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1. INTRODUCTION

Tagging is a popular methodology for many user-driven document organisation ap-
plications such as social bookmarking and publication sharing websites. On websites
such as CiteULike1, Delicious2 and BibSonomy3, tags provide an unstructured orga-
nization method where each user has the liberty of choosing or making up any string
of characters to be used as a tag for a document. The automatic generation of tag rec-
ommendations aids the social tagging process by reducing the effort required by the
user, and making them aware of which existing tags are relevant to the document they
are tagging. Tag recommenders encourage the use of the system and lead to a more
homogeneous document organisation overall. The task of tag recommendation is to
automatically suggest a set of tags to a user for a document that he is in the process of
tagging.

The data contained in social tagging systems is often described as a folksonomy
[Jäschke et al. 2007]. A folksonomy is a tuple (U,D, T,A) where U is the set of users,
D is the set of documents, T is the set of tags and A ⊆ U × D × T is the set of tag
assignments. A tag assignment a ∈ A is a triplet (u, d, t) and indicates that user u has
assigned tag t to document d. Thus a folksonomy can be modelled as a hyper-graph
with the adjacency tensor given by a 3-dimensional binary matrix F = [fi,j,k]|U|×|D|×|T |

where each entry fi,j,k ∈ {0, 1} specifies whether or not user ui tagged document dj
with tag tk. A post in the tagging data consists of a set of tags assigned by a user to
a document. Posts themselves are only captured implicitly in the folksonomy model.
The set of posts can be described as P ⊆ U ×D × 2T where each post p ∈ P is a triplet
(ui, dj , Tij) consisting of a user ui ∈ U , a document dj ∈ D, and a set of tags Tij ⊆ T . We
use the notation (uq, dq, ∅) for query posts, where uq is the query user, dq is the query
document and the set of tags is unknown and to be predicted, denoted by the empty
set ∅.

Tag recommendation algorithms are often evaluated on post-core datasets which are
subsets of the full tagging data. In a post-core at level n, only posts are included where
the user, document and all tags appear in at least n posts. This provides for a denser
dataset and also minimises the chance that new items (users, documents or tags) will
be encountered in the test data. However, post-cores only make up a small fraction of
the full real-world data and the majority of posts are not included in this subset. Full
tagging datasets have a large proportion of new/unseen documents. In order to recom-
mend tags for these new documents, approaches are required which model documents
not only based on the tags assigned to them in the past (if any), but also their con-
tent. While the inclusion of content data has been applied to keyword extraction and
hybrid tag recommenders [Lipczak et al. 2009; Lipczak and Milios 2011], graph-based
approaches which model the full folksonomy graph as well as taking content data into
account have not been widely explored.

1.1. Contributions

In this paper we present an in-depth analysis of the folksonomy graph model, pro-
pose novel adaptations and extensions to FolkRank [Hotho et al. 2006], and evaluate
our hypotheses on four datasets from popular social tagging websites. We propose two
alternative extensions to include content data into FolkRank’s recommendation pro-
cess and evaluate the predictive value of different content sources as well as varying
amounts of content data. Our extensions make FolkRank successfully applicable to full
unpruned datasets and address the new document problem in tag recommendation. In

1http://www.citeulike.org/
2http://delicious.com/
3http://www.bibsonomy.org/
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our extensive examination of the folksonomy graph model we highlight information
that is lost and implicit assumptions that are made by the model, and propose a novel
graph structure which captures the tagging data more accurately. Furthermore, we
conduct an in-depth analysis of FolkRank’s iterative weight spreading algorithm and
address issues that exist therein. The outcome of this analysis is a novel weight spread-
ing method which is much less computationally expensive while having a comparable
recommendation accuracy to the iterative approach. Finally, we provide an extensive
theoretical discussion as well as practical evaluation of the value of exploring the deep
folksonomy graph. We evaluate whether the potential benefit of considering the infor-
mation contained in deeper levels of the graph is worth the added computational ex-
pense and present important insights regarding the applicability of deep graph-based
methods to tagging data in general. In summary, our main contributions are:

— Content-aware extensions of FolkRank which model the entire folksonomy as well as
taking content data into account.

— An improved graph data model which more accurately captures the tagging data.
— A less expensive but equally accurate weight spreading method for graph-based tag

recommendation.
— An in-depth theoretical discussion as well as practical evaluation of the value of ex-

ploring the deeper folksonomy graph for tag recommendation, and of the applicability
of graph-based methods to the domain of social tagging in general.

2. RELATED WORK

Existing tag recommendation solutions can be categorised into approaches
which model and analyse the folksonomy in order to come up with recom-
mendations, and content-based approaches where the textual content and/or
meta-data of documents is considered. We give our view of the tag recom-
mendation landscape in Figure 1. Methodologies relying on the folksonomy
data include Hypergraph [Symeonidis et al. 2008; Rendle et al. 2009], Graph
[Jäschke et al. 2007; Ramezani et al. 2010; Kim and El Saddik 2011], collabo-
rative filtering [Gemmell et al. 2009; Xu et al. 2006] and simple co-occurrence
[Lipczak and Milios 2011] approaches. While hypergraph approaches try to capture
and analyse all characteristics of the folksonomy in their models, graph-based and
collaborative filtering approaches can be described as reductionist methods since they
reduce the 3-dimensional folksonomy data to one or several 2-dimensional projections.
A major difference between graph-based, collaborative filtering and co-occurrence
approaches is that co-occurrence methods only consider the immediate neighbourhood
of the query, corresponding to one hop in the folksonomy graph. Collaborative filtering
considers connections one level deeper into the folksonomy, for example comparing the
query user to similar users based on their overlap in document sets or tag vocabulary.
Graph-based approaches have the possibility to explore the graph further and include
information contained in the deep folksonomy into the recommendation process.

In content-based approaches, the textual content of the documents is used for either
tag extraction and expansion [Lipczak et al. 2009; Lipczak and Milios 2011], word-
tag co-occurrence [Landia et al. 2012], or with document classification techniques
[Song et al. 2008]. Important aspects of content based approaches are the content
source and the document representation used. Experiments have shown that the most
informative words generally appear in the title and URL [Lipczak and Milios 2010],
and the document text [Heymann et al. 2008]. For structured text documents such
as HTML, further sources such as anchors, links and paragraphs are avail-
able [Zhang et al. 2004]. Heymann et al. carried out experiments on HTML pages
[Heymann et al. 2008], comparing the value of page text, anchor text and text of sur-
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Fig. 1. Overview of Tag Recommendation Approaches

rounding hosts for tag prediction. They concluded that out of the three, the document
text was most informative and anchor text was more informative than surrounding
hosts. The document representation in content-based approaches is usually a bag-
of-words. There are many different methods of determining the importance score of
each word to the document, most of which include a Tf-Idf score in the calculation.
Liu et al. [2009] use Tf-Idf scores with part-of-speech analysis, word clustering and a
sentence importance score; Hulth [2003] combines Tf-Idf scores and lexical tools; and
Renz et al. [2003] calculate the Tf-Idf scores on small word parts (quad-grams con-
sisting of 4 letters) instead of whole words to overcome the stemming problem. In
[Witten et al. 1999], Tf-Idf scores as well as the position of the first appearance of a
word in the document are used. Alternatively to Tf-Idf, Matsuo and Ishizuka [2004]
use word frequency and word-word co-occurence to calculate scores for words given
only single documents rather than a document collection.

In [Lipczak et al. 2009], Lipczak et al. present their hybrid tag recommender which
won the content-based tag recommendation task of the ECML PKDD Discovery Chal-
lenge 2009 [Eisterlehner et al. 2009]. The part of the hybrid most comparable to our
content-based approaches, for which Lipczak et al. give individual results, is “user pro-
file × resource related”, which is a combination of two tag recommendation sets: past
tags of the query user and tags related to the content of the query document. The only
source of content data in their approach is the document title. In order to generate
the content-based tag recommendations, the words in the title of the query document
which have been used as tags before in the training data are first extracted (word-tag
overlap). The tag recommendation set is then expanded based on tag-tag co-occurence.
Due to the initial filtering, the content words considered only include words which also

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
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appear as tags in the training data. The differences between our approaches for in-
cluding content data and the content-related part of the hybrid in [Lipczak et al. 2009]
are the content sources and the document representation used. We consider all con-
tent words (after stopword removal) in our document representation, not only words
that are tags, and base our predictions on word-tag co-occurence as well as utilising a
content-based word importance measure (Tf-Idf). Moreover, we consider and evaluate
two different content sources in our approaches: document title and fulltext content.
The most successful part of the hybrid presented in [Lipczak et al. 2009] is the “Title
Recommender”, which achieves better results than “user profile × resource related”. It
recommends words from the query document’s title directly, choosing the words which
have been observed to have a high global overlap in being a title word as well as a tag
for documents. It is worth noting that these are words where the word string is equal
to the tag string, which is not the case in our word-tag co-occurence approach. Nev-
ertheless, it is a simple and very successful tag recommendation strategy producing a
limited number of tags with high precision.

2.1. FolkRank

FolkRank [Hotho et al. 2006; Jäschke et al. 2007] is a graph-based ranking algorithm
which is modelled based on Google’s PageRank [Brin and Page 1998]. Similarly to
PageRank, the key idea of FolkRank is that a document which is tagged by important
users with important tags becomes important itself. The same holds symmetrically for
users and tags. Users, documents and tags are represented as nodes n ∈ N in an undi-
rected tri-partite graph G = (N,E), where all co-occurrences of users and documents,
users and tags, and documents and tags are edges e ∈ E between the corresponding
nodes. The weight of the edge between two nodes depends on the number of their co-
occurrences, given as the number of tag assignments that both nodes appear in. For
example if a user u has used a tag t for two documents, there would be two tag assign-
ments (u, d1, t) and (u, d2, t) in the folksonomy, and in G the weight of the edge between
the two nodes representing u and t would be set equal to two.

The importance or rank of each node in FolkRank is calculated by an iterative
weight-spreading algorithm, in a similar fashion to PageRank. The weights of all nodes
are given in the weight vector ~w which has one entry per node and is computed by the
weight spreading function

~w ← (1− d)A~w + d~p

where A is the row-stochastic version of the adjacency matrix of graph G, ~p is the
preference vector, and the dampening factor 0 < d ≤ 1 determines the influence of ~p.
The preference vector ~p is used as a means to personalise the recommendations to the
query user and document, and to achieve that goal is set to give the nodes represent-
ing the query user and document in the graph a higher preference weight compared
to other nodes. The dampening factor d sets the balance between personal preference
and global importance when calculating the node weights. After constructing the folk-
sonomy graph, the tag ranking procedure with FolkRank is as follows for each test
post.

(1) Initialise each node in the graph with a random starting weight so that the total
sum of node weights in the graph is equal to a predefined parameter TW .

(2) Set the preference vector giving the query user and document a higher weight than
other nodes in the graph, and so that the sum of weights in the preference vector
is equal to the total weight in the graph TW .

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
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(3) Perform iterative weight spreading until node weights converge. The end condition
is that the sum of absolute change in node weights during one iteration is smaller
than a predefined fraction of the total weight TW .

(4) Select the nodes which represent tags and rank them by node weight, where the
tag node with the highest weight is given the best ranking.

When setting the weights of the preference vector it is important that the sum of pref-
erence weights is equal to the total sum of node weights in the graph. This ensures that
the total weight in the graph stays constant over weight-spreading iterations; that no
factors other than parameter d impact the amount of personalisation; and that the end
condition of iterative spreading will work as intended. FolkRank can generate a global
non-personalised ranking and a personalised ranking of all nodes in the graph, de-
pending on the values set in the preference vector. For a global ranking, the entries in
~p for all nodes are set to the same value. In order to generate personalised recommen-
dations for a query post (uq, dq, ∅), ~p is set so that higher preference weights are given to
the query user uq and query document dq, compared to other nodes in the graph which
are set to have a uniformly small (non-zero) preference weight [Hotho et al. 2006]. The
original FolkRank utilises a differential approach [Jäschke et al. 2007] to calculate the
final tag scores for a query post. For each tag in the graph, the weight of the tag in the
global ranking is subtracted from the weight of the tag in the query-personalised rank-
ing to give the final prediction score. Although this approach produces better results
than using the personalised ranking alone, a simpler alternative strategy is discussed
in [Kim and El Saddik 2011]. Kim and El Saddik conclude that setting the preference
weights of all non-query nodes in the personalised preference vector to zero instead
of the uniformly small values results in an equivalent ranking to the differential ap-
proach.

An unexplored question in FolkRank is whether the same amount of preference
weight should be given to the query user and query document. In the original Folk-
Rank approach the balance of preference weight between the query user and document
is not specified explicitly via a parameter but instead is determined implicitly by the
ratio of user nodes to document nodes in the graph [Jäschke et al. 2007]. In general
this leads to the query document receiving more preference weight than the query
user since there are usually more documents than users in a folksonomy, however it is
determined entirely by the data. We introduce a parameter b into our FolkRank-based
approaches which allows us to control how the total preference weight is distributed
between the query user and document. The preference weights of the query user uq

and query document dq are then given by

pw(uq) = b ∗ PW

pw(dq) = (1− b) ∗ PW

where 0 ≤ b ≤ 1, PW is the total preference weight and PW = TW since we set
the total preference weight equal to the total (starting) weight in the graph. If we set

b = |U|
|U|+|D| , where U is the set of users and D is the set of documents, then we have

the equivalent strategy to that used in the original FolkRank.

3. FOLKRANK ADAPTATIONS

We conduct an in-depth analysis of the inner workings of FolkRank, highlight issues
which might reduce tag recommendation accuracy and propose novel adaptations to
overcome these. We first examine the folksonomy graph model used in FolkRank and
the implicit assumptions made by the edge weights in the graph, and propose an alter-
native model which we call Post Graph. The second part of our analysis concerns itself

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



Deeper Into the Folksonomy Graph A:7

Fig. 2. Folksonomy Graph

with the weight-spreading iterations of FolkRank and the utilisation of information
contained in the deep graph. We also address and propose how to overcome the high
complexity and runtime of the algorithm.

3.1. Graph Model and Edge Weights

The first issue we examine is the graph structure of the folksonomy model and the
problem of setting the edge weights. FolkRank uses a tri-partite graph of the folkson-
omy consisting of user, document and tag nodes. Due to the fact that a post can contain
a variable number of tags and since the post-membership information of tag nodes is
not included explicitly in the folksonomy model, the user and document nodes in the
graph can be connected to a variable number of tag nodes. The variable number of
tags per post affects the outcome of weight spreading since in each spreading action
the weight that is passed to each connected node depends on the total number and
weight of edges of the active node. The difficulty is then setting the edge weights in
the graph, where each alternative method of doing so makes different assumptions. In
the following paragraphs we explore alternative graph construction methods and the
implicit assumptions they make. We later evaluate each of these methods in Section
6. An assumption which holds in all alternatives is that the co-occurrence of users and
tags, as well as documents and tags, should influence edge weights. The weight of a
user-tag edge should be higher if the user has used the tag multiple times to tag mul-
tiple documents. Similarly, if the same tag has been assigned to a document multiple
times, so by multiple different users, the document-tag edge should be given a higher
weight. In contrast, for user-document relationships the tagging data only provides
one distinct co-occurrence since a user can only tag each document once (with a set of
tags).

Folksonomy Graph. The folksonomy graph structure and edge weighting methodol-
ogy used in original FolkRank is given in Figure 2. The weight between user and docu-
ment nodes is set according to the number of tag assignments and thus the number of
tags in the post (see edge weights u1-d1 vs u1-d2). This means that within the context of
a post, all types of nodes (user, document, and all tags together) get the same amount of
total weight. In the context of post (u1, d1, [t1, t2, t3]) only, ignoring the influence of post
(u1, d2, [t3]), the weight of the edge u1-d1 is the same as the sum of edge weights u1-t1,
u1-t2 and u1-t3, which is 3. However, another consequence of this graph construction
method is that, if we spread weight from u1, then d1 would get a higher weight than d2,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
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Fig. 3. Folksonomy Adapted Graph

and subsequently, the tags connected to d1, in this case t4, would get a higher weight
than the tags connected to d2, namely t5. The implicit assumption made by this model
is that documents to which a user has assigned many tags are more representative
of the user’s interest. Another assumption is made with regard to the number of tags
in a post. If we had a query post (u1, d3, ∅), the fraction of weight spread from u1 to t3,
which is the user’s most used tag, would be 2/8 (times the dampening factor). However,
the query document d3 would spread 1/2 of its weight to t4. Assuming both the query
user and query document have the same preference weight, t4 would thus be ranked
higher than t3 even though t3 has been used by the user multiple times and t4 has only
been assigned to d3 once. The assumption which leads to this outcome is that if a post
has multiple tags then each of the tags is proportionally less important to the user and
document of the post. In summary, as a consequence of the graph model, the following
implicit assumptions are made when spreading weight in the folksonomy graph.

— Within the context of a post, all types of nodes (user, document, tag) have the same
amount of relevance summed by node type.

— The weight of the user-document relationship depends on the number of tags in the
respective post. The more tags a user has assigned to the document, the stronger
the user-document connection.

— Each tag in a post is proportionally less important to the user and document if the
post contains multiple tags.

Folksonomy Adapted Graph. We propose an alternative edge weighting method for
the folksonomy graph, illustrated in Figure 3, which we refer to in our experiments
as the Adapted Graph (AG). The difference to the original folksonomy methodology is
that we always keep user-document edges at a weight of 1 regardless of the number of
tags in the post. By spreading weight in the Adapted Graph, the following assumptions
are made.

— Within the context of a post, all tag nodes together are more important than user or
document nodes.

— The weight of the user-document relationship is independent of of the number of
tags in the respective post. All edges connecting users to documents have the same
weight.

— Each tag in a post is proportionally less important to the user and document if the
post contains multiple tags.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
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Fig. 4. Post Graph

Post Graph. Since both aforementioned graph construction methods do not explicitly
include the post-membership information of tag nodes, we believe that they produce an
inaccurate model of the social tagging data, and propose a structurally different graph
model which we call Post Graph (PG). The Post Graph model includes an additional
type of node representing posts themselves into the graph. Figure 4 shows the Post
Graph for the same data as the previous folksonomy graph and Adapted Graph models.
The user, document and tag nodes are only connected to post nodes instead of being
directly connected to each other, and we set the weight of post-tag edges so that the
edge weights to all tags of a single post sum to 1. This makes the strength of the
user-document relationships independent of the number of tags in the post, as well as
ensuring that the same amount of total weight is spread to all types of nodes in the
context of a post. To address the assumption that having multiple tags in a post implies
less importance for each of them we evaluate an alternative method of retrieving tag
scores from the graph. Instead of directly retrieving tag scores as the weight of tag
nodes, we retrieve the weight of post nodes instead, and in a second step calculate the
tag scores by summing up for each tag the weight of the post nodes that the tag is
related to (ignoring the total number of tags in each post).

— Within the context of a post, all types of nodes (user, document, tag) have the same
amount of relevance summed by node type.

— The weight of the user-document relationship is independent of of the number of
tags in the respective post. All edges connecting users to documents have the same
weight.

— By retrieving each tag’s score as the sum of weights of post nodes it is connected to,
the importance of each tag is independent of the total number of tags in its post.

3.2. Weight Spreading and Value of Deep Graph

3.2.1. Discussion. FolkRank’s iterative weight spreading algorithm has two potential
advantages over approaches which only utilise the immediate neighbourhood of the
query nodes, such as simple co-occurrence methods. Firstly, by initialising all nodes
with random starting weights, the general importance of tags is taken into account
when generating recommendations. This can also be described as authority-based pop-
ularity, due to the characteristic that important user or document nodes will provide
more weight to their connected tags. Secondly, the weight spreading algorithm con-
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Fig. 5. FolkRank Utilisation of Deep Graph

siders the information contained in the deep graph. In Figure 5 we illustrate how
FolkRank utilises the deeper graph beyond the immediate neighbourhood of the query
user and document. User u1 and document d3 make up the query post, the immediate
neighbourhood of the query nodes is shown in solid lines, the deeper graph is shown
in dashed lines, and the weights of all edges which are not explicitly labelled are set
to 1. In approaches considering only the immediate neighbourhood of u1 and d3, the
candidate tag set for this query post would consist of tags t1, t2, t3, t4, t5, and t6. A co-
occurrence approach, such as our combination of user-related and document-related
tags [Landia et al. 2012], would rank t1 as the best recommendation as it is related to
both u1 and d3, followed by t2 as the second best since it has a relatively strong re-
lationship with u1. However, when trying to rank t5 and t6, both of these tags would
have the same prediction score and the algorithm would not have sufficient informa-
tion to decide which of them should precede the other in the ranking. In the final tag
predictions, the ordering of t5 and t6 would be random. By utilising the deeper graph,
FolkRank’s iterative weight spreading algorithm has the ability to provide a definitive
ranking of t5 and t6 by trying to deduce which of them is more important to the query
nodes. It would spread weight along the path u1 → d2 → u4 → t6 and thus t6 would
be ranked higher than t5. The other method that FolkRank has for breaking ties and
re-ranking tags which would otherwise have equal prediction scores are the general
importance weights. Additionally, FolkRank also spreads weight to tag t7 found in the
deeper graph and includes it in the candidate set, whereas t7 would be omitted by
approaches which only recommend tags co-occurring with the query user or document.

It seems intuitive from the graph structure and from literature applying graph-
based approaches to non-folksonomy data that t7 should receive some weight and be
included in the candidate tag set, and that t6 is more related to the query and thus
should be ranked higher than t5. However, the value of following this computation-
ally expensive strategy and considering the connections of the deep folksonomy graph
has not yet been directly evaluated. As there are other factors that impact the weight
spreading calculation of FolkRank, which we explore in the following paragraphs, it
has not yet been established that considering the deep graph provides an increase to
tag recommendation accuracy. As part of the theoretical discussion, the opposite ar-
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gument to FolkRank’s assumption about the predictive indications of the deep graph
could also be made. Considering the query user u1, if we make the somewhat weak
assumption that u1 is aware of the existence of tag t7, then it would not make sense
to spread weight to t7. In the graph in Figure 5, user u1 has tagged d2 with the tags
t2, t3 and t4. A different user u4 has also tagged the same document d2 with tag t7.
If we assume that u1 has, in his view, completely described d2 with t2, t3 and t4, this
would suggest that t7 was not required by the query user u1 to describe d2. One could
thus argue that this was a conscious decision and t7 might not be considered to be a
good descriptor by u1 in general. The weak points of this argument are the generalisa-
tion and the assumption of completeness. Rather than dismissing tag t7 completely, u1

might also think that t7 is not appropriate for the documents he has tagged so far but
generally a useful descriptor. More importantly, user u1 might not be aware of tag t7
at all. However, starting from the query document d3, a similar and more convincing
argument can be made with regard to t7. Document d3 has been tagged with t5 and t6
by user u3, who has also tagged a different document d4 with t7. In this case the argu-
ment against assigning a higher weight to t7 as a candidate tag for d3 is much stronger.
Since user u3 has used t7, it is guaranteed that he is aware of its existence. However,
u3 has explicitly not assigned t7 to d3, and is using the different tag sets of [t5, t6] and
[t7] to distinguish between documents d3 and d4. If any deduction is made about the
relevance of t7 to d3, it should be that the graph indicates a negative relationship and
the weight of t7 with regard to d3 should be reduced rather than increased.

The counter-argument to utilising even longer paths, which leads to FolkRank’s
ranking of t6 above t5, is the highly personal tagging behaviour of users in (broad)
folksonomies. FolkRank uses the path u1 → d2 → u4 → t6 to deduce that t6 is more
relevant than t5 to the query consisting of user u1 and document d3. However, this
deduction is based on the fact that t6 was used by a different user u4 for a different
document d5, and the only link to the query is given by u4 having tagged d2 which has
also been tagged by the query user u1. The shared document d2 is taken as an indica-
tion that u1 and u4 have similar interests and that u1 should give some authority to all
of the other opinions/tag assignments made by u4. Wetzker et al. [2010] argue that tag
assignments cannot be transferred as easily across users and provide evidence for the
highly personalised tagging behaviour of users in broad folksonomies. They show that
users who have tagged the same documents rarely assigned the same tags to these
documents. Even though the users’ areas of interest are similar due to the shared doc-
uments, only a small overlap can be observed in their tag vocabulary which indicates
that the users’ views of the documents are highly personal.

3.2.2. Analysis of Iterative Weight Spreading in Folksonomies. In the following paragraphs
we analyse the iterative weight spreading method of FolkRank in detail and address
issues which we believe to hinder or cascade its ability to effectively utilise the infor-
mation contained in the deeper graph. An important preliminary observation about
FolkRank is that the impact of each preference node on the final weights in the graph
is independent of the influence of other preference nodes. Having multiple nodes with
preference weight > 0 in the preference vector of FolkRank is virtually equivalent to
performing the weight spreading computation for each of the preference nodes sepa-
rately, and then doing a linear combination of the resulting weight vectors to give the
final ranking. As long as the end condition of the weight-spreading iterations is set suf-
ficiently small, the only nodes which could end up with a different weight are the ones
at the very bottom of the ranking. This method can be used to speed up the prediction
time of FolkRank in a live tag recommendation scenario. For each user in the sys-
tem, the tag scores can be pre-calculated offline and stored. The same can be done for
each document. During the online tag recommendation phase, the pre-calculated tag
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Fig. 6. FolkRank Swash-Back Problem

scores for the query user and query document would then be retrieved and a weighted
average of the scores would be taken per tag in order to quickly create tag recom-
mendations. For the following discussion we assume that this method of performing
a separate weight spreading computation for each of the preference nodes is used, so
that each individual weight spreading run will have only one node in the preference
vector.

Swash-Back Problem. A problem of FolkRank as discussed in [Jäschke et al. 2007]
is “swash-back” of weights. Since the graph is undirected, weight is spread from a node
n1 to a connected node n2 in one iteration and then spread back from n2 to n1 in the
next iteration. This means that the weight of n1, the node from which the weight-
spreading originates, is adjusted in the second iteration based on the (number of and
weight of) edges of n2, which does not seem intuitive and is not desirable. We illus-
trate the consequences of this in Figure 6. User u1 has tagged documents d1 and d2
with tags t1 and t2 respectively. Tag t1 is also used by a very active user u2 who is
connected to a large number of other nodes, where t2 is also used by user u3 who has
only one tag assignment. If we want to recommend tags for u1 and activate that node
in the graph, t1 and t2 would get the same weight in the first iteration. In the second
iteration t1 spreads weight to u2, and t2 spreads weight to u3 (as well as all of their
other connected nodes), where the weight received by u2 and u3 is equal. The third
iteration is when the swash-back with regard to t1 and t2 occurs, denoted by the empty
arrows. Tag t2 gets half of the weight of u3 (times the dampening factor) back since u3

is connected to two nodes. However, u2 is connected to many other nodes, and so the
weight spread back from u2 to t1 would be much less than the weight spread back from
u3 to t2. In the final tag predictions for user u1, tag t2 would have a higher score than
t1 due to the behaviour of users u2 and u3. This is contrary to our intuition that the
weights should be equal up to this point since the query user u1 has used both tags
with equal frequency in the past. In the final ranking, when the node weights of the
query user are combined with the node weights produced by the query document, the
weights of t1 and t2 are expected to change to reflect the influence of the deeper graph.
However, in this weight spreading operation for the query user only, the only source
of preference weight is u1. The change in weights due to swash-back might outweigh
the later influence of other preference nodes and prevent FolkRank from utilising the
information contained in the deeper graph.

Triangle-Spreading Problem. Another issue, which we refer to as triangle-spreading
of weights, is illustrated in Figure 7. User u1 has tagged document d1 and d2 with tags
t1 and t2 respectively. Document d1 is a popular document tagged by many other users,
whereas d2 has only been tagged by u1. If we activate u1 in order to recommend tags
for this user, tags t1 and t2 would get the same weight in the first iteration. In the
second iteration, d2 would spread half of its weight to t2 (times the dampening factor),
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Fig. 7. FolkRank Triangle Spreading Problem

however, d1 would spread less of its weight to t1 since d1 is also connected to several
other nodes. This would mean that in the tag weights for query user u1, tag t2 would get
a higher weight than t1 even though the user has used both tags with equal frequency.
A similar problem would arise with regard to the weight of documents d1 and d2 if
one of the tags was very popular. Due to graph being undirected and the folksonomy
consisting of triplet relationships (user, document, tag), if two nodes n1 and n2 are
connected, there is always at least one indirect path from n1 to n2 via a third node
n3. The weight spread from n1 to n2 over the indirect path via n3 is influenced by the
(number of and weight of) edges of n3. This is undesirable since the weight of the direct
edge from n1 to n2 already completely describes the relationship between n1 and n2.
Moreover, the influence of the triangle-spreading is likely to cascade the effect of the
deeper graph on final tag weights, since the indirect path along which the undesired
spread happens has a length of only two hops.

3.2.3. PathRank. In order to address the swash-back and triangle spreading problems
we present our adapted weight-spreading approach for undirected folksonomy graphs,
which we call PathRank. Rather than doing iterative weight spreading, PathRank as-
signs scores to each node in the graph based on the shortest path(s) from the preference
nodes. The weight spreading computation works in a similar manner to a breadth-first
search, where edges which were already explored in previous iterations are not re-
visited. PathRank is akin to spreading activation which is usually applied to directed
graphs, and where nodes also spread their weight only once. However, PathRank is
used on the un-directed folksonomy graph and gives the edges a personalised direction
starting from the query nodes, where the edge direction can be different for each query.
PathRank can be described as activation-directed weight spreading. In contrast to the
original iterative weight spreading approach of FolkRank, we set the initial weight
of all nodes in the graph to zero instead of initialising nodes with random starting
weights. PathRank thus only uses personalised weights, originating from the prefer-
ence nodes, and there are no general importance weights in the graph (which makes
the dampening factor parameter obsolete). We compute node weights separately for
each preference node and then take a weighted average of the resulting weights for
each node in the graph to produce the final node weights, taking into account all pref-
erence nodes. Because of the separate calculation per preference node and the setting
of all starting weights in the graph to zero, each individual weight-spreading calcu-
lation has only one node, the preference node, from which all of the weight in the
graph originates. The swash-back and triangle spreading of weights can then be pre-
vented by adapting the iterative weight spreading algorithm with a simple rule: If the
weight of a node has been updated in a previous iteration (i.e. is not equal to zero),
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then do not re-calculate the node’s weight in subsequent iterations. Thus, the Path-
Rank weight spreading algorithm is in effect not an iterative update calculation like
in PageRank/FolkRank, but rather assigns a weight to each node ni based on the edges
of the shortest path(s) from the each of the preference nodes np to ni. The parameter pl
specifies the maximum path length from the preference nodes to be explored by Path-
Rank. The end condition of PathRank weight spreading is that either the maximum
path length pl has been reached, or that all nodes in the graph have been explored and
assigned a weight greater than zero.

The benefits of PathRank are that the problems of swash-back and triangle-
spreading of weights are removed, which allows the algorithm to fully utilise the infor-
mation contained in the deeper graph. Since there are no general importance weights,
these also cannot interfere with and cascade the influence of the weight spread through
the deeper graph. Intuitively we would assume that weights spread from preference
nodes through the deeper graph would result in a better re-ranking of the tag nodes
in comparison to using general importance weights, since the general importance of
nodes is not personalised and constant across all query posts. Setting different values
for the maximum path length pl to be explored allows for a direct evaluation of the
value of including the deeper graph in the recommendation process. In our evaluation
in Section 6.3.3 we address the question of how much value there is in exploring each
step deeper into the graph when calculating tag predictions.

Regarding runtime, as long as we only have one preference node, the complexity of
weight spreading is greatly reduced in PathRank compared to FolkRank, since once a
node’s score is set it does not need to be re-calculated in every subsequent iteration. If
we take the same graph, let i denote the total number of iterations and n denote the
number of edges in the graph, FolkRank’s iterative weight spreading has a complex-
ity of O(2n · i). In each iteration, weight is spread in both directions along each edge,
partly because the nodes are initialised with random starting weights. PathRank has
a worst-case complexity of O(n) if the weight spreading is performed until all nodes in
the graph are explored. Weight is only spread once along each edge in one direction.
However, in the case that there are several preference nodes, PathRank needs a sep-
arate weight-spreading calculation for each of them, meaning the complexity would
be O(n · p) where p is the number of nodes with weight > 0 in the preference vector,
whereas the runtime of FolkRanks’s iterative algorithm would not change. For the ex-
pensive FolkRank algorithm to be applicable in practice, the individual tag scores per
user and per document have to be pre-calculated offline, and then combined in the
online recommendation phase to quickly generate predictions. In this scenario, where
each of the pre-calculation runs has only one node in the preference vector, PathRank
is guaranteed to outperform FolkRank regarding runtime. Moreover, by limiting the
maximum path length via the parameter pl, the runtime can be further reduced. As we
later show in the evaluation, pl can be set to almost minimal values without a decrease
in prediction accuracy.

4. EXTENSION WITH CONTENT-DATA

Here we present our methods for extending FolkRank with content data. These
content-aware recommenders include the textual content of documents in the recom-
mendation process as well as utilising the full folksonomy graph. This allows us to
relate new unseen documents to already tagged (different) documents in the system
and make recommendations based on the tag assignments related to those known
documents. We can thus overcome the new document problem and make the solely
folksonomy-based recommenders applicable to full real-world datasets. For test posts
where the query user is new (as well), we have to default to the most popular tags
found to be related to the content of the query document and cannot personalise these
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to the user, which is acceptable since the user does not have a tagging profile yet. In
the following sections we first describe the document content model we use and then
present our content-aware graph recommenders.

4.1. Document Model

For including data from the content of documents in the tag recommendation algo-
rithms, we consider two sources of content words: document title and fulltext content.
We convert all words to lower-case, remove stop-words as well as all words which have
a length of less than 3 or more than 20 characters, and use the remaining words with-
out stemming. Each document is represented by a bag-of-words vector of content words
with Tf-Idf scores for each word. Tf-Idf stands for Term frequency-Inverse document
frequency and we compute it as

Tf-Idf(wl, dj) =
tc(wl, dj)

|dj |
∗ log2

|D|

dc(wl, D)

where D is the set of all documents, tc(wl, dj) is the term count equal the number of
occurrences of word wl in document dj , and dc(wl, D) is the document count equal to
the number of documents in the collection containing word w. We normalise the Tf-Idf
scores to sum to 1 per document.

A factor to consider is that the content data of websites can change over time. The
title, content and meta-data of a website which is bookmarked can be updated and
differ from one post to the next. This presents a problem, as well as additional data
for analysis. The fulltext content of the bookmarked website itself is only available in
the current version at the time of retrieval, however, the BibSonomy dataset provides
different versions of metadata for a document at the time of each post. Where avail-
able, we concatenate the title variations of a document from all its posts and treat the
resulting text string as the single document title. This makes the term count measure
tc(wl, dj) in our Tf-Idf calculation more powerful as words which persist over several
title variations will end up with a higher score than words which only appear in a few
of the variations.

4.2. ContentFolkRank

ContentFolkRank (which we first presented in [Landia et al. 2012]) includes the con-
tent of documents directly into the graph. We adapt the original folksonomy graph of
FolkRank to model triplets (user ,word , tag) instead of (user , document , tag). Each tag
assignment in the training data (u, d , t) is converted to a set of tag assignments with
words instead of documents {(u,w1, t), (u,w2, t), . . ., (u,wk, t)} where each of the words
w is in the content of d. Figure 8 shows the standard FolkRank graph with document
nodes on the left, and the ContentFolkRank graph modelling the same data on the
right, where document d1 is represented by word nodes w1, w2 and w3, and document
d2 is represented by word nodes w3 and w4.

In ContentFolkRank we use custom rules for setting the weights of different types
of edges, namely user-word edges, word-tag edges and user-tag edges. To prevent the
content length of a document, and thus the number of word nodes representing the
document in the graph, from influencing the recommendation process, we utilise Tf-
Idf scores when setting the edge weights. The Tf-Idf scores are normalised to sum to
1 per document. This provides suitable weights for the edges of word nodes represent-
ing the document in the graph and ensures that the number of words itself does not
impact the generated recommendations. Additionally, the Tf-Idf scores provide appro-
priate weights for capturing the varying importance of different content words to the
document, and have been shown to be beneficial in [Landia et al. 2012]. Since several
documents, in our example d1 and d2, tagged by the same user u1 can contain the same
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Fig. 8. FolkRank and ContentFolkRank

word w3, the weight of the edge between u1 and w3 is set to the sum of the normalised
Tf-Idf scores of w3 in d1 and d2. The same holds for edges between word and tag nodes.
The final edge weights thus take the content importance of words as well as tagging
co-occurence in the folksonomy into account. The weight of the edges between user
and tag nodes are solely based on co-occurrence since only complete documents (and
not individual words) can be tagged by users, and are set to the number of posts in
which the user has used the tag.

The formulae for calculating the weights of the different types of edges are the fol-
lowing. For user-word edges, the edge weight is given by

edgeWeight(u,w) =
∑

dj∈Posts(u,w)

Tf-Idf(w, dj)

where Posts(u,w) is the set of posts by user u where the document contained word w.
Similarly, for word-tag edges we calculate the weight using

edgeWeight(w, t) =
∑

dj∈Posts(w,t)

Tf-Idf(w, dj)

where Posts(w, t) is the set of posts tagged with t (by any user) where the document
contained word w. For user-tag edges there is no need to include Tf-Idf scores as com-
plete documents are tagged by users and words cannot be tagged on their own, so we
use the formula

edgeWeight(u, t) =| Posts(u, t) |

where Posts(u, t) is the set of posts where user u used tag t.
The preference vector for each test post is given by (uq, w1, w2, . . . , wk) where uq is the

query user and each word w is in the content of the query document dq. The preference
weight for each word w is set proportional to its Tf-Idf score in dq, and is given by

pw(w) = Tf-Idf(w, dq) ∗ (1 − b) ∗ PW

where the Tf-Idf weights are normalised to sum to 1 per document, b is the parameter
for setting the balance in preference weight between the query user and document,
and PW is the total preference weight. The preference weight of the query user is the
same as before without content: pw(uq) = b ∗ PW .
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4.3. SimFolkRank

Our second approach of including content into the recommendation process is to utilise
a content-based document similarity measure and include content information implic-
itly rather than introducing words directly into the graph. The graph model of Sim-
FolkRank does not contain content data itself and documents are represented by doc-
ument nodes, using either the original folksonomy graph (SimFolkRank) or the Post
Graph model (SimFolkRank PG). However, for each test post, we construct the prefer-
ence vector to include not only the query document (if it already exists in the graph) but
also a predefined number of training documents most similar in content to the query
document. In our experiments we evaluate the effects of including different numbers
of most similar documents in the preference vector. The similarity between documents
is calculated based on the words in either the title or the full text of the documents.
The metric we use is cosine similarity of the bag-of-words document vectors with nor-
malised Tf-Idf scores. Due to the problem that document content data can vary over
time (as discussed in Section 4.1), it can be the case that a query document which also
exists in the graph as a training document ends up with a low content similarity score
with itself. To overcome this issue, we include an additional step where we set the sim-
ilarity of query documents with themselves to 1, provided that they appear as training
documents as well. Once the cosine similarity of a query document to each training
document is calculated, we normalise the similarity scores to sum to 1 for the query
document. This ensures that the number of similar training documents with cosine
similarity greater than zero does not affect the recommendation process.

The preference weight of each training document d included in the preference vector
is a function of its similarity to the query document dq and is given by

pw(d) = sim(d, dq) ∗ (1− b) ∗ PW

where sim(d, dq) is the content-based similarity between d and dq normalised to sum to
1 over all documents d similar to dq, parameter b determines the balance in preference
weight between the query user and document, and PW is the total preference weight.
The preference weight of the query user is the same as before: pw(uq) = b ∗ PW . We
apply and evaluate this approach of including content with iterative weight spread-
ing (SimFolkRank, SimFolkRank PG) as well as our PathRank weight spreading algo-
rithm (SimPathRank, SimPathrank PG).

5. EXPERIMENTAL SETUP

5.1. Datasets

Our datasets consist of tagging data from the social bookmarking websites CiteULike4,
Delicious5 and BibSonomy6, and additionally downloaded content data for our content-
aware recommenders. Official snapshots of CiteULike and BibSonomy are available
on their respective websites. We use the CiteULike 2012-05-01 snapshot, and the Bib-
Sonomy 2012-07-01 snapshot. The BibSonomy social bookmarking website and dataset
is split into two separate sections: BibSonomy Bookmark which are website bookmarks
and BibSonomy BibTeX which are publication bookmarks. We treat these two subsets
of BibSonomy as separate datasets. Delicious does not provide snapshots of their data.
Here we use a dataset that was obtained by crawling the Delicious website in 2005,
the specifics of which are given in [Hotho et al. 2006].

Additionally, we downloaded all of the available pages from the URLs in the Delcious
and BibSonomy Bookmark datasets, and all of the BibTeX entries for CiteULike. For

4http://www.citeulike.org/
5http://delicious.com/
6http://www.bibsonomy.org/
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our content-aware recommenders the two content data sources are the title and full-
text for websites, and the title and abstract for publications. Our Delicious crawl and
the BibSonomy Bookmark and BibSonomy BibTeX snapshots provide the titles of doc-
uments. For CiteULike we extracted the titles from the downloaded BibTeX entries.
The fulltext content for Delicious and BibSonomy Bookmark is the page text of the
bookmarked websites, which we extracted from the downloaded pages. For CiteULike
and BibSonomy BibTeX, where the bookmarked documents are publications, we use
the abstracts from the BibTeX entries as the fulltext content.

5.2. Pre-Processing

We pre-processed all of the datasets by casting all tags to lower case, removing dupli-
cate tag assignments that might occur as a result of this, and removing posts which
have no tags. Additionally, for CiteULike there are some automatically generated tags
which occur very frequently. In order to clean the dataset of these tags, we removed all
tag assignments where the tag equals “no-tag” or “bibtex-import”, or matches the reg-
ular expressions “*file-import*” or “*import-*”. For BibSonomy BibTeX we removed all
tag assignments where the tag is “jabrefnokeywordassigned” or “myown” since these
occur with disproportional frequently and can single-handedly skew results.

5.3. Evaluation Metrics

We use recall@N , precision@N and F1@N as our success measures, where N is the
predefined number of tags to be recommended. Recall measures the ratio of correct
recommendations to the number of true tags of a test post, whereas precision measures
the ratio of correct to false recommendations made. Recall and precision are given by

recall =
TP

TP + FN

precision =
TP

TP + FP

where TP (true positives) is the number of correct tags recommended, FP (false posi-
tives) is the number of wrong recommendations and FN (false negatives) is the number
of true tags which were not recommended. F1 is a combination of recall and precision
and is given by

F1 =
2 ∗ precision ∗ recall

precision+ recall

Since we believe recall to be more important than precision in the context of tag rec-
ommendation, as long as N is kept reasonably low (<=10), we use recall in the evalu-
ation phase to identify the best recommenders and configurations. We then give recall
as well as F1 for the final results.

5.4. Training and Test Sets for Unpruned Tagging Data

To construct a training and test set for the experiments on the full/unpruned tagging
data, we use the following date-split approach for each of the datasets. The test set
consist of all posts in the most recent two months of the data which provides us with
a large enough test set size. The resulting numbers of test posts are 76,491 for Cite-
ULike, 1.7M for Delicious, 9,506 for BibSonomy Bookmark and 2,843 for BibSonomy
BibTeX. The training set is a sample of the data prior to the two test months. We use
a sample and not the complete historical data for our training set since the FolkRank-
type algorithms have a high computational complexity and expense. Note that we only
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apply sampling for the training dataset, while in the test set all posts made in the test
time-frame are included.

The aim of our sampling methodology for the training set is to achieve a small
enough sample size for our models to generate recommendations within a reasonable
time while introducing as little bias into the models as possible. To create the training
sample we start by selecting the 12 months of data prior to the test months. Social tag-
ging datasets have been shown to be time-sensitive where popular post topics as well
as users’ interests change over time, and we believe that posts which are older than a
year from the test period provide less predictive data for generating recommendations.
We then take a stratified sample of documents, where the stratification is based on the
number of posts that the documents appears in. Finally, we retrieve all posts related
to the sampled documents to create our training posts sample. This approach ensures
that our training sample contains documents which are tagged frequently as well as
documents which are tagged infrequently, and reduces the bias towards documents
which are only tagged once that would exist if sampling the documents uniformly at
random. The resulting sample has the same distribution of documents over number
of posts as the full dataset. We employ this approach of first sampling documents and
then retrieving the related posts since the number of documents and the resulting size
of the content data is the limiting factor which impacts recommendation speed the
most in our content-based approaches. Moreover, documents don’t suffer from other is-
sues that exist when sampling users or tags and then retrieving all related posts. With
users, the number of posts per user varies much more than the number of posts per
document, partly due to some users using bulk imports and automatic post submission
plug-ins which make them much more frequent users of the system than others. With
tags, there is also much more variance in the number of posts per tag than with docu-
ments, where the issue is that tags such as “toread”, which hold no collaborative value
have, a high number of related posts.

We aim to find a sample size which strikes a good balance between improving the
recommendation speed of the algorithm and reducing sample bias. We want to select
a sample size at which we achieve a low variation in prediction quality for different
samples of the same size, and at which the increase to a larger sample is not justified
by a significant increase in prediction quality. To find an appropriate sample size, we
create 5 different training samples of the same size and evaluate models built on them
against the test set to find the amount of variation in prediction results. We then
increase the sample size to a larger value and repeat the same process, until we are
confident that the sample size gives a low variation in different samples of the same
size and the move to a larger sample does not significantly increase results. We start
at a sample size of 100,000 posts, and increase the number of posts by 50,000 until we
are satisfied with the resulting samples.

Figures 9 and 10 give the results with standard FolkRank for each of the examined
training sample sizes on the Citelike and Delicious datasets respectively. The left side
shows the recall graph of each of the individual sample runs, where runs of the same
sample size are plotted in the same line style. The box plot on the right gives the aver-
age recall@5 per sample size. The more we increase the sample size, the less variation
in results on samples of the same size, and the improvement in average recall is also
smaller. As an outcome of this process we have found that a sample size of (roughly)
250,000 posts gives acceptable results. For BibSonomy Bookmark and BibSonomy Bib-
TeX we do not sample the training data and use all posts from the year previous to the
test time-frame, as the number of posts in these datasets is sufficiently small. The
statistics of the final training and test sets used in our experiments are given in Table
I. The sampling does have the effect that some of the tags in the test set of CiteULike
and Delicious will not be present in their respective training sets, and thus cannot
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Fig. 9. Recall with FolkRank for Training Sample Sizes of CiteULike
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Fig. 10. Recall with FolkRank for Training Sample Sizes of Delicious
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Fig. 11. Theoretical Maximum Recall Achievable With Existing Tags

be recommended successfully by any of the evaluated recommenders. In Figure 11 we
show the theoretical maximum possible recall that could be achieved on the test set
of each dataset with recommending tags that exist in the training set. For CiteULike
and Delicious the maximum recall is given for our training set sample and as well as
the full training data. The theoretical maximum at N recommended tags is calculated
by assuming that for each test post M correct tags are recommended at each value
of N , where M is the minimum of N and the number of true tags for the test post
which also exist in the training data. The extent of the problem of not including all
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Table I. Training and Test Set Sizes (No-Core)

Training Set (250k Sample)
Posts Tag Assignments Users Docs Tags

CiteULike 249,968 1,148,011 12,908 218,601 138,024
Delicious 253,890 566,173 30,848 109,201 56,338
BibS. Bookmark 42,325 179,599 982 40,679 24,830
BibS. BibTeX 17,560 66,529 1,264 16,360 17,307

Test Set
Posts Tag Assignments Users Docs Tags

CiteULike 76,491 301,779 4,930 69,161 52,576
Delicious 1,746,483 4,431,116 43,997 877,593 175,146
BibS. Bookmark 9,506 30,053 243 9,425 4,811
BibS. BibTeX 2,843 10,657 333 2,746 3,943

training data tags in the samples is not too great, and we do not believe that this will
impact the validity of our conclusions as all of the evaluated recommenders will suffer
from this problem to the same degree. In addition to the training-test split, we create
a separate evaluation split for each dataset that we use for comparison of individual
methods and for parameter tuning. The evaluation test and training sets are created
from the datasets prior to the two months of real test data, in the same fashion as
described above.

5.5. Training and Test Set for Post-Cores Level 2

For completeness we also evaluate our approaches on each of the datasets at post-core
level 2. Post-cores at level n have the constraint that each of the users, document and
tags has to appear in at least n posts. For each dataset, we create the post-core by
iteratively removing posts where the user, document or one of the tags does not satisfy
the condition that they appear in at least two posts. We then use a leave-one-out per
user split to create the training and test sets by selecting the most recent post for
each user and placing it in the test set. For parameter tuning we create an additional
evaluation split from the resulting training data.

6. EVALUATION AND RESULTS

In our evaluation we aim to find the best combination of our proposed approaches
by answering the research questions given below. In order to achieve this we run ex-
periments on the evaluation set where we set default values for the parameters of
dampening factor (d = 0.5) and balance in query preference weight (b = 0.5). Having
identified the best strategies, we evaluate the remaining parameters, and finally give
results on the real test set with tuned parameters in Section 6.5.

Content Inclusion
— How should content be included: directly into the graph at the word level or indi-

rectly at the document level?
— What is the most predictive source of content: document title or fulltext content?
— How much content should be included?

Folksonomy Graph Model
— Which of the examined graph models provides the most accurate representation

of the tagging data?

Deep Folksonomy Graph
— Is iterative weight spreading worth the computational expense?
— Does exploring the deeper folksonomy graph provide an improvement to tag pre-

dictions?
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Fig. 12. FolkRank: Direct Content Inclusion via Word Nodes vs. Indirect Content Inclusion via Similar
Documents

6.1. Content Inclusion

6.1.1. Direct vs. Indirect Content Inclusion. In Figure 12 we show the results of evaluating
our two methods for including content into FolkRank. On all datasets, the indirect con-
tent inclusion method of adding similar documents to the preference vector (SimFolk-
Rank) gives better results than incorporating the document content directly into the
graph (ContentFolkRank). The biggest difference is on the BibSonomy datasets, while
for CiteULike the results are almost identical, with SimFolkRank performing slightly
better. We assume that ContentFolkRank gives worse results due to the word nodes
in the graph being connected to many more tags compared to the document nodes in
the standard folksonomy graph used by SimFolkRank. The same individual word can
appear in a variety of documents from different domains and thus be connected to
many tags which are themselves unrelated. To accurately capture the query document
several words are required in combination. The predictions generated by ContentFolk-
Rank can be influenced by the edge configuration of individual words, which might be
most connected to tags from a different domain than the query document whilst being
connected to appropriate tags with less edge weight. In SimFolkRank, the similarities
to training documents are calculated based on the whole representation of the query
document, and in the graph each of the similar documents is likely to be connected
to tags from one or a few domains only. In the larger datasets of CiteULike and De-
licious the difference between the two approaches is smaller. ContentFolkRank comes
close in results to SimFolkRank, but does not outperform it. This suggest that with
more data the weighting methods used in ContentFolkRank, which are based on Tf-
Idf scores and include a co-occurrence element, can more accurately model the query
document as well as the edge weights of words in the graph. With sufficient data the
outcome of ContentFolkRank is thus very similar to SimFolkRank. However, in addi-
tion to producing better results SimFolkRank is also computationally less expensive
than ContentFolkRank since the ContentFolkRank graph is much larger due to the
many word nodes.

6.1.2. Content Sources. When comparing the title and fulltext content of documents
as potential document representations (Figure 13), the title performs better in most
cases. The biggest difference is on the Delicious and BibSonomy Bookmark datasets,
as here the fulltext content is the crawled page content of the bookmarked websites. In
CiteULike and BibSonomy BibTeX, the fulltext representation is given by the abstract
of the bookmarked research papers which we expect to be a more accurate document
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Fig. 13. Content Sources for SimFolkRank: Title vs. Abstract/Fulltext

0 20 40 60 80 100

similar documents

0.05

0.1

0.15

0.2

0.25

R
e
c
a
ll
@

5

CiteULike

0 20 40 60 80 100

similar documents

0.05

0.1

0.15

0.2

0.25

R
e
c
a
ll
@

5

Bibsonomy BibTeX

0 20 40 60 80 100

similar documents

0.05

0.1

0.15

0.2

0.25

R
e
c
a
ll
@

5

Delicious

0 20 40 60 80 100

similar documents

0.05

0.1

0.15

0.2

0.25

R
e
c
a
ll
@

5

SimFolkRank

FolkRank

Bibsonomy Bookmark

SimFolkRank Number of Similar Documents in Preference Vector

Fig. 14. Content Amount: Number of Similar Documents in Preference Vector of SimFolkRank

description. On BibSonomy BibTeX, the fulltext content actually performs slightly bet-
ter than the title.

6.1.3. Content Amount. To evaluate the amount of content to be included we vary the
number of similar documents in the preference vector of SimFolkRank and give the
results in Figure 14. The content source in these experiments is the document title. The
x-axis gives the number of most similar documents included in the preference vector
and the y-axis is recall when recommending five tags. The left-most point and the
horizontal line in each graph gives the recall@5 without including content. The results
indicate that prediction results improve the more content is added, where the biggest
gain is achieved by the most similar documents. The only exception is BibSonomy
BibTeX where including content does not give a significant gain. Except for BibSonomy
BibTeX, the shape of the plots and the fact that the results do not decrease at higher
numbers of similar documents also confirms that normalised cosine similarity is an
appropriate metric for measuring document similarity in our scenario.

6.2. Graph Models

6.2.1. Post Graph Scores Retrieval Method. Before comparing the graph construction
methods we first evaluate the two alternative scores retrieval methods of the Post
Graph model described in Section 3.1. The approach of retrieving post node weights
from the graph and then calculating the tag scores based on these gives slightly better
results than retrieving the tag node weights directly from the graph, although it does
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Fig. 15. Post Graph Scores Retrieval Method
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Fig. 16. Post Graph vs. Folksonomy Graph Models

not seem to make a significant difference. Since it also makes sense that the number
of tags in each post should not influence the scores of the tags they contain, we use
the strategy of calculating tag scores from post nodes for all approaches using the Post
Graph model in the subsequent experiments.

6.2.2. Post Graph vs. Folksonomy Graph Models. As shown in Figure 16, without content
data there is no real difference in results with the different models, and the folkson-
omy graph (FolkRank), Adapted Graph (FolkRank AG) and Post Graph (FolkRank PG)
give almost identical results. However, when including content data, the Post Graph
model performs consistently better than the folksonomy graph, indicated by SimFolk-
Rank PG performing better than SimFolkRank across all datasets. We believe the im-
proved results to be due to the more accurate data representation of the Post Graph
model, as discussed in Section 3.1. With more nodes in the preference vector, the im-
plicit assumptions of the folksonomy model have a relatively greater impact on tag
predictions scores and the Post Graph proves to be the more robust model.

6.3. Weight Spreading Methods

6.3.1. Iterative vs. PathRank Weight Spreading. We compare the iterative spreading algo-
rithm of FolkRank to our PathRank weight spreading approach on the folksonomy
graph (Figure 17) and the Post Graph model (Figure 18). The two weight spreading
methods produce very similar results on both models across all datasets. However,
PathRank is a much quicker weight spreading algorithm. It does not adjust the weight
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Fig. 17. Iterative vs. PathRank Weight Spreading on Folksonomy Graph
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Fig. 18. Iterative vs. PathRank Weight Spreading on Post Graph

of each node in several iterations to find the optimal distribution of weights reflecting
the overall edge connections in the graph. In other words, it does not consider the gen-
eral (non-personal) importance weight of nodes which is implied by the graph structure
itself. This suggests that the impact of the general importance (or authority) of nodes
in the graph does not provide a significant benefit to the tag predictions, and the ex-
pensive iterative spreading of the non-personalised weights can be omitted to speed up
the recommendation process. Our evaluation of the dampening factor in Section 6.3.2
further confirms this conclusion as the best results with FolkRank’s iterative weight
spreading are achieved at the lowest setting for d, which translates to giving the least
relevance to general importance weights.

6.3.2. Value of General Importance Weights. To examine the value of including the gen-
eral node weights in the recommendation process, we evaluate different settings for
the dampening factor d and give our results in Figure 19. Without the inclusion of
content data there is not much impact on the results for the examined values of d.
This is because without content the whole preference weight is given to a maximum of
two preference nodes, the query user and document, which means that there is a huge
difference in weight between the preference nodes and any one of the other nodes in
the graph. Non-preference nodes, and thus general importance weights, don’t have a
chance to impact the predictions except for extreme values of d such as 0.9, at which
setting we observe a very slight decrease in results. With content data the preference
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Fig. 19. Effect of Dampening Factor d on Recall@5

weight is distributed among a maximum of 101 preference nodes, which include the
query user and potentially 100 training documents similar to the query document.
Here the impact of the general non-personalised weights can be observed at lower val-
ues of d. In all cases, the best results are achieved with setting d to the lowest examined
value of 0.1. This indicates that the general weights in the graph do not provide a bene-
fit to the accuracy of tag predictions, and in fact have a negative impact when given too
much relevance. We conclude that to maximise the tag prediction accuracy, d should
be set to the lowest value, in effect ignoring the general/non-personalised weights of
nodes in the graph. With the lowest examined setting of d = 0.1, the general weights
can still act as tie-breakers for tags in the candidate set which have otherwise equal
personalised weights. However, our results in the comparison with PathRank weight
spreading, which does not utilise general weights, suggest that there is no significant
improvement over randomly ranking tags which have equal weights. This comparison
is made in the previous Section 6.3.1 and in the evaluation on the real test set with
tuned parameters in Section 6.5.

6.3.3. Predictive Value of Deep Graph. The parameter of maximum path length pl in our
PathRank weight spreading approach is especially interesting since it allows us to ex-
amine the value of exploring the graph beyond the immediate neighbourhood of the
query user and nodes related to the query document. We show the outcome of setting
different values of pl in Figure 20 on the folksonomy graph and Post Graph models.
The x-axis gives the value of pl and the y-axis is recall@5. With the lowest setting of
pl only the immediate neighbourhood is explored, where as we move to the right of
the x-axis longer paths are also traversed by the weight spreading algorithm. With
the Post Graph model we retrieve tag scores as the sum of weights of post nodes they
are connected to. Here, the next posts and thus additional tags beyond the immediate
neighbourhood (of path length 1) are encountered at a path length of 3. Overall, our re-
sults suggest that there is actually not much value in considering the graph beyond the
immediate neighbourhood of the preference nodes. There is a small difference that can
be observed between path lengths 1 and 3 which we explore in detail below. In general,
the conclusion that no significant increase is achieved is in line with our previously
published results [Landia et al. 2012], where our less expensive co-occurrence recom-
mender (exploring only the immediate neighbourhood of the query user and document)
performed equally well to FolkRank. Moreover, with the PathRank weight spreading
algorithm, we have now removed the other influences on the weight spreading cal-
culation which could have cascaded or reduced the impact of the deeper graph. Even
without swash-back, triangle-spreading of weights and general importance scores, the
weights spread through long paths in the deep graph do not provide a significant im-
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Fig. 20. PathRank: Effect of Different Settings of Maximum Path Length pl

provement. The results indicate that the deeper graph does not provide a beneficial
re-ranking of existing candidate tags in the immediate user or document neighbour-
hood. With the setting of pl = 1 where only the immediate neighbourhood is considered,
tag nodes which have equal weight will be ranked randomly in the final predictions.
Utilising the deep graph to re-rank these tags does not significantly improve results
over this random ranking.

Our first detailed observation is that after the first influence of the deeper graph at
path length 3, we cannot observe any significant impact, positive or negative, caused
by exploring longer paths. Along the lines of [Wetzker et al. 2010], this suggest that
users of (broad) folksonomies have a highly personal tagging behaviour. It is thus very
difficult to traverse more than a few edges in the graph and still weigh the encountered
nodes in a manner relevant to the the preference node at which the path started. The
only small change that can be observed is up to a path length of three. As a side note,
the Post Graph model gives better results than the folksonomy graph at a path length
of one. At this setting the only difference in the tag scores calculation between the two
models is that for the Post Graph the tag scores are given as the sum of weights of
post nodes they are connected to. As discussed in section 3.1, this follows from the Post
Graph model’s assumption that the number of tags of each post should not influence
tag scores, whereas the plain folksonomy graph assumes that if there are many tags
in a post then each of them is less important. This again suggests that the assump-
tions made by the Post Graph model provide a more accurate representation of the
underlying social bookmarking data.

Another interesting observation in Figure 20 can be made from the results with the
folksonomy graph model on the Delicious dataset. In this case there is a small im-
provement at a path length of 3. What is interesting here is that the increase does not
occur at pl = 2 but at pl = 3. In the folksonomy graph, the tags found at a path length
of 2 have paths of the form up → d→ t or dp → u→ t from the user preference node up

or the document’s preference node(s) dp respectively. Including these additional tags
is conceptually similar to tag expansion via the document or user nodes related to the
preference node. At a path length of 3, paths of the form up → t → {u ∨ d} → t and
dp → t→ {u∨ d} → t are also included which is conceptually similar to performing tag
expansion by using tag-tag co-occurence measure. The small improvement in predic-
tion accuracy seems to be due to using tag-tag co-occurence, rather than giving weight
to tags which are related to non-tag nodes from the preference node’s immediate neigh-
bourhood. On the BibSonomy Bookmark dataset we can observe a small decrease at
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Fig. 21. Parameter Tuning of Balance b Between Query User and Query Document

pl = 2 when including content with SimPathRank. With the Post Graph model and
content (SimPathRank PG), there is also a decrease on BibSonomy as well as CiteU-
Like when going from pl = 1 to pl = 3. As there are no paths with length 2 leading
to additional tags in the Post Graph, the influence of tag expansion both via non-tag
nodes and tag-tag co-occurrence is included at the same time at pl = 3. It seems to be
the case that tag expansion via non-tag nodes decreases results. Along the lines of our
discussion in Section 3.2.1, this seems to suggest that tags found related to non-tag
nodes of the preference node but not directly connected to the preference node itself
should not be given an increased weight. As they seem to worsen results it might be
appropriate to decrease their weight instead. This suggest a potential that negative
feedback could be extracted via a more complex analysis of the graph, which we intend
to investigate in the future.

Overall, we conclude that spreading weight into the deeper graph does not provide a
significant benefit to tag recommendations and can in some cases even harm prediction
scores. The only increase in scores is given by spreading weight from tags to further tag
nodes, essentially performing a tag set expansion via tag-tag co-occurrence. Given the
complete graph model this is very difficult to separate from expanding the tag set via
non-tag nodes, which seems to decrease prediction accuracy. To still utilise the tag-tag
co-occurrence data we believe that separate approaches which directly model the tag-
tag relationships would be more appropriate and produce better results. However, even
though the assumptions made by conventional positive-reinforcement weight spread-
ing methods do not seem to hold for the social bookmarking domain, some useful in-
formation could potentially be gained from the deep folksonomy graph by different
approaches. A rule-driven analysis of small subsections of the graph could be used to
make deductions about implied negative feedback, to either aid the recommendation
process directly or to improve the accuracy of a tag-tag similarity metric by including
negative scores.

6.4. Tuning of Remaining Parameters

6.4.1. Balance in Preference Weight Between Query User and Query Document. In Figure 21
we present the results for different settings of b, which determines the balance in pref-
erence weight between the query user and the query document. Once again there is not
much difference in results without including content data (FolkRank, FolkRank PG,
PathRank PG). Since most of the query documents in the test sets are new, the prefer-
ence vector without content will only include the query user in the majority of cases.
For the cases where the document does exist in the graph, and thus will be included
in the preference vector, each of the tags connected to the query document will usually
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receive more weight than each of the tags connected to the query user since users are
usually connected to many more tags than documents are. The tags connected to the
query user only have a chance to outweigh the tags connected to the query document
for high values of b, at which settings we see a slight decrease in results. However, with
content data (SimFolkRank, SimFolkRank PG, SimPathRank PG) the preference vec-
tor contains the query user as well as several documents related to the query document
and we can clearly observe the impact of b. The results confirm that there is value in
introducing the parameter b to explicitly set this balance instead of using the strategy

of the original FolkRank algorithm of setting b = |U|
|U|+|D| , which results in values lower

than 0.1 for all of the datasets except Delicious where it would be 0.2. The best results
are achieved with setting b to 0.5 for CiteULike, 0.3 for Delicious, and 0.6 for both
BibSonomy Bookmark and Bibsonomy BibTeX.

6.5. Results on Test Set

Here we present our final results with our best approaches and with tuned parameters
on the test set of each of the datasets. The content source in all of the content-aware
approaches is the document title. For approaches using FolkRank’s iterative weight
spreading the dampening factor is set to d = 0.1, and for approaches using PathRank
the maximum path length is set to pl = 1. The balance b in preference weight is set per
dataset to the best value that was found in the parameter tuning runs.

Figures 22 and 22 show the recall and F1 respectively, on the test set for each of
the datasets with tuned parameters. Including content into the recommendation pro-
cess provides a significant increase in results. The results on the test set are in line
with our previous conclusions on the evaluation set. SimFolkRank PG produces bet-
ter results than SimFolkRank over all datasets, suggesting that the Post Graph is a
more accurate model of the tagging data than the folksonomy graph. Furthermore,
PathRank PG and SimPathRank PG give almost equivalent results to FolkRank PG
and SimFolkRank PG respectively which suggests that the iterative computation and
general importance weights in FolkRank’s weight spreading approach do not provide
a significant benefit to tag predictions. While producing comparable results, the Path-
Rank weight spreading method is much less computationally expensive. Furthermore,
the results with SimPathRank PG, which is among the best recommenders across all
datasets, are achieved with a parameter setting of pl = 1. At this setting only the
immediate neighbourhood of preference nodes is considered. None of the approaches
improve results by utilising the deep graph over SimPathRank PG with pl = 1 which
is essentially a user-tag and document-tag co-occurrence recommender at this setting.
The results on BibSonomy Bookmark without including content data are due to the
fact that a large portion of the test posts in BibSonomy Bookmark contain new users
as well as new documents. For these test posts the algorithms which don’t include con-
tent data (FolkRank, FolkRank PG and PathRank PG) default to recommending the
overall highly-ranked tags in the graph without personalisation. The three approaches
have different rankings for the top three tags in the general recommendations which
leads to the results shown.

6.6. Post-Core 2

For completeness, we show the recall and F1 for each of the datasets’ post-cores at
level 2 in Figures 24 and 25 respectively. The results with all methods are very simi-
lar except on the smaller Bibsonomy datasets. However, there is no improvement with
including content data. In fact, including content data makes results worse in most
cases. Since (almost) all of the documents in the test set for post-cores also exist in the
training data, they all have previously assigned tags available which can be recom-
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Fig. 24. Post-Core 2 Recall on Test Set with Tuned Parameters
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Fig. 25. Post-Core 2 F1 on Test Set with Tuned Parameters

mended. There is no need to additionally include similar documents in the preference
vector as well since the exact query document exists in the graph. Adding the content
in this case has a negative effect on tag predictions. This is an interesting result and
suggests that the best strategy for the future might be to only include the content if
the query document does not exist in the training data, for experiments on post-core 2
as well as unpruned datasets.

7. CONCLUSION AND FUTURE WORK

In this paper we have presented novel adaptations and extensions to FolkRank and
conducted an in-depth analysis of the accuracy of the folksonomy graph model, the
iterative weight spreading algorithm of FolkRank and the value of exploring the deep
folksonomy graph. The extension of FolkRank with content data resulted in a sig-
nificant increase in tag recommendation accuracy and addressed the new item prob-
lem in tag recommendation, as well as providing further insight into the FolkRank
algorithm. As part of our examination of the folksonomy graph structure, we have
proposed an improved model which captures the tagging data more accurately and
produces better tag recommendation results. In our analysis of the iterative weight
spreading method of FolkRank, we have shown that the general un-personalised node
weights do not provide a positive impact on tag recommendations, and if given too
much relevance hurt the accuracy of the algorithm. Since the general node weights are
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one of the main reasons for FolkRank’s high complexity, we think it is an important
finding that they can be safely omitted. Furthermore, we have shown that a simpler
weight spreading algorithm, PathRank, which works in a similar manner to breadth-
first search, produces comparable results to the much more complex iterative weight
spreading algorithm employed by FolkRank while being computationally less expen-
sive. The most intriguing result of our analysis was that even though both FolkRank’s
iterative weight spreading and our simpler PathRank spreading algorithm have the
potential to utilise the deep folksonomy graph, they do not benefit from doing so in
practice. Moreover, we have presented an in-depth discussion as well as a direct evalu-
ation of the value of exploring the deep folksonomy graph. We conclude that exploring
the graph beyond the immediate neighbourhood of the query nodes with conventional
weight spreading methods does not provide a significant increase in tag recommen-
dation accuracy and can in some cases even hurt recommendations. The assumption
that closeness in the graph always implies a positive relationship does not hold be-
yond the immediate neighbourhood of nodes in social tagging graphs. This suggests
that the foundation of graph-based recommenders (and to a lesser extent collaborative
filtering), which are traditionally applied to two-dimensional datasets, does not apply
to the three-dimensional user-document-tag relationships found in social tagging data.
In summary our main conclusions are as follows.

Content Inclusion in Tag Recommendation
— Including content into the recommendation process addresses the new document

problem and significantly increases results on full/unpruned datasets.
— The title of documents is a better content source and provides a more accurate

description of documents than the fulltext content.
— Including content at the document level produces a more accurate recommender

than including content at the word level and constructing user-word and word-
tag relationships, especially for smaller sized social tagging datasets.

Folksonomy Graph Model
— Explicitly including post-membership information into the graph provides a

model which makes more accurate assumptions about the relationships in the
tagging data and produces improved results over the traditional folksonomy
model.

Deep Graph Exploration
— General importance/authority scores, which make iterative weight spreading

computationally expensive, do not provide an improvement to the accuracy of
tag recommendations and can be omitted to reduce complexity.

— The expensive exploration of the deep tagging data graph with conventional
weight spreading methods does not provide an improvement to tag recommen-
dations and can in some cases decrease results.

— The assumption that closeness in the graph always implies a positive relationship
does not hold in social tagging datasets beyond the immediate neighbourhood of
nodes.

In the future we plan to further explore methods to leverage the potential benefit of
including the information contained in the deep folksonomy graph for tag recommen-
dation. We think that by using rule-based methods which analyse smaller subgraphs
of the folksonomy, implicit negative feedback could be extracted. This could be used to
include negative scores in user-tag and especially document-tag relationships in order
to reduce the scores of tags which are likely to be incorrect for a specific user or doc-
ument. Moreover, the negative feedback could be incorporated into tag-tag similarity
measures to make these more accurate. Another interesting research direction are the
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sampling methods used in tag recommendation. As social bookmarking websites and
tagging datasets get larger, it is becoming infeasible to build models on and analyse
all of the training data, especially with methods which examine complex relationships
in the data. We plan to further explore this problem and evaluate different sampling
methods in their ability to produce unbiased and predictive samples of training data.
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