuous in V S. The density of V St is smooth across the

threshold for all groups of candidates.

If however the non-monotonic sorting dynamics described earlier is present, then we would

expect densities like to those in Figure 5. Incumbent candidates of both parties have a

higher chance of winning close elections. For our sample of Democrat candidates, this leads

to discontinuous jumps in the density of both the winning and losing party candidates of

the previous election. For the winning ones, the discontinuity of value δ1 > 0 is caused by

their ability to influence close elections in their favour. For the losing party candidates,

the discontinuity of value δ2 < 0 is caused by their opponents ability to win close elections.

Over the density of the entire sample of Democrat candidates, a discontinuity of size

δ = δ1 + δ2 is present. When both parties are very similar in terms of average political

influence over time, both discontinuities cancel out and the density for the full sample

does not show a gap at the threshold.
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Figure 3: Determination of incumbent status in t-1
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4.3 Results of sub-group testing

These results from the test on the sub-sample of incumbents at time t differ sharply from

the ones in for the aggregate sample. Estimated discontinuities in the density at the

cut-off are considerably larger for all bandwidths and binsizes. The estimates vary in size

depending on the choice of tuning parameters, generally exceed two standard deviations

and are always larger than one standard deviation. Plotting the local linear smoother over

the histogram in Figures 6 and 7 shows a sharp downturn in the chance of barely loosing

an election for the sub-sample. This indicates that of the incumbent Democrat candidates,
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Figure 5: Distribution at t with sorting

Table 2: Estimated discontinuities in the density at the threshold, test results for the
sub-sample of Incumbent-party candidates

Quarter
reference
band-
width

Half refer-
ence band-
width

Reference
band-
width

Double
reference
band-
width

Discontinuity 0.882 0.344 0.310 0.542
Standard Error 0.356 0.216 0.143 0.103
P-value 0.013 0.111 0.030 0.000
Bandwidth 0.049 0.098 0.196 0.391

the vast majority wins the elections they are running in, strengthening the notion that

incumbent party candidates on average possess superior means of securing election wins.

Especially when restricting the analysis to very close elections, by selecting a bandwidth

below one percent of the vote share difference, the average chance of winning the election

is significantly higher if the candidate’s own party is in power.

Some variation is visible in the results, depending on choice of the bandwidth. Because of

this sensitivity, I performed the test for a finely gridded range of bandwidths ranging from

0.02 to 0.25, maintaining the reference binsize of 0.0098 (Figure 8). As would be expected,

precision of the estimates degrades with shrinking bandwidths, due to lower observation

counts available within the bandwidth. For bandwidths larger than of 2% of the vote

share, as well as for bandwidths smaller than one percent, significant discontinuities are

estimated. As with previous applications, the results are relatively stable under variations

in binsize. The null hypothesis of continuity of the vote share difference is not rejected for

half the reference bandwidth, even though it is rejected at all other bandwidths. Figure 8
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shows a more detailed view of this phenomenon. Tests for the discontinuity being non-zero

are significant at the 5% level for all bandwidths smaller then 0.08 and larger then 0.2.

When considering 10% significance levels, the null is rejected everywhere except for a small

range of bandwidths between 0.11 and 0.125. The graph of the significance level exhibits a

hump in the area of the halved reference bandwidth. While the discontinuities are not

always significant at very high levels for all bandwidth choices, a sharp increase in the

differences between treated and control candidates at the threshold, compared to the full

sample analysis, can not be denied. This strongly hints at substantial differences in the

behaviour at the boundary between incumbent party candidates and candidates of the

challenging party. Even more important, the estimated jump in the density at the cut-off

actually increases for very small bandwidths, when only data from the closest elections is

used. This result is in line with the findings of Caughey and Sekhon (2011), who report

that differences in covariate values increase for extremely close elections with vote share

differences of one percent or lower, after having converged before with shrinking margins.

Figure 6: Density estimates for incumbent Democratic candidates

0
.5

1
1

.5
2

2
.5

-1 -.5 0 .5 1

Incumbent Vote share difference in t

B

i

n

 

c

o

u

n

t

s

Note: b = 0.0049, h = 0.2014, 95% confidence bands in thin lines.



17

Figure 7: Density estimates for incumbent Democratic candidates
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Figure 8: Significance levels depending on bandwidth
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4.4 Application for Mexican mayoral elections

In Dell (2015), the author uses an RDD to analyse the causal effect of mayor partisanship

on drug related homicides in Mexico from 2007 to 2010. When conservative president Felipe
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Calderon came to power in 2006 his party, the Partido Acción Nacional (PAN) spearheaded

the “war on drugs”. Municipalities which were won by PAN mayors experienced more

frequent and effective police activity against drug trafficking organisations. Dell’s RDD

strategy is based on the concept that, on average, municipalities in which the PAN barely

won the mayor’s office are comparable with municipalities in which it barely lost. Exploiting

this natural experiment, the article shows an average difference in drug related homicides

of 33 per 100.000 inhabitants at the vote share threshold.

As with the application by Lee (2008), sorting dynamics can not be ruled out a priori

in this electoral RDD. Surrounding characteristics of the elections are different, with

mayoral elections during the observed time frame not being balanced between two parties.

Mexico has three prominent partys, with the PAN, the Partido Revolucionario Institucional

(PRI) and the Party of the Democratic Revolution (PRD) alternating in strength across

municipalities. Within the sample, the PRI wins 59% of the elections and the PAN 24%.

Therefore the mechanics of the relatively strict two party system in the Lee example are

no longer present. Since the three parties are, on average, not equal in political strength,

sorting into treatment is less likely to be masked by equal magnitudes of sorting out of

treatment, if non-monotonic selection takes place. The full sample density test has higher

chances of detecting sorting behaviour.

The replication files provided in the online appendix of Dell (2015) are limited to elections

within a +5% and -5% vote share interval around the threshold. I perform the density based

test analogous to Sections 4.1 and 4.2 in first for the the full sample of PAN candidates,

with the ROT selected bandwidth and a range of tuning parameters spanning 2% to 5%

of the vote share.

Table 3: Density test results for all PAN candidates
Refrence
Band-
width

Bandwidth
3 % vote
share

Bandwidth
4 % vote
share

Bandwidth
5 % vote
share

Discontinuity -0.412 -0.221 -0.133 -0.039
Standard Error 0.314 0.246 0.218 0.194
P-value 0.190 0.368 0.542 0.840
Bandwidth 0.020 0.030 0.040 0.050

The results in Table 3 show no indication of selection issues. Fitting a linear model on the

5% vote share bandwidth, the estimated discontinuity is almost zero. At all bandwidths,

the discontinuity is not significant. Although it is not small at the reference bandwidth the

confidence bands increase with smaller bandwidths and therefore diminishing numbers of

observations. If the PAN was capable of deciding significantly more or less close elections

for itself than the other two parties combined, it would show up as a discontinuity.
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Table 4: Density test results for for PAN incumbent candidate sub-sample
Reference
Band-
width

Bandwidth
3 % vote
share

Bandwidth
4 % vote
share

Bandwidth
5 % vote
share

Discontinuity -1.953 -0.711 -0.402 -0.276
Standard Error 1.395 0.600 0.469 0.401
P-value 0.161 0.236 0.392 0.491
Bandwidth 0.017 0.030 0.040 0.050

When restricting the sample to those candidates in whose municipalities the PAN was

already in office at the time of election, analogous to the incumbency sub-sample of Section

4.2, Table 4 shows a similar picture to the results in Table 3. For all bandwidths, the

discontinuity is not significant at any level, but it is larger across the board, compared

with the full sample estimates. These results reinforce the testing done by Dell (2015),

who reports no hints of sorting behaviour in Mexican mayoral elections. Even though the

potential for precise manipulation of the vote share is not not lower in Mexican mayoral

elections,

4.5 Discussion

The results from the sub-sample specification test performed in section 4.3 suggest the

presence of non-monotonic sorting issues in this particular RDD application. Such a result

poses the question why it should be possible for incumbent party candidates to influence

close elections in a way which systematically increases their chances of victory. A number

of possible channels of influence exist which might allow for relatively precise manipulation

of election results. Three general concepts are possible. The first is precise influence on

the vote count by non-democratic means. Either in the form of ex-ante activities, such as

the buying of votes, or in the form of ex-post manipulation, an example of which would be

miss-reporting of vote counts. While the literature reports no evidence that vote fraud

would be a regular or systematic issue for elections in western democracies, the possibility

can not be ruled out completely25. Events like the recount of the Florida presidential

elections votes in 2000 occasionally make the headlines and spark scepticism about the

validity of election processes26. Especially in the case of very close elections, where only a

relatively small amount of manipulation would be necessary to turn the results. As vote

count manipulation is, by nature, a clandestine activity, small scale manipulation could

potentially go undetected in the majority of cases. Occasional incidents of verified vote

rigging show that democratic safeguards are not always effective. One such incident of

electoral fraud in the U.S. was the Texas senatorial runoff election in 1948. The election

was a very close one, with both campaign offices being aware of that fact. Caro (1990)

reports that the campaign staff of challenger Lyndon Johnson influenced voters by directly

paying out cash, appointing sympathetic election officials and bribing influential local

25See Alvarez and Hall (2006).
26See Lott Jr. (2001).
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bosses who would send their employees and dependants to vote for Johnson. Additionally,

allies of Johnson later confirmed acts of ex-post manipulation, where election officials

would interfere with the counting and tabulation of votes, to ensure favourable results

for their party.27 In the end, Johnson won the election by a very small margin of only 87

votes out of about one million votes total.28

Yet, even though media attention devoted to elections, especially close ones, has increased

during the last decades, the number of confirmed incidents of vote rigging has been small

and ever declining.29 If electoral fraud was common in U.S elections, the increase in

media coverage and scrutiny should have led to an increase in contested elections. But

the fraction of contested elections for the U.S. House has constantly and substantially

decreased during the postwar period, as Jenkins (2004) reports. Even though some cases

of illegal manipulation of the voting process surely have not been discovered, it is likely

that the fraction of elections which were decided by fraudulent actions, is quite small.

These findings suggest that vote fraud has rarely been a deciding factor for elections in

western democracies, during the time period covered by the data. In all likelihood, vote

fraud alone is not sufficient for explaining the dynamics at the threshold apparent in the

Lee data.

In the case of Mexican mayoral elections, we do not observe precise sorting behaviour which

might result from electoral fraud, even though elections in Mexico are sometimes subject

to fraudulent behaviour, as reported by McCann (1998) and Lehoucq (2003). However,

the stakes in mayoral elections are not as high as those for representatives on the national

level, which might reduce incentives for fraud. Another possible explanation would be

that on the local levels the consequences for fraud by the incumbent are so weak, that

vote-rigging results in clear wins or losses, instead of close elections.

A second mechanism, which might play an important role in deciding close elections, is

the use of ‘emergency’-resources. Political parties will allocate more resources to close

elections, than they would to those where they expect a clear win or loss. In these elections,

the marginal effect of resources spent is greatest. Even activities which are extremely

costly can be deemed worthwhile, if only a minimal shift of the vote count is necessary to

win the election. These resources are not necessarily of a monetary nature, but can also

take the form of organisational capacities or the ability for dealing with unforeseen events.

Particularly, parties and candidates in extremely close elections will perform actions which

are costly in terms of political influence or long term credibility, in order to win the race.

Examples of such actions would be the trading of political favours, populist promises

or policies which are not in line with the party platform. They might also make use of

one-time resources, like calling in favours from influential groups or individuals. It is hardly

possibly to measure a candidate’s emergency-resources, which prevents researchers from

analysing potential imbalances in this covariate. Candidates with superior financial and

27Election judge Luis Salas, who was involved in the tabulating of votes, later admitted the fraudulent
manipulation of election results. See Caro (1990).

28See Caro (1990).
29The work of Campbell (2005) only reports a minimal number of elections where fraudulent activities

were discovered over the last decades.
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organisational resources are better informed about the current state of the race and can

react more quickly and effectively to problems which their supporters might encounter.

Those actions combined would exacerbate existing imbalances in terms of campaign funds

for very close elections. They would also lead to a situation where the candidate with

access to superior ‘emergency’-resources has a distinct advantage. The actual magnitude

of this specific kind of resource is likely unobservable. However, it is reasonable to assume

that incumbent party candidates usually do possess an advantage in that regard.

For the Mexican mayoral elections, as noted earlier, the stakes are not as high and the

resources available to the candidates are orders of magnitude below those for US House

representatives. It is therefore likely that candidates are unable to monitor ongoing

elections as quickly and effectively, and might lack the necessary information and resources

to precisely influence elections in progress. This, in turn, would lead to a larger random

component in the vote share outcome, which strengthens the RDD identification strategy.

The third, channel by which close elections can be non-randomly decided is the legal

influence which incumbent parties have over the political administration. Among those

measures are voter-suppression tactics like restrictive voter ID laws and targeted placement

of polling stations.30 For example by increasing the density and convenience of the

polling infrastructure in areas with historically strong support for the incumbent party.

Selective recounting of votes is another instrument which may allow for relatively precise

manipulation of the vote score. Increased influence allows a party to lobby more effectively

for or against vote recounts in districts which they expect to favour their, or the opposing

candidate, respectively. Nevertheless, the number of times where recounts have reversed

the results in a U.S. House race has been very small. According to Caughey and Sekhon

(2011), vote recounts only had a pivotal effect on the election results in less than ten percent

of the sample elections in which recounts did happen. While the result was reversed in

favour of the incumbent party candidate in all reported cases, the low overall percentage

of pivotal recounts rules out recounting as the main factor in explaining the observed

imbalances. Incumbent parties do have other means, by which they could influence the vote

share in close elections. Election officials in local offices usually do have a certain amount

of discretion when dealing with unclear or provisional ballots, as is analysed by Kimball et.

al. (2006). The party which has endeared itself to the administrative personnel during

their last term in office will have gained an advantage as a result. Also, the partisanship

of election officials can play a role in circumventing adverse conditions for the own party’s

supporters. One example of such practices, reported by Hauser and Holusha (2006), is

that officials and judges can extend voting hours in districts which favour the party they

are affiliated with. This kind of manipulation is more likely in very close elections, because

the marginal effect is larger.

The channels for manipulation presented here probably do not represent all avenues by

which candidates can precisely sort themselves around the threshold. While no singular

main reason why sorting at the the vote percentage cut-off should be possible in U.S.

30For a discussion of the impact of voter ID laws on election outcomes in the US, see Weiser et al.
(2005).
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House elections is apparent, it is likely that the described effects, possibly combined with

undiscovered factors, lead to the observed sorting behaviour.

5 Conclusions

In this article, the issues associated with non monotonic endogenous sorting in the context

of the RDD are presented and a testing method for the validity of the design is discussed.

The merits of thoroughly checking the data for evidence of precise manipulation of the

assignment variable are motivated by a description of the various ways by which individual

units can influence their realization of the assignment variable. Such manipulation can be

detected by a specification test which is designed to find discontinuities at the threshold in

the density function of the running variable. When non-monotonic sorting is happening at

the threshold, the testing procedure described in the literature can be modified to suit the

challenge. By testing sub-samples of the data which contain disproportionate numbers of

individuals who manipulate their assignment score in a single direction, non-monotonic

sorting can be detected. While it is possible to detect this problem by means of covariate

distributions, the density based test expands the arsenal of researchers with a method far

less demanding of the quality and spectrum of covariate data.

As example applications, the well established RDD analysis of the US-House incumbency

advantage by D. Lee (2008), and the Mexican mayoral election RDD by Dell (2015),

are examined with regards to a special form of non-monotonic selection effects. For the

US House elections, testing on the aggregate level of all Democrat candidates does not

reject the hypothesis of continuity of the assignment variable at the threshold, which is in

line with the results of McCrary (2008) and the specification testing performed by Lee

himself. However, the situation is not quite as clear when considering non-monotonic

selection. Within a sample of all Democrat-candidates, the strictly positive self-selection of

Democrats would be masked by the strictly positive self-selection of Republican candidates,

considering the predominantly two-party system. The sub-sample of democratic-party

candidates whose party was the incumbent at t − 1 displays unexpected behaviour of

the density function at the threshold. This is the sub-sample of individuals who are

most likely able to precisely influence their assignment variable, according to Caughey &

Sekohn (2011). Results for this sub-sample reject the hypothesis of a smoothly distributed

assignment variable at the threshold for a substantial range of tuning parameters, with

significance actually increasing for very close elections. Therefore it appears likely that

certain candidates possess the ability to precisely sort themselves to one side of the

threshold. In the case of the Dell (2015) application, no evidence for non-monotonic sorting

can be found.

So far, no comprehensive explanation is available which would explain why precise manip-

ulation of the vote share difference should be possible in US House elections, although a

number of factors which might contribute to the sorting dynamics were discussed. Qualit-

ative analysis of candidate behaviour in close elections could shed more light on this issue.
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These results might lead to a reinterpretation of the incumbency advantage estimated by

Lee (2008), if higher probabilities of winning close elections are common perk of being

the incumbent. Since manipulation of the assignment variable is performed primarily

by incumbent party candidates, it is worth considering to what extent the ability for

manipulation in one election translates into a vote share advantage in the next election.

From this perspective, it is worth considering if the discovered imbalances between close

winners and losers introduce lead to a cumulative incumbent party advantage over multiple

elections. In the latter case, sorting behaviour in subsequent elections might be an integral

part of this advantage.
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A Appendix

A.1 Additional specifications from Section 4.1

Figure 9: Additional density estimates for Democratic candidates
Horizontal axis: Democratic vote share difference in t. Vertical axis: Bin counts.

Confidence bands (95%) in thin lines.
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Horizontal axis: Democratic vote share difference in t. Vertical axis: Bin counts.
Confidence bands (95%) in thin lines.
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Horizontal axis: Democratic vote share difference in t. Vertical axis: Bin counts.
Confidence bands (95%) in thin lines.
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A.2 Additional specifications from Section 4.3

Figure 10: Additional density estimates for incumbent Democratic candidates
Horizontal: Democratic vote share difference in t. Vertical: Bin counts.

Confidence bands (95%) in thin lines.
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Horizontal: Democratic vote share difference in t. Vertical: Bin counts.
Confidence bands (95%) in thin lines.
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A.3 Description of the Local Linear density smoother

Construct J bins with j = 1...J and bin width b. Let Jl and Jr denote the number of bins

to the left and right of the cut-off c, respectively. The bins are defined as intervals:

(dj, dj+1] with dj = c− b(1− j + Jl)

and bin midpoints Xj with |Xj − dj| = |Xj − dj+1| = b
2
. Calculate the normalized

observation counts per bin:

Nj =
1

Nb

N∑
1

1(dj < xi ≤ dj+1) (2)

The histogram is then established by plotting the frequency counts Njon the bin midpoints

Xj.

The Local Linear estimator for a given bandwidth h and a kernel weighting function K, at

xi = x0is described by:

ŷ(x0) = β̂0(x0) + β̂1(x0)(x0 − x0)

with β̂0(x0) and β̂1(x0) minimizing the loss function:

L
(
β̂0(x0), β̂1(x0)

)
=

J∑
j=1

(
Nj − β̂0(x0)− β̂1(x0)(Xj − x0)

)2
K

(
|Xj − x0|

h

)
· {1(x0 ≥ c)1(Xj > c) + 1(x0 < c)1(Xj < c)}

The expression in curly brackets ensures that no observations from one side of the threshold

are used to calculate density estimates on the other side.

The triangular kernel is given by the expression:

K(x0) =

1− |x0| if |x0| ≤ 1

0 otherwise

The coefficients for the local linear regression are then calculated as:

β̂ =

(
β̂0

β̂1

)
=

(
S0 S1

S1 S2

)−1(
T0

T1

)

With Sk and Tk defined as:

Sk =
J∑
j=1

K

(
(Xj − x0)

h

)
(Xj − x0)k

Tk =
J∑
j=1

K

(
(Xj − x0)

h

)
(Xj − x0)kNj
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Consequently, the estimator at point x0 is described by:

ŷ(x0) = β̂0(x0) = T0
S2 − S1(Xj − x0)
S0S2 − (S1)2

The outcome of interest is then:

γ ≡ ln lim
x0↓c

y(x0)− ln lim
x0↑c

y(x0)

Define limx0↓c y(x0) = y+and limx0↑c y(x0) = y−. The estimate for a jump in the density is

then:

γ̂ = ln ŷ+ − ln ŷ−

= ln

(
T+
0

S+
2 − S+

1 (Xj − c)
S+
2 S

+
0 − (S+

1 )2

)
− ln

(
T−0

S−2 − S−1 (Xj − c)
S−2 S

−
0 − (S−1 )2

)
With S+

k = Sk for Xj > c and S−k = Sk for Xj < c as well as T+
k = Tk for Xj > c and

T−k = Tk for Xj < c.

It is shown by McCrary (2008) that the estimation bias
√
nh (γ̂ − γ) is approximately

normally distributed and asymptotically converges to zero under the following conditions:

Everywhere except at c, the density function y(x) has three continuous and bounded

derivatives, h→ 0, Nh→∞ and b
h
→ 0.31 This leads to an approximate standard error

for the estimator γ̂ of:

σ̂γ =

√
1

hN

24

5

(
1

ŷ+
+

1

ŷ−

)
(3)

A.4 Bandwidth selection Rule of Thumb

The histogram from the first step of the specification testing procedure is taken as a starting

point. Then a separate ROT bandwidth is computed for both sides of the threshold. This

is done by fitting a polynomial of the fourth order to the data on each side and calculating:

h̄l = κ

(
σ̄2
l

|c−Xl|∑ ¨̂
λl(Xj)2

) 1
5

(4)

h̄r = κ

(
σ̄2
r

|c−Xr|∑ ¨̂
λr(Xj)2

) 1
5

Where Xl = X0, Xr = XJ . The index l describes the variables for the regression to the

left of the cut-off, and index r describes those for the regression to the right. Let σ̄2
l and

σ̄2
r be the mean squared error for the regressions on both sides of the cut-off. Also

¨̂
λl and

¨̂
λr are the estimated second derivatives of the fourth order polynomial model.

In order to calculate the standard errors for the local linear regression as per equation 3,

the average of both ROT bandwidths is taken. This average is used for the local linear

31For a proof, see Appendix I of McCrary (2008).
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estimator on both sides of the cut-off.


