
You Shall Not Pass: Detecting Malicious Users at
Registration Time

Christian Kater
Leibniz University Hannover

ch.kater@gmail.com

Robert Jäschke
Leibniz University Hannover

jaeschke@L3S.de

ABSTRACT
Spam is a widespread problem for many online services. The
use case in this paper is the social bookmarking system Bib-
Sonomy, which received over 150 times more registrations
from spam users than from normal users over the last ten
years.

A common approach to fight spam is to use machine learn-
ing to classify the users into good or malicious users. Based
on information the users provide to the service in form of
profile information or posts, features are created from which
a classifier can make its decision. However, this often means
that the accounts of the spam users are already active and
can post their spam. In this work we propose an approach
for deciding at registration time whether a user is malicious
or not. In order to achieve this goal, we extracted 177 fea-
tures from the information the users provide during the reg-
istration process, their IP address, and registration time.
With these features we used state-of-the-art classifiers to
identify users as spammers or regular users. With the best
classifier, we could reach an AUC of 0.912.

CCS Concepts
•Information systems → Spam detection;

Keywords
Spam Detection; Social Bookmarking

1. INTRODUCTION
Social bookmarking services are web-based systems that

allow their users to manage their bookmarks (web links) on-
line. One of the established systems is BibSonomy1 which
since 2005 is developed and operated by the team of the
second author [2]. Unfortunately, such systems also attract
users that post links to – typically commercial or dubious –
web sites with the sole purpose to increase the visibility and

1http://www.bibsonomy.org/

c© 2016 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in OnSt 16, May 22 2016, Hannover, Germany

ACM ISBN 978-1-4503-4364-0/16/05.

DOI: http://dx.doi.org/10.1145/2915368.2915370

number of visitors of these web pages. This kind of posts is
considered to be web spam [5]. The goal of the operators of
such systems is to avoid that such content is posted or vis-
ible, since it reduces the usability and the attractiveness of
the system for regular users. More generally, content that vi-
olates the terms and conditions of the corresponding system
should be automatically identified and removed. From our
experience, web spam is the most frequent kind of such con-
tent. Therefore, it is essential to implement measures that
reduce, remove, or avoid web spam. The main challenge is
to devise approaches that are capable of distinguishing be-
tween good content and web spam, or – as we aim in this
paper – between good users and fraudulent users. Detecting
spam posts is hard, since it is difficult to precisely define
what spam is and therefore to decide whether a web page
or a post linking to it is spam or not. Detecting spam users
is even more challenging, since they might hide their spam
posts among other posts.

Since 2008 we have developed a spam detection framework
for BibSonomy which uses machine learning technologies to
automatically classify users based on the content they post
[6]. As soon as a new user has added a post to BibSonomy,
the framework classifies him/her based on his/her post(s).
Posts of users which are classified as spammers are then hid-
den and the access of the users to the system is restricted.
The classifier is regularly trained on a large corpus of man-
ually annotated users, which is extended by manual checks
and interventions that are performed by the administrators.

The drawback of the existing approach is that spammers
are only detected after they have added content to BibSon-
omy. Therefore, measures to reduce the amount of spam
posts that are active for users that are flagged as spammers
(e.g., the requirement to enter a captcha before each new
post) are not effective before their first post. In this work
we present an approach that aims to classify users imme-
diately after they have completed the registration process,
such that accounts of potential spammers can be flagged
before they are able to post web spam. Such an approach
can reduce the amount of malicious posts added to the sys-
tem by enabling the early application of counter-measures,
e.g., blocking malicious users. Reducing the amount of spam
posts is beneficial for the performance of the system, since
they produce a considerable amount of data that needs to
be handled by the storage and indexing infrastructure. To
the best of our knowledge, this is the first published research
which analyzes approaches for detecting spam users at reg-
istration time in social bookmarking systems.

This paper is organized as follows: in Section 2 we present



an overview on the state of the art, in Section 3 we present
our approach, and in Section 4 we present the results of our
analysis. We conclude the paper in Section 5.

2. STATE OF THE ART
Many works on spam focus on spam detection in emails.

Due to the sensitive nature of the topic and the difficulty of
performing appropriate experiments, fewer works focus on
the detection of malicious users.

Krause et al. [6] developed the foundations for the auto-
matic spam detection framework for BibSonomy. They used
profile information of users, like their user name, email ad-
dress, homepage, real name, as well as the tags and resources
they had posted. From this data they extracted 25 features
grouped into five categories. Among the profile features the
length and the occurrences of digits in the users’ name and
email were modeled. In addition, they checked if the real
name has two or three parts. They also used the number of
other users with the same registration IP address, email do-
main, or top-level domain – the so-called location features.
For the IP address they only counted the number of spam-
mers. They also considered features that reflect the activity
of the users, e.g., the number of tags per post, or semantic
features like the users’ co-occurrences with spam users using
the same tag. They reached the best result with an SVM
classifier with an AUC of 0.936.

Zafarani et al. [9] describe an approach to detect mali-
cious users with a minimal amount of information, namely
only the user name. Their assumption is that users use
complex and diverse information to choose their user name.
They used information surprise as a measure for complex-
ity and the number and proportion of digits within the
name as a measure for diversity. Another group of fea-
tures modeled demographic information like age, gender,
language, and knowledge. They also used the entropy of
the input, since they argued that malicious activities often
require anonymity. To achieve maximal anonymity, the in-
put has to have maximal entropy. As language features they
used normalized character-level bi-grams of user names. In
addition, they also used the number and proportion of start-
ing digits, the unique number of alphabet letters, and the
maximal number of repetitions of a letter. Another aspect
they focused on was the efficiency of the user. Therefore,
they created featured based on the typing behavior: (i) the
percentage of keys using the same hand as the previous key,
(ii) the percentage of keys using the same finger as the pre-
vious key, (iii) the percentage of keys typed on each finger,
(iv) the percentage of keys typed on each row, and (v) the
approximate distance traveled for typing the word. They
tested their approach amongst other classifier with an L1-
regularized Logistic Regression and got an AUC of 0.9971.

Large online services like Google Mail do not rely only
on a correct password. They use machine learning to check
whether a user corresponds to the account he/she is logging
in or not [3]. Having the correct password is one of many
signals to decide whether to grant access or not.

Overall, several methods for detecting spam in web-based
systems have been proposed, e.g., by Zhang et al. [10] who
developed a method to detect spam and promotion cam-
paigns on Twitter. However, most methods require data
which is only available after the user has created the first
post. We aim at detecting potential malicious users before
they have added any content. In particular, since only few

approaches and practically no data exist for comparison, our
aim is to implement and extend features proposed by Krause
et al. [6] and Zafarani et al. [9] and to test whether they they
help to identify malicious users already at registration time.

3. APPROACH
We leverage machine learning to classify newly registered

users based on features that are derived from the user data
that is available at registration time. The classification ap-
proach relies on a training dataset of annotated users which
we describe in Section 3.1.

In contrast to spam posts we want to classify spam users.
Spam posts are posts which violate the terms and condi-
tions of a service. Spam users are users which potentially
add such spam posts or any other kind of spam to the ser-
vice. Determining whether someone is a spam user is more
difficult in our scenario, since we do not have any informa-
tion about such violations or spam posts, yet. For training
the classifier, defining who the spam users are is easy: Any
user which was declared a spammer by the administrators of
BibSonomy (typically after he/she has posted some spam)
is regarded as a spam user.

Overall, 177 features were generated. A part of these fea-
tures is derived from existing works (cf. Section 2). We here
introduce and discuss the novel features which we extracted.
We have grouped the features into the categories language
patterns, environment, keyboard, and population-based which
we present in Sections 3.2 to 3.5. We distinguish between
features and meta features. Meta features refer to a set of
features which are created in the same way from different
information or by using different parameters. For instance,
the meta feature length represents the features nameLength,
emailLength, homepageLength, and realnameLength, which
have the length of the user’s name, email address, homepage,
or real name, respectively, as values. In the tables showing
the meta features we provide for each meta feature the num-
ber of features that are derived from it in the # column. For
each new feature we specify its name, how it is created, and
which range of values it has (N = natural number, R = real
number, C = categorical data, B = {0, 1}).

3.1 Dataset
Our dataset was created from a subset of the BibSonomy

database in November 2015. We only considered users that
were marked as spammer or normal user by the administra-
tion team of BibSonomy. All users that were automatically
classified by the existing spam detection framework were ig-
nored. An overview of the data is provided in Table 1. The
features we extracted are based on the information the users
provide during the registration process. These are the name,
email address, an optional realname and an optional home-
page. In addition, we used the IP address from which the
user registered, as well as the registration date and time. We
did not consider the password of the user. From a technical
perspective the password would not provide useful informa-
tion, since a salt and a hash function were applied to it.
From an ethical perspective we think that the password of
a user is something we should note use, because it is a very
sensitive piece of information. To deal with optional data
(e.g., the homepage) we marked the values of features where
no data was provided by the user with a missing value flag.

Like Krause et al. [6] mention, determining whether a user
is malicious or not is a subjective process. Different peo-



Table 1: Dataset Statistics.

spammer non spammer

total 180,376 3,614
with homepage 65,295 736
with realname 131,687 1,775
earliest registration 15 Nov 2006 3 Dec 2006
latest registration. 10 Nov 2015 8 Nov 2015

Table 2: Language Pattern (Meta) Features.

name description type#

length length N 4
propDigit proportion of digits R 4
digit contains digits B 4
numDigit number of digits N 4
numStartDigits number of starting digits N 4
propStartDigit proportion of starting digits R 4
uniqueLetters number of unique alphabet letters N 4
maxLetterRep maximal times a letter is repeated N 4
nameMail name and local part of email address

are equal
B 1

nameMailReal name, local part of email address,
and realname are equal

B 1

realname2 two parts in realname B 1
realname3 three parts in realname B 1

ple have different judgments about what is considered to be
spam or not. Therefore, we can not avoid a certain amount
of noise resulting from the fact that the decision to mark a
user as spammer or not was taken by different people.

3.2 Language Patterns
In an initial analysis of our dataset we found that spam

users, besides using a higher number of digits in their input
than regular users [6], also tend to have a higher proportion
of digits. Therefore, we have 37 features that are extracted
from the user input that is generated during registration.
We analyze each user input and count the number of digits
it contains and their proportion with respect to the length
(number of characters) of the input. All meta features in Ta-
ble 2 (except for the last four concrete features) were applied
on the name, email address, realname, and homepage.

3.3 Environment
A large part of BibSonomy’s users are academics. Thus,

we assume that many of them are using an email address
from their university. (We also assume that university email
addresses are only given to legitimate users.) Thus, the fea-
ture uniMail indicates whether an email address is from a
university. We used a publicly available list2 which claims
to contain the domains from most universities of the world.
We can easily extract the domain from the email address
and check it against this list. This approach is not per-
fect. First of all, we can not be completely sure that the
list contains the domains of all universities. Second, not
all institutes follow the pattern <user>@<institute ini-

tial>.<university domain>. And third, for various rea-
sons (e.g., security problems with the mail server, phishing,

2https://github.com/Hipo/university-domains-list

Table 3: Environment Features.

name description type

country country of user C
regHour registration hour in user’s local time C
regDay registration day in user’s’ local time C
uniMail is the email address from a university B

etc.) malicious users could have used university addresses
for their registration. Overall, such issues should be rare.

Analyses have shown that users from some countries tend
to produce more spam than users from other countries [1].
Therefore, we used the country of the users as a feature.
Since the country is not directly provided by the user, we
approximate it using the user’s IP address. We used the free
ip-to-geo database GeoLite2 from Maxmind.3 The values of
this feature are the ISO 3166 Alpha-2 country codes.

Apart from the country we also used the local hour (reg-
Hour) and local week day (regDay) of the registration time.
To transform the stored server time into the user’s local time
we approximated the user’s timezone using the IP address.
An analysis of this data showed that most regular users reg-
ister between 7 a.m. and 10 p.m. Although spam users
have also most registrations in that time period, a significant
number of registrations is constantly performed at night. We
assume that this could be the result of an automated regis-
tration process which takes place all day long. The weekday
did not show any significant difference between normal users
and spammers. The regHour is categorical data coded as an
integer from 0 to 23. The regDay is categorical data coded
as an integer from 0 to 7. An overview on the environment
features is provided in Table 3.

3.4 Population-Based
We assume that a part of the spam users uses automated

techniques to register at the services where they want to
spread their spam. Then these techniques probably fall back
to a pool of names from which they generate their inputs.
A first simple approach is to normalize the input and count
how many other users share this input. Normalized in this
case means to convert the input to lower case and remove all
non-alphabetic characters. With this approach we created
features to count the local part of the email address, real
name, first name (first part of the real name) and last name
(last part of the real name). We also counted the number
of domains and top-level domains of the homepage shared
with other users, as well as the number of spam users which
registered using the same IP address. In addition, we also
used the ratios between normal and malicious users for the
above-mentioned features. An overview on the population-
based meta features is provided in Table 4.

3.5 Keyboard Features
We applied the features introduced by Zafarani et al. [9]

based on keyboard layouts (Table 5) on the name, email
address, real name, and homepage. As keyboard layouts we
used QWERTY and Dvorak.

4. EVALUATION
3https://dev.maxmind.com/geoip/geoip2/geolite2/



Table 4: Population-Based Meta Features.

name description type#

count number of users with the same property N 6
ratio ratio between normal and spam users with

the same property
R 6

spamIP number of spam users with this IP N 1

Table 5: Keyboard Meta Features.

name description type#

propRow proportion of keys in a row R 32
propFinger proportion of keys with a

finger
R 64

propSameFingerAsPrev proportion of keys using
the same finger as previous

R 8

propSameHandAsPrev proportion of keys using
the same hand as previous

R 8

distanceOnKeyboard the approximate distance
traveled for typing (assum-
ing keys have width and
height equals to one)

R 8

4.1 Classifier
To classify our data we used Weka [8] with the algorithms

Naive Bayes, Logistic Regression, the open source imple-
mentation of C4.5 – J48, and the Support Vector Machine
(SVM) of the LibLinear package [4]. From LibLinear we
used L1-regularized L2-loss SVM (called L1 L2 SVM) and
L2-regularized L1-loss SVM (dual) (called L2 L1 SVM). All
settings were set to Weka’s default values.

4.2 Evaluation Setup
We first used a 10-fold cross-validation [7] to evaluate our

features from Section 3. This resulted in very good results
with an AUC score close to 1. But testing with indepen-
dently created training and test datasets differed strongly
from this. We realized that features that are based on the
data of the whole population, like the features described in
Section 3.4, can distort the result of the classic n-fold cross-
validation approach. Having a closer look at the feature
spamIP makes this clear: If the test and training data are
created both from the same data, for each spam user’s IP
address the number of spam users with that specific IP ad-
dress would at least be one. Therefore, every user with a
spamIP value equal to zero can not be a spammer. In a real
setting, however, this is not the case. A user with a value
equal to zero could be a spammer with an IP address not in
the dataset or only regulars users are in the dataset with this
IP address. In the end, this feature would be overrated by
the n-fold cross-validation, but in reality, the classification
will not perform as good as predicted. To avoid this prob-
lem, we have to ensure that the population-based features
are computed only on the training data.

To implement this, we modified the n-fold cross-validation
such that we can ensure that the feature data is only cre-
ated from the population of the training data. Therefore,
we map the created feature data to the raw data. With
this mapping we can in each fold recreate the population of
the training data, rebuild the population-based features, and

Table 6: Top 20 Features.

feature name group info. gain

nameRatio Pop. 0.13531
ipRatio Pop. 0.12382
spamIP Pop. 0.12382
realnameRatio Pop. 0.04394
country Env. 0.03917
firstnameRatio Pop. 0.02406
lastnameRatio Pop. 0.02058
uniMail Env. 0.01849
emailDistanceOnKeyboardDvorak Key. 0.01428
domainRatio Pop. 0.01322
emailDistanceOnKeyboardQwerty Key. 0.01283
emailProp4RowQwerty Key. 0.00882
emailProp2RowDvorak Key. 0.00879
emailPropLittleFingerRightDvorak Key. 0.00621
emailPropMiddleFingerLeftDvorak Key. 0.00591
realnameLength Lan. 0.00469
emailProp3RowDvorak Key. 0.00462
realnameEntropy Lan. 0.00458
emailProp1RowQwerty Key. 0.00404

then update the corresponding data in the training and test
set. Figure 1 shows this process. Cylinders represent sets
of data, rectangles instances that manipulate data. First of
all, the raw data, in our case the user information, is trans-
formed with all features to a data set and a map from the
created data to the corresponding raw data. This data set
shall be evaluated through n-fold cross-validation. There-
fore, the data set is split into a training and a test set. For
each population-based feature we have to update the train-
ing and test set. First, we have to build the internal data
of the population-based features with the raw data of the
training set. To get this raw data, we use the map, pro-
duced at the creation of the dataset. Now we update each
instance in the training and test set with this feature. After
all population-based features are updated, we can build the
classifier with the training set and test it with the test set.
If there are any folds left, we repeat the process beginning
with splitting the dataset.

4.3 Results
First, we analyze which features perform best and there-

fore computed their information gain (cf. Table 6). As can
be seen, the most important feature is spamRatio, followed
by several other population-based features. As explained in
Section 4.2, we have to be careful interpreting these values.
They likely perform worse than the information gain might
suggest. We discuss the results of this group of features
later in this section. The next best, non-population-based
features, are country and uniMail . They clearly reflect the
demographics of BibSonomy’s user and spammer popula-
tion. They are followed by features which only rely on the
email address, real name, and name of the users, mostly
using the techniques proposed by Zafarani et al. [9].

Table 7 shows the performance of the different feature
groups, where for each group the results of the best per-
forming classifier are shown. As could be expected from the
analysis of the individual features in Table 6, environment
and keyboard features perform best, where the environment



Figure 1: Modified n-fold Cross-Validation.

Table 7: Evaluation Feature Groups.

feature group classifier F1 AUC

Lang.-Env.-Keyb. Logistic Regression 0.981 0.912
Environment Naive Bayes 0.978 0.899
Keyboard Logistic Regression 0.972 0.791
Language Logistic Regression 0.970 0.731
Population-Based L2 L1 SVM 0.933 0.527

Table 8: Evaluation values of all features.

classifier F1 AUC FP FN

Logistic Regression 0.963 0.868 2478 5551
Naive Bayes 0.843 0.735 1345 43836
J48 0.975 0.601 3011 881
L1 L2 SVM 0.973 0.598 2894 1649
L2 L1 SVM 0.928 0.557 2901 16076

features clearly have the best F1 and AUC.
The overall performance of the classification approaches

can be seen in Table 8. The best F1 and AUC is achieved by
Logistic Regression on the categories language, environment
and keyboard with an F1 of 0.981 and an AUC of 0.912. This
is achieved by an excellent number of false negatives (FN),
although the number of false positives (FP) is considerably
higher than for Naive Bayes. In reality, the threshold for
classifying users as malicious would have to be higher, such
that the number of false positives is lower. We can see in
the ROC curves in Figure 3e that this is possible: Logistic
Regression can classify 50% of the malicious users correctly,
before more than 1% of regular users are misclassified.

A comparison of the different feature groups and algo-
rithms can be seen in Figure 3. We can see that the cat-
egories language, environment, and keyboard differ signifi-
cant from a random classifier. However, this is not the case
for the population-based features. The classification with
features of this group does not significantly differ from a
random classification. Therefore, we also evaluated all ex-
cept the population-based features and got better results
than with all features before. We assume that the bad per-
formance is caused by some error but could not find the
source so far.

Straight lines in the ROC curves are averages over groups
of instances that occur when all group members have the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate
T

ru
e

P
o
si

ti
v
e

R
a
te

LogisticRegression

NaiveBayes

J48

L1 − regularizedL2 − lossSV M

L2 − regularizedL1 − lossSV M

Luck

Figure 2: The ROC Curves for all Features.

same probability of being a spammer. For these instances
the order is unknown and thus a random order is chosen.

5. DISCUSSION
Overall, our approach is almost as good as the approach

by Krause et al. [6], but we can detect spam users at regis-
tration time and do not rely on spam posts. Zafarani et al.
[9] achieved much better results with the best AUC of 0.99
vs. 0.91 in our case. This shows that there is potential to
improve our approach.

We could show that it is possible to block a reasonable
amount of spam users at registration time. This raises ethi-
cal questions. At the time of registration the users have not
harmed the service. We would punish users for malicious
actions that they might do in the future. We have to give
them a chance to proof that they are regular users. Assum-
ing that spammers create more than one account to spread
spam, we could force them to authenticate using a short
message service. If we only allow to use a phone number
once, this could incur too much effort. Another idea is to
increase the costs (time) for suspected spammers, by forcing
them through an interactive tutorial explaining the system’s
basic functionality. Such a tutorial could also be used to col-
lect data to improve the classification, which in turn would
make it more difficult for spam users to create an account.
In addition, such a tutorial could also help normal users to
better understand the system, with the difference that they
could skip it. Currently we only use information entered by
the users into input forms for classification. We could ex-



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
a
te

(a) Language

0 0.2 0.4 0.6 0.8 1

False Positive Rate

(b) Environment

0 0.2 0.4 0.6 0.8 1

False Positive Rate

(c) Population-Based

0 0.2 0.4 0.6 0.8 1

False Positive Rate

(d) Keyboard

0 0.2 0.4 0.6 0.8 1

False Positive Rate

(e) Lang.-Envir.-Keyb.

Figure 3: The ROC Curves for the Different Feature Groups.

pand our feature set by including how the information was
entered by the users. This is possible by tracking all mouse
and keyboard actions of the users on the registration form.

By agreeing to the terms and conditions of BibSonomy,
the users have agreed that their data can be used for research
purposes. Nevertheless, the options for sharing this sensible
data are very restricted. Therefore, we are not able to release
the dataset in the public domain. Researchers interested in
the data should therefore contact the second author such
that we can discuss individual solutions.

6. REFERENCES
[1] IBM X-Force Threat Intelligence Quarterly, 2Q 2015.

Technical report, IBM Corporation, June 2015.

[2] D. Benz, A. Hotho, R. Jäschke, B. Krause, F. Mitzlaff,
C. Schmitz, and G. Stumme. The social bookmark
and publication management system BibSonomy. The
VLDB Journal, 19(6):849–875, 2010.

[3] J. Bonneau, C. Herley, P. C. van Oorschot, and
F. Stajano. Passwords and the evolution of imperfect
authentication. Comm. ACM, 58(7):78–87, 2015.

[4] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. JMLR, 9, 2008.

[5] Zoltán Gyöngyi and Hector Garcia-Molina. Web spam
taxonomy. In AIRWeb, pages 39–47, 2005.

[6] B. Krause, C. Schmitz, A. Hotho, and G. Stumme.
The anti-social tagger – detecting spam in social
bookmarking systems. In Proc. of the Fourth
International Workshop on Adversarial Information
Retrieval on the Web, 2008.

[7] P. Refaeilzadeh, L. Tang, and H. Liu. Cross-validation.
In Encyclopedia of Database Systems, pages 532–538.
Springer, 2009.

[8] I. H. Witten and E. Frank. Data Mining – Practical
machine learning tools and techniques with Java
implementations. Morgan Kaufmann Publishers, 2000.

[9] R. Zafarani and H. Liu. 10 bits of surprise: Detecting
malicious users with minimum information. In
Proceedings CIKM, pages 423–431. ACM, 2015.

[10] X. Zhang, Z. Li, S. Zhu, and W. Liang. Detecting
spam and promoting campaigns in twitter. TWEB,
10(1):4, 2016.


