
A Repository for Formal Contexts

Tom Hanika1 and Robert Jäschke2

1 University of Hildesheim
tom.hanika@uni-hildesheim.de

2 Berlin School for Library and Information Science
Humboldt-Universität zu Berlin
robert.jaeschke@hu-berlin.de

Abstract. Data is always at the center of the theoretical development
and investigation of the applicability of formal concept analysis. It is
therefore not surprising that a large number of data sets are repeatedly
used in scholarly articles and software tools, acting as de facto standard
data sets. However, the distribution of the data sets poses a problem
for the sustainable development of the research field. There is a lack of
a central location that provides and describes FCA data sets and links
them to already known analysis results. This article analyses the current
state of the dissemination of FCA data sets, presents the requirements
for a central FCA repository, and highlights the challenges for this.

1 Introduction

Reproducing and comparing results are mandatory for the scientific method.
This is in particular true for data-driven and data-centered research fields, such
as formal concept analysis (FCA). Research data repositories are therefore an
integral part of a functioning research ecosystem.

A large number of such repositories have been established in the field of
machine learning, such as the The UCI Machine Learning Repository [18], the
platform OpenML [30], or Hugging Face.3 There is a distinction between general
and specialized repositories. The latter can be specialized, for example, in data
types, application areas, or learning methods. Without such repositories, freely
circulating data sets are used in a research community. It is often not possible
to trace where the data originates from, how it may have been derived from
another data set, whether it is complete and correct, etc. What’s more, data can
disappear from the community and no longer be found, for example, if researchers
retire or websites vanish.

This problem and its effects increasingly affect the research field of FCA,
which has also been recognized previously [2, 4, 22]. Various researchers have
approached this problem in part by providing websites4 for the FCA community

3 https://huggingface.co/
4 for example, https://upriss.github.io/fca/examples.html

https://orcid.org/0000-0002-4918-6374
https://orcid.org/0000-0003-3271-9653
https://huggingface.co/
https://upriss.github.io/fca/examples.html


that link different sources of information, or by including test data sets5 in their
FCA software [14, 6].

A problem analysis and initial approaches to solving this issue have already
been described independently by S. Andrews [2] and C. Orphanides and G.
Georgiou [22]. More than ten years later, however, none of the proposed solu-
tions have been manifested themselves in real existing repositories. This is where
this work comes in by a) presenting an updated analysis of the requirements for
an FCA repository, b) describing an approach for an initial solution, and c) pre-
senting a rudimentary repository,6 that we have already initiated, and its future
development.

With our solution we follow the KISS7 principle, favoring a simple func-
tioning repository (with few features) over a complicated and therefore diffi-
cult to implement repository. Already in its present form, the repository al-
lows for a) testing algorithms (and implementations) on correctness, b) bench-
marking algorithms, c) comparing different FCA procedures, d) helping begin-
ners to explore or learn FCA. It also contains the “classic” data sets from
Ganter and Wille’s FCA book [12]. Furthermore, our approach supports low-
threshold access similarly to other popular data science libraries, for exam-
ple, Seaborn8 via its load_dataset() method. In our repository located at
https://fcarepository.org/, a) each context is a file in a git repository, and
b) the metadata for each context is described in a file that is machine-readable
and human-editable.

With this modeling we obtain version control, a workflow for collaboration
and contributions (forks, pull requests), a continuous integration pipeline for the
automatic generation of derivatives (e.g., human-readable documentation, statis-
tics, lattice diagrams), simple programmatic access using HTTP, etc. Therefore,
the repository could easily be integrated into FCA workflows, tools, and libraries
and can enable and simplify the (re)use of FCA data. For sustainability, we en-
vision to create snapshots of the git repository on a regular basis and to publish
them on suitable platforms, such as Zenodo.9

In order to make the FCA repository sustainable and as scientifically reliable
as possible, many challenges still need to be overcome. Specifically: a) a curation
policy and metadata schema has to be developed, b) more formal contexts and
metadata have to be collected, and c) authors of FCA tools and libraries need to
implement a reliable interface to the repository. We hope that our initial analysis
and solution helps to raise awareness for the repository problem and starts the
discussion that gathers feedback from the FCA community.

This paper is organized as follows: In Section 2 we give an overview on related
work and then discuss existing related approaches in more depth in Section 3.

5 https://github.com/tomhanika/conexp-clj/tree/dev/testing-data, https:
//github.com/neuroimaginador/fcaR/tree/master/data

6 https://fcarepository.org/
7 keep it simple, stupid
8 https://github.com/mwaskom/seaborn-data
9 https://zenodo.org/

https://fcarepository.org/
https://github.com/tomhanika/conexp-clj/tree/dev/testing-data
https://github.com/neuroimaginador/fcaR/tree/master/data
https://github.com/neuroimaginador/fcaR/tree/master/data
https://fcarepository.org/
https://github.com/mwaskom/seaborn-data
https://zenodo.org/


In the main part in Section 4 we analyze requirements for an FCA repository
and provide suggestions for implementation. Finally, we discuss next steps and
the organization of the repository in Section 5 and conclude the paper with a
discussion in Section 6.

2 Related Work

There exists a wide variety of repositories that host research data – institutional,
domain-specific, and generic, such as Zenodo [9], which was launched by the
OpenAIRE10 partner CERN. Most of them are clearly intended as archives for
research data without providing any insights into the data apart from basic
metadata (e.g., license, authorship, file format). Registries, such as, re3data11

record more than 3200 different repositories [26].
A prominent example in computer science is the UCI Machine Learning

Repository [18]. Founded in 1987, it is one of the oldest repositories hosting data
sets for the empirical analysis of machine learning algorithms. With a focus on
tabular data of ‘instances’ described by ‘variables’ it provides basic information
about each variable (e.g., role, type, unit, description). In the realm of machine
learning, OpenML [30] considerably extends this idea by allowing everyone to
share data sets, tasks, implementations, and results. Its goal is to enable “net-
worked science” that uses “online tools to share, structure and analyse scientific
data on a global scale” [30].

KONECT, the Koblenz Network Collection [19], is a repository dedicated to
network science (i.e., graph-represented) data sets. Its web site facilitates the
exploration of such data sets by providing more than thirty descriptive network
statistics (e.g., average degree, mean distance) and data visualizations (e.g., spec-
tral distributions, degree assortativity). In addition, a handbook and a toolbox
for the statistics framework GNU/R supports researchers in using the data.

Finally, DraCor [11] is an example from the humanities, specifically literature.
It is a website and REST-based API that provides multi-faceted access to drama
corpora, coined “programmable corpora” by its founders. Apart from the full-
texts of the dramas, DraCor provides metadata, and structured information
(e.g., speaker text) together with a web-based interface for exploration of the
character co-occurrence networks.

Various trends can be identified in the recent development of research data
repositories. On the one hand, the creation and further development of existing
generalist repositories. Secondly, the creation of domain-specific repositories, for
example, for agricultural science [28] or mathematics [8], or application-specific,
for instance, collaborative research centers [21]. The latter two are particularly
favored in Germany by an initiative for a national research data infrastructure.

There are reasons for the emergence and further development of repositories
that are specifically tailored to certain areas of research: by focusing on certain
types of data and file formats, they can provide dedicated services, for example,

10 https://www.openaire.eu/
11 https://re3data.org/

https://www.openaire.eu/
https://re3data.org/


additional metadata, faceted search, an integration into the tools and workflows
of the research community, or draw on the expertise from other domain experts.

A web-based repository for formal contexts was first described in 2009 by
S. Andrews [2]. The idea was that the repository hosts donated and randomly-
generated data sets, “along with, where possible, [their] original data file, in-
formation about the original data (probably from the original data source), a
link back to the original data source, the conversion log, and FCA information,
such as context density and number of concepts” [2]. However, few details were
provided and – to the best of our knowledge – the repository either was never
realized or is no longer available online. Four years later C. Orphanides and
G. Georgio proposed FCAWarehouse [22], a website no longer in service.

In 2016, Hanika and Borchmann [4] reiterated the need for an archive of
data and computational results related to FCA when they uncovered implausible
results in the Stegosaurus phenomenon. As far as the authors are aware, there
is no other domain-specific FCA repository apart from the one presented here.

3 Existing Related Approaches

As described in the previous section, there are no other FCA repositories. How-
ever, there are a number of tools and other sources of information that perform
some of the tasks of an FCA repository. Moreover, the authors are keen to in-
tegrate the proposed repository into existing FCA tools. We therefore provide a
brief overview for them. In addition, we can justify some of the design decisions
of the FCA repository based on their characteristics.

3.1 Tools

There is an abundance of software libraries and tools to conduct formal concept
analysis. In the following we provide a brief overview on the most recent tools.
Therefore, we omitted offline-tools that were not updated for more than two
years. Moreover we discarded for our analysis pure concept mining tools, such as
pcbo or inclose. We acknowledge that the overview is not exhaustive and might
miss important tools.

xflr6 / concepts is a basic but useful Python3 library for FCA. It allows
for computing and drawing concept lattices.12 Binary comma separated value
(CSV) as well as the Burmeister format are supported for loading and storing
formal contexts. FCApy is also a Python3 FCA library with a focus on inter-
acting with machine learning algorithms. fcaR is a popular library within the
GNU/R ecosystem. In particular it allows for computing implications and con-
ceptual scaling [6] ConExp – “The Concept Explorer” is one of the classic FCA
tools. Although its last release was in 2013, it is still very popular due to its
intiuitive graphical user interface. FcaKit is a software library written in the
Swift programming language, which is predominantly used in the iOS / MacOS

12 https://github.com/xflr6/concepts

https://github.com/xflr6/concepts


Im
p
li
ca
ti
o
n
s

L
a
tt
ic
e
D
ra
w
in
g

F
re
e
S
o
ft
w
a
re

C
b
O

A
lg
o
ri
th
m
s

B
u
rm

ei
st
er

F
o
rm

a
t

S
ca
li
n
g

N
ex
tC

lo
su
re

L
ib
ra
ry

R
ec
en
t

E
x
p
lo
ra
ti
o
n

B
M
F

S
ca
le

M
ea
su
re
s

B
in
a
ry

C
S
V

O
n
li
n
e

G
U
I

xflr6 / concepts × × × × × × ×
fcaR × × × × × × × × ×
FCApy × × × × × × × ×
FCA Tools Bundle × × × × × × × × ×
FcaKit × × × × × × ×
conexp-clj × × × × × × × × × × × × × ×
LatViz × × × ×
ConExp × × × × × × ×

Fig. 1. Comparison of recent FCA tools. The classic Conexp tool was included for
comparison. Also non-recent online plattforms were added.

ecosystem. Many concept mining and factorization algorithms are implemented
within this library. conexp-clj is one of the most versatile software libraries for
FCA. It is implemented in the functional programming language Clojure and al-
lows interaction with Java code, among other things. FCA Tools Bundle is an
online platform [7] and has a large collection (i.e., 166 files) of formal contexts.
The context are presented with minor meta data (e.g., number of objects, etc)
but only minimal provenience information is available, as many data sets have
no description beyond one or a couple of words. Some data sets can be exported
as CSV files and others using the Burmeister format. The focus of this platform
is on the analysis of triadic and polyadic contexts. LatViz is also an online
platform [1] which allows editing formal context and computing their concept
lattice. Data sets can only be exchanged via an undocumented JSON format.
However, a converter from binary CSV is provided as an offline tool. All these
tools and their attributes are depicted in Figure 1. The corresponding lattice
is shown in Figure 2. For a more exhaustive and extensive comparison of FCA
tools we refer the reader to Saab et al. [27]. Their analysis includes many tools
that we have discarded for the reasons mentioned above.

T. Tilley already addressed the problem of tool support in 2004 [29] and
U. Priss addressed the problem of data interoperability for FCA in 2008 [24,
25]. Unfortunately, none of the tools U. Priss considered in her work made it
into our comparison, as there have been no releases for many years. Irrespective
of this, the considerations made are still valid. In particular, the finding that
the Burmeister format and the representation as a binary CSV have the widest
support among the FCA tools.



Scale Measures

BMF

Exploration

Online
Implications

CbO Algorithms

GUI

Scaling

Library

Free Software, Recent
Burmeister Format

NextClosure

Binary CSV Lattice Drawing

conexp-clj

FCA Tools Bundle
fcaR

FcaKit xflr6/concepts

FCApy
ConExp

LatViz

Fig. 2. Concept Lattice for the formal context in Figure 1.

3.2 Data Collections

U. Priss has some ‘classic’ contexts on her web page13 and some FCA tools have
contexts for unit tests (e.g., conexp-clj14 or concepts15) but these are neither
comprehensive nor easy to find, they have no machine-readable metadata, they
are not integrated into FCA tools or libraries, and they are sometimes difficult
to cite.

13 https://upriss.github.io/fca/examples.html
14 https://github.com/tomhanika/conexp-clj/tree/dev/testing-data
15 https://github.com/xflr6/concepts/tree/master/examples

https://upriss.github.io/fca/examples.html
https://github.com/tomhanika/conexp-clj/tree/dev/testing-data
https://github.com/xflr6/concepts/tree/master/examples


4 Analysis and Proposition

In this section, we analyze the requirements and the corresponding simple solu-
tions for the planned FCA repository in detail. The goal of supporting the FCA
community with the repository should guide us in all decisions. It is clear to us
that the attempt to create a comprehensive FCA platform is doomed to failure
and will result in software that resembles a jack-of-all-trades. Thus, the overall
guiding principle will be KISS.

4.1 Parts

The main parts of the planned FCA repository are briefly listed below and their
necessity is explained in short.

Contexts: The central entity is the formal context. All parts should be depicted
explicitly, that is, objects, attributes, and incidence relation.

Simple Statistics, Metadata and Usage: For every context simple statistics, for
example, number of objects, density, etc. shall be provided. Moreover, metadata
including provenience, contributor, editor etc. is necessary. Also, the fact if a
formal context is artificial or derived from real data should be noted. In addition,
an overview of where a context has already been used/analyzed, for instance, in
which scholarly articles, would be helpful.

Relations: A central element of FCA is control over scaling. Since many formal
contexts are derived from non-binary data, access to the scales used is essential.
Furthermore, sub-contexts are often used for analyses. This information is also
important for the analyst. These and other relationships between formal contexts
are to be mapped by the FCA Repo.

Collections: We envision that standard collections of formal contexts can be
useful. For example, when evaluating a new algorithm one may employ a standard
benchmark set of contexts. These and similar tasks require the compilation and
labeling of named collections of formal contexts.

Concepts, Lattices, Diagrams: Although not essential, it would be very helpful
to store the formal concepts belonging to a formal context, the concept lattice,
or even a lattice diagram. This would increase the scientific reproducibility of
results and the ecological sustainability of analyses.

Implication Bases: Similarly to the last point, it would be very helpful to store
implication bases.



4.2 Implementation Considerations

Implementing the envisioned FCA repository requires storing and curating for-
mal contexts, possibly additional data, and descriptive metadata. In this section,
we discuss aspects that need to be taken into account and make specific sugges-
tions for implementing the repository. As an overall pre-condition, we restrict
ourselves to a file-based repository, as files are the typical format in which formal
contexts are stored and used.

Files A file in a repository is essentially characterized by its name, its location,
and its content.

Name. The name of a file acts as an identifier within a file system and must
be unique at least within one directory. In addition, the file name acts as a
visible identifier to everyone who is using the file. We consider two approaches for
naming a file: choosing a meaningful name or simply using an arbitrary identifier
(e.g., a number or UUID [20]) as name. On the one hand, a meaningful name
has some benefits for humans, for example, the name can give an indication to
a file’s content. On the other hand, choosing a good name is a hard problem [3],
as the following Example 1 shows.

Example 1. Let us consider the formal context from Figure 1.1 of the FCA
book [12]. The caption states that the context is from an educational film “Living
Beings and Water”, so a meaningful file name could be based on the title of that
film. When creating a file name from that title, immediately certain questions
arise: How many words to include? How should words be separated (by space,
underscore, or not at all)? Where and how to use lower/upper case characters (all
lower/upper case, title capitalization, or CamelCase)? And, given that the book
is the English translation of the 1996 German original [13] and the film’s original
(German) title is “Lebewesen und Wasser”, we should consider which language
to use: the original language or English as a common and default language.

Furthermore, the file name could also include metadata to provide more infor-
mation to users, for example, an ISO language code [16] to signal the language of
the object and attribute names of the context and to distinguish it from trans-
lated variants of the same context. Typically, the file name also includes a file
extension which indicates the file format and thus the structure of the content.
Despite the challenges, we propose to use a meaningful file name based on the
content of the formal context. Our rationale is, that the repository is intended
for formal contexts (i.e., files) to be downloaded and used by researchers. And
in that scenario the file name should bear some meaning to the user, as they
have to store and find the file on their computer’s file system. The exact format
of the file name is up to discussion, but for now we suggest to keep it short, all
lowercase, in English, words separated by underscore, and appending the ISO
language code (to allow for distinguishing translations of contexts). We are aware
that naming things comes with some power, since together with their repository
URL the file names can easily become unique identifiers for the corresponding



contexts. Later on, we propose a curation policy that shall ensure conscientious
naming.

Location. The location of a file within the repository needs to be specified. This
is partly a matter of the overall structure of the repository, that is, how it is
organized into directories and subdirectories. We propose to have one directory,
named contexts, in the top-level directory of the repository that contains the
files for all contexts. Additional files, that, for example, contain lattices or im-
plication bases can be put into suitably named additional directories. Together
with the base URL of the repository, the contexts directory and the file name
specify a URL which acts as a unique identifier (and locator) for each context.

Content. The content of the file can be represented in various file formats [24,
25]. A discussion of their benefits and drawbacks is beyond the scope of this
work, see U. Priss [25] for an overview. Since FCAStone [25] can convert between
some of the more common formats, we propose to use the format introduced in
ConImp by Peter Burmeister [5] as default. As a plain text format, it is easy to
understand for humans but also easy to parse for machines. As we have seen in
Section 3.1, it is also well supported by still maintained tools and libraries.

Files in that format are typically idenfied by the extension “cxt” (cf. [5,
footnote 20]). Since, within the specification of the format, the names and order
of objects and attributes can be freely chosen, we propose to stay as close to
the original source as possible. Furthermore, we propose to use UTF-8 as text
encoding for names of objects and attributes. Although at the time of conception
some older tools may have only supported ASCII characters, we believe the
repository should be geared towards current and future tools and use cases.
Additional files formats can be provided for contexts. Since a conversion could
easily be automated, we can also imagine a conversion service for the repository.
Nevertheless, the Burmeister (“cxt”) format should be the gold standard.

Metadata Metadata shall be provided for all contexts, as it provides context
and important information for humans, can simplify processing of the data,
and is crucial for applications built on top of the repository (for example, an
exploratory web page). These aspects are particularly important with regard to
the scholarly use of the FCA repository. We discuss the what, how, and where.

What. Contexts typically have a title which is often used to refer to them (e.g.,
“Living Beings”). At least the title but typically also the names of objects and
attributes are in a certain language. Since the repository should host well-known,
published contexts, the source where the context was published or used should
be provided. What is considered to be the source is an open question – should it
be the first (published) use in formal concept analysis or the first publication of
the data at all?16 A description should provide further information, for exam-
ple, the meaning of the attributes or how the context was constructed. Except

16 Or something more complex, for example, comprising the citation chain from the
first publication of the data to the first published use in FCA.



language, we consider all of these properties to be mandatory. If the language is
not English, it must be specified. Other metadata is conceivable, for example,
to model relationships between contexts (e.g., derived or translated contexts).

How. To store the metadata, a suitable data representation together with a
serialization into a file is required. On the one hand, the amount and complexity
of the metadata is tractable; on the other hand, the representation should not
impose too many restrictions but support later extensions. Thus, a good trade-off
between expressivity and simplicity is required.

Having a look at the proposed metadata fields for each context, title, descrip-
tion, language could be represented in natural language (preferably English).
The language itself could be represented via an ISO language code [16]. The
source could either focus on human-readability and, thus, be a string describing
the source, for example, using a citation in a typical citation style. Otherwise,
it could also be represented with explicit metadata fields that contain the full
bibliographic information using, for example, the BibTeX data model [23]. Re-
lationships between contexts could be represented by directly referring to other
contexts using their (file) name(s).

The fields for each context could be represented as key-value pairs and the
metadata for all contexts can be represented as a list of key-value pairs, where the
keys are the names of contexts (i.e., their file names) and the values are each a list
of the key-value pairs of the metadata for each context. In principle, there exist
many suitable data representations, for example, RDF, XML, JSON, or YAML.
Since we are aiming at a simple human-editable solution, JSON and YAML seem
to be good candidates. Among those two, YAML has the additional benefit of
using indentation instead of brackets which might be easier to handle for humans
not trained in reading bracketed expressions. Using YAML, the context from
Example 1 could be represented as follows:

livingbeings_en.cxt:

title: Living Beings and Water

source: "Ganter, B., & Wille, R. (1999). Formal Concept

analysis. Springer, p. 18"↪→

language: English

description: conditions different living beings need

Where. Like contexts, the metadata should also be file-based. Initially, we con-
sider one file describing all contexts to be sufficient. The file shall reside in the
highest level directory of the repository, next to the contexts directory. An-
other option would be to have one file with metadata for each context. Apart
from doubling the number of files this would make the automatic retrieval of the
information for several contexts more difficult, since the name of the contexts
need to be known in advance. Furthermore, the metadata file shall also function
as an index for the contexts. We are aware that the Burmeister format supports
one line for a comment. However, it is unclear whether and how the current tools
handle this comment and whether this line can be of any length. We therefore
refrain from explicitly using this comment line.



Curation Policy As we have seen, there are different options on how to imple-
ment the repository and many, often subtle, decisions have to be made. To ensure
consistency and ease of use, we consider it necessary to settle some decisions be-
forehand in the form of guidelines for implementers and contributors. We also
think that such a curation policy will simplify and encourage contributions and
– if well-considered – avoid some pitfalls (e.g., biases or compatibility problems).
The policy shall cover all aspects presented in Section 4.2 and, in principle, we
consider all decisions proposed there subject to discussion, for example, our sug-
gestions for file names. Important questions are whether the policy should be
regarded as ‘rules’ or as ‘guidelines’ and how it should be enforced. In Section 5.2
we propose an approach on how to settle these questions and how to implement
such a policy.

Other Aspects We briefly address some aspects we have not discussed so far:

– The repository should support keeping a history of changes (or version in-
formation) to be able to trace changes in the data and to enable referring to
a specific version (which is important for replicable research). Using the git
version control system automatically solves this problem. In addition, git’s
pull and fork mechanisms can contribute to record provenance and attribu-
tion.

– Another issue are legacy aspects, for example, (limited) support for UTF-8
encoding in older tools, or differences in the choice of newline character(s)
among operating systems. We are open for debate how to deal with such
issues. However, this is probably not a practical problem either, as it can be
solved dynamically by the git system.

– We see a need for an accompanying support structure for the repository,
for example, scripts to check the consistency and completeness of data and
metadata, or to convert them from other formats.

– To enable tools and libraries to access the contexts remotely, a remote API
needs to be provided. Using a repository based on git typically provides
this automatically. Specifically, GitHub provides access using HTTPS and a
REST-like API [10]. However, one might consider using a different transport
protocol or providing a dedicated API (like DraCor [11] does).

5 Organization and Next Steps

Our activity to create the FCA repository started with a post on the fca-list
mailing list17 in February 2024 [17]. Subsequently, we set up a git repository
as part of the fcatools organization on GitHub18 and published its web page
on the domain fcarepository.org.19 Afterwards we uploaded twelve formal
contexts together with their metadata. We describe the first steps we have taken

17 fca-list@cs.uni-kassel.de
18 https://github.com/fcatools/contexts
19 https://fcarepository.org/

fca-list@cs.uni-kassel.de
https://github.com/fcatools/contexts
https://fcarepository.org/


to integrate the repository into the FCA ecosystem in Section 5.3, but first we
state challenges we have observed or do anticipate in Section 5.1. We envision
to establish a working group, as set out in Section 5.2. Finally, we want to limit
the scope of the repository in Section 5.4.

5.1 Challenges

In establishing and maintaining the envisioned repository we foresee several chal-
lenges that must be tackled. Among the most crucial ones are acceptance and
usage by the FCA community. We hope to set a good foundation with our ap-
proach of early involvement of the community (e.g., our mailing list post [17]
and this paper), our suggestions for implementation (e.g., prefer simple and ro-
bust approaches), and the establishment of a working group to steer the future
of the repository (cf. the next section). Another, but related challenge is the
sustainability of the repository. This also affects technical issues, for example,
the choice of hosting service. We tackle this by providing a dedicated domain
for the repository which simplifies migration to other hosting services. We aim
to avoid a potential bias in the selection and description of the formal contexts
by establishing procedures which involve the community in the development of
a curation policy. Clearly, this list of challenges is not final (for further examples
in the context of OpenML see their considerations [30]) but we consider those
to be the most important ones.

5.2 Working Group

We think that tackling the aforementioned challenges requires a multi-stakeholder
effort. Therefore, we propose to establish a working group which sustainably
steers the extension, curation, and dissemination of the repository. The working
group should be assembled by the FCA community to have their trust and rep-
resentation. For practical purposes, this could happen at the 2024 CONCEPTS
conference or at a later community meeting. Concrete next steps the group
should pursue include

– the community-driven establishment of a curation policy (cf. Section 4.2),
– networking with other initiatives and collaboration (or federation) with re-

lated approaches (cf. Section 2),
– development of accompanying resources, for example, workflows to check the

integrity of contexts and metadata, and
– establishing research data management measures, for example, the publica-

tion of regular snapshots of the repository in persistent research data repos-
itories like Zenodo.

5.3 Integration into the FCA Ecosystem

Our goal is that every relevant FCA software tool provides access to the reposi-
tory. Similar to, for example, machine learning libraries20 we propose that FCA

20 For example, scikit-learn has some basic data sets included which can be ac-
cessed with just one line of Python code: iris = datasets.load_iris(). Simi-



software tools allow their users to load contexts from the repository with just
one line of code. We have exemplarily implemented this in a fork21 of the Python
library concepts,22 in which it is possible to load the “Living Beings” context
mentioned in Example 1 as follows:

import concepts

context = concepts.load_dataset('livingbeings_en')

Upon approval of a pull request23 this functionality will become available
to all users of this Python library. Another pull request24 will integrate similar
functionality into conexp-clj. To continue this effort, the working group shall
reach out to developers of other (recent) FCA software tools and libraries and
support them in integrating access to the repository.

5.4 Limiting the Scope

We are fully aware that proper research data management comprises more than
just setting up a git repository. However, as a small community that can not
afford professional research data management [15] the proposed approach can
cope with limited resources. We consider our proposal to be an important and
concrete step towards actually having a repository of formal contexts for FCA.
We think it is better to have an imperfect (in some respects) repository now
than a perfect repository later (or never). Therefore, on purpose, we limit the
scope of the repository as follows:

a) It is centered around formal contexts and there is no intention for a compre-
hensive or even complete modeling of all FCA data structures.

b) Its focus should be on the needs of the FCA community but not on the
integration with other data modeling approaches, for example, linked data.

c) It should comprise contexts that are well-known or especially important for
the FCA community. By well-known we mean that a context has been used in
at least one published work or within a tutorial or in other educational capac-
ities. We refrain from including purely generated contexts. Furthermore, no
arbitrary data that (also) can be interpreted as contexts should be included.

6 Discussion

In this paper we have outlined the first steps for (the only) real existing FCA
repository. We have looked at approaches for repositories in other domains and

larly, Seaborn’s load_dataset() method loads data sets from the git repository
https://github.com/mwaskom/seaborn-data.

21 https://github.com/rjoberon/concepts/tree/example_datasets
22 https://github.com/xflr6/concepts
23 https://github.com/xflr6/concepts/pull/24
24 https://github.com/tomhanika/conexp-clj/pull/141

https://github.com/mwaskom/seaborn-data
https://github.com/rjoberon/concepts/tree/example_datasets
https://github.com/xflr6/concepts
https://github.com/xflr6/concepts/pull/24
https://github.com/tomhanika/conexp-clj/pull/141


drawn comparisons with the tools and services in the FCA ecosystem. We then
carried out an in-depth analysis of the necessary parts and their implementation
of the proposed FCA repository, which led to a number of preliminary but not
firm design decisions. We expect the current state of the FCA repository to be
initially resilient due to its anchoring in the Github service and its representation
using the non-centralised versions control system git. In addition, choosing a
domain for the repository that is independent of Github is a good choice for
possibly changing the underlying hosting service later.

Nevertheless, there are a number of challenges to be met and many (technical
solutions) to be developed. These can only be overcome with and through the
FCA community. That is why – with this work – we want to invite them to take
part in this endeavor. The most crucial next step is for the community to find
a reliable group of members who will take care of the repository and its further
development. We hope that this will be successful at one of the next scholarly
meetings.

Acknowledgments. We thank Melanie Seltmann and Dorothea Strecker for their

valuable information and feedback on research data repositories.

References

[1] Mehwish Alam, Thi Nhu Nguyen Le, and Amedeo Napoli. “LatViz: A
new practical tool for performing interactive exploration over concept lat-
tices”. In: Proceedings of 13th CLA. Ed. by Marianne Huchard and Sergei
O. Kuznetsov. Vol. 1624. CEUR Workshop Proceedings. CEUR-WS.org,
2016, pp. 9–20. url: https://ceur-ws.org/Vol-1624/paper1.pdf.

[2] Simon Andrews. “Data Conversion and Interoperability for FCA”. In: Pro-
ceedings of the 4th Conceptual Structures Tool Interoperability Workshop
at ICCS. University of Kassel. 2009, pp. 33–43. eprint: https://core.ac
.uk/download/pdf/99874.pdf.

[3] Tom Benner. Naming things : the hardest problem in software engineering.
English. Second edition. [place of publication not identified]: Independently
published, 2023. isbn: 9798366113397.

[4] Daniel Borchmann and Tom Hanika. “Some Experimental Results on Ran-
domly Generating Formal Contexts”. In: Proceedings of 13th CLA. Ed. by
Marianne Huchard and Sergei O. Kuznetsov. Vol. 1624. CEUR Workshop
Proceedings. CEUR-WS.org, 2016, pp. 57–69. url: https://ceur-ws.or
g/Vol-1624/paper5.pdf.

[5] Peter Burmeister. Formal concept analysis with ConImp: Introduction to
the basic features. Tech. rep. Darmstadt, Germany: TU Darmstadt, 2003.
url: https://citeseerx.ist.psu.edu/document?repid=rep1&type=p
df&doi=a22862aeeedefa49f548de533127591a3399dd7e.

[6] Pablo Cordero et al. “fcaR, Formal Concept Analysis with R.” In: R Jour-
nal 14.1 (2022).

https://ceur-ws.org/Vol-1624/paper1.pdf
https://core.ac.uk/download/pdf/99874.pdf
https://core.ac.uk/download/pdf/99874.pdf
https://ceur-ws.org/Vol-1624/paper5.pdf
https://ceur-ws.org/Vol-1624/paper5.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a22862aeeedefa49f548de533127591a3399dd7e
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a22862aeeedefa49f548de533127591a3399dd7e


[7] Diana Cristea, Christian Sacarea, and Diana-Florina Sotropa. “FCA Tools
Bundle”. In: Suppl. Proceedings of ICFCA. Ed. by Diana Cristea et al.
Vol. 2378. CEUR Workshop Proceedings. CEUR-WS.org, 2019, pp. 50–
54. url: https://ceur-ws.org/Vol-2378/shortAT4.pdf.

[8] Renita Danabalan et al. “MaRDI: Building Research Data Infrastructures
for Mathematics and the Mathematical Sciences”. In: Proceedings of the
Conference on Research Data Infrastructure. Vol. 1. 2023.

[9] European Organization For Nuclear Research and OpenAIRE. Zenodo. en.
2013. doi: 10.25495/7GXK-RD71.

[10] Roy T. Fielding. “Architectural Styles and the Design of Network-based
Software Architectures”. PhD thesis. UC, Irvine, 2000. url: https://ww
w.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[11] Frank Fischer et al. “Programmable Corpora: Introducing DraCor, an In-
frastructure for the Research on European Drama”. In: Proceedings of
DH2019: ”Complexities”, Utrecht, July 9–12, 2019. Utrecht University,
2019. doi: 10.5281/zenodo.4284002.

[12] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathemat-
ical Foundations. Berlin/Heidelberg: Springer, 1999. doi: 10.1007/978-3
-642-59830-2.

[13] Bernhard Ganter and Rudolf Wille. Formale Begriffsanalyse: mathematis-
che Grundlagen. Berlin/Heidelberg: Springer, 1996. doi: 10.1007/978-3
-642-61450-7.

[14] Tom Hanika and Johannes Hirth. “Conexp-Clj - A Research Tool for
FCA”. In: Suppl. Proceedings of ICFCA. Ed. by Diana Cristea et al.
Vol. 2378. CEUR Workshop Proceedings. CEUR-WS.org, 2019, pp. 70–
75. url: https://ceur-ws.org/Vol-2378/shortAT8.pdf.

[15] A. Hofelich Mohr et al. Making Research Data Publicly Accessible: Esti-
mates of Institutional & Researcher Expenses. Tech. rep. Association of
Research Libraries, 2024. doi: 10.29242/report.radsexpense2024.

[16] Code for individual languages and language groups. Standard. Geneva, CH:
International Organization for Standardization, Nov. 2023.

[17] Robert Jäschke. Request for Comments: a repository for formal contexts.
Message to the fca-list mailinglist. Feb. 2024. url: https://lists.cs.u
ni-kassel.de/hyperkitty/list/fca-list@cs.uni-kassel.de/messa

ge/IUIXCLRLOREWFAPOGJQFDMKBMB2HSXEF/.
[18] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI Ma-

chine Learning Repository. 2023. url: https://archive.ics.uci.edu.
[19] Jérôme Kunegis. “KONECT – The Koblenz Network Collection”. In: Pro-

ceedings of the 22nd WWW. WWW ’13 Companion. New York, NY, USA:
ACM, 2013, pp. 1343–1350. doi: 10.1145/2487788.2488173.

[20] Paul J. Leach, Rich Salz, and Michael H. Mealling. A Universally Unique
IDentifier (UUID) URN Namespace. RFC 4122. July 2005. doi: 10.1748
7/RFC4122.

https://ceur-ws.org/Vol-2378/shortAT4.pdf
https://doi.org/10.25495/7GXK-RD71
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://doi.org/10.5281/zenodo.4284002
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-61450-7
https://doi.org/10.1007/978-3-642-61450-7
https://ceur-ws.org/Vol-2378/shortAT8.pdf
https://doi.org/10.29242/report.radsexpense2024
https://lists.cs.uni-kassel.de/hyperkitty/list/fca-list@cs.uni-kassel.de/message/IUIXCLRLOREWFAPOGJQFDMKBMB2HSXEF/
https://lists.cs.uni-kassel.de/hyperkitty/list/fca-list@cs.uni-kassel.de/message/IUIXCLRLOREWFAPOGJQFDMKBMB2HSXEF/
https://lists.cs.uni-kassel.de/hyperkitty/list/fca-list@cs.uni-kassel.de/message/IUIXCLRLOREWFAPOGJQFDMKBMB2HSXEF/
https://archive.ics.uci.edu
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.17487/RFC4122
https://doi.org/10.17487/RFC4122


[21] Deepti Mittal et al. “Data management strategy for a collaborative re-
search center”. In: GigaScience 12 (July 2023), giad049. issn: 2047-217X.
doi: 10.1093/gigascience/giad049.

[22] Constantinos Orphanides and George Georgiou. “FCAWarehouse, a Pro-
totype Online Data Repository for FCA.” In: CUBIST Workshop. 2013,
pp. 54–61.

[23] Oren Patashnik. BIBTEXing. Feb. 1988. url: https://tug.org/texmf-
docs/bibtex/btxdoc.pdf.

[24] Uta Priss. “FCA Software Interoperability”. In: Proceedings of the 6th
CLA. Vol. 433. CEURWorkshop Proceedings. CEUR-WS.org, 2008, pp. 133–
144. url: https://ceur-ws.org/Vol-433/paper11.pdf.

[25] Uta Priss. “FcaStone – FCA file format conversion and interoperability
software”. In: Proceedings of the 3rd CLA. Vol. 352. CEUR Workshop
Proceedings. CEUR-WS.org, 2008, pp. 33–43. url: https://ceur-ws.or
g/Vol-352/paper5.pdf.

[26] re3data.org – Registry of Research Data Repositories. last accessed: 2024-
04-02. doi: 10.17616/R3D.

[27] Nassif Saab, Marianne Huchard, and Pierre Martin. “Evaluating Formal
Concept Analysis Software for Anomaly Detection and Correction”. In:
Proceedings of the 16th CLA. Ed. by Pablo Cordero and Ondrej Kridlo.
Vol. 3308. CEUR Workshop Proceedings. CEUR-WS.org, 2022, pp. 213–
218. url: https://ceur-ws.org/Vol-3308/Paper18.pdf.

[28] Xenia Specka et al. “FAIRagro: Ein Konsortium in der Nationalen For-
schungsdateninfrastruktur (NFDI) Für Forschungsdaten in der Agrosys-
temforschung: Herausforderungen und Lösungsansätze für den Aufbau einer
FAIRen Forschungsdateninfrastruktur”. In: Informatik Spektrum 46.1 (2023),
pp. 24–35.

[29] Thomas Tilley. “Tool Support for FCA”. In: Proceedings of the 2nd ICFCA.
Ed. by Peter Eklund. Vol. 2961. Lecture Notes in Computer Science.
Berlin/Heidelberg: Springer, 2004, pp. 104–111. doi: 10.1007/978-3-
540-24651-0_11.

[30] Joaquin Vanschoren et al. “OpenML: networked science in machine learn-
ing”. In: ACM SIGKDD Explorations Newsletter 15.2 (2014), pp. 49–60.
doi: https://doi.org/10.1145/2641190.2641198.

https://doi.org/10.1093/gigascience/giad049
https://tug.org/texmf-docs/bibtex/btxdoc.pdf
https://tug.org/texmf-docs/bibtex/btxdoc.pdf
https://ceur-ws.org/Vol-433/paper11.pdf
https://ceur-ws.org/Vol-352/paper5.pdf
https://ceur-ws.org/Vol-352/paper5.pdf
https://doi.org/10.17616/R3D
https://ceur-ws.org/Vol-3308/Paper18.pdf
https://doi.org/10.1007/978-3-540-24651-0_11
https://doi.org/10.1007/978-3-540-24651-0_11
https://doi.org/https://doi.org/10.1145/2641190.2641198

	A Repository for Formal Contexts

