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Abstract. Version identification (VI) or cover song identification is the
task of automatically detecting whether musical tracks are originating
from the same work. An important step in approaches for solving this
task is the shingling along the time axis. Recently proposed models show
a better retrieval accuracy when using shorter shingles (e.g., of 20 sec-
onds) rather than relying on longer ones (e.g., more than 1 minute) or
even full tracks. However, all current approaches define a fixed length for
the shingles, even though the actual segments in a musical sense, such
as the verse or chorus, are usually varying in length and might even vary
between different versions of the same musical work. This case study ex-
plores new perspectives on VI beyond fixed-length shingles. Based on a
new VI dataset with manually annotated segment labels, we investigate
the distributions of pairwise distances of version embeddings obtained
from a state-of-the-art VI model. We further examine the impact of dif-
ferent shingle-to-segment offsets to uncover the potential performance
degradation in current VI testing methods.
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1 Introduction

Musical versions — often referred to as cover songs — are renditions of an original
musical work. Automatically detecting whether versions are derived from the
same original work is referred to as version identification (VI). Recent approaches
to solve that task are mostly based on representation learning, where an audio
representation such as a constant-Q transform (CQT) is encoded into a learned
representation of a fixed-length vector [2,3,6,7,9, 16].

An important detail in VI is the strategy which transforms the full-length
audio track of a version into a variable number of shorter segments — so-called
shingles. This enables the detection of versions even if only sub-segments (e.g.,
chorus, verse) of the original work are covered, which is not uncommon on online
video platforms [5]. In an ideal scenario, one would match only the segments of
interest, that is, only the chorus of one version against the chorus of another ver-
sion. However, segmentation methods have not yet been studied in conjunction
with VI, and instead, fixed-length segments (shingles) are used.
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In this case study we aim to uncover the potential of using actual musical
segments (e.g., chorus, verse) in VI rather than fixed-length shingles. We create
a new dataset with 8 versions of 4 musical works (also called cligues) of Western
popular music with a total of 136 segments and use CLEWS [9] as a strong
baseline to obtain segment-wise VI embeddings. We then analyze the relation
between the pairwise cosine similarities of embedded segments with their segment
labels. Given the fixed-length segment strategy in current training and evaluation
methods in VI, systems likely exhibit offsets between the boundaries of the actual
segments and shingles. To investigate the potential impact of these offsets during
inference, we simulate different shingle-to-segment offsets.

This paper is organized as follows: In the following section, we outline related
work in the field of VI. In Section 3 we describe our dataset and then present
our results in Section 4. Our case study closes with a conclusion in Section 5.

2 Related Work

Recent VI systems mostly rely on CQT as input representation in conjunction
with representation learning by a contrastive loss (e.g., triplet loss) to obtain
vector representations for which versions of the same work are closer (e.g., by
cosine similarity) to one another than versions of different works. Earlier, the
shingling was done with longer lengths (e.g., 40 seconds or more) [2, 6, 16]. More
recently, shorter shingles have been considered, motivated by applications of
VI on social media platforms. For example, ByteCover3 [3] is trained using 20-
second shingles and evaluated on 30 second shingles. CoverHunter [7] follows
a coarse-to-fine training scheme. In the fine stage, the shingles are between 15
and 45 seconds long and in the evaluation setup fixed to 45 seconds. CLEWS
[9] achieves state-of-the-art performance in VI and was trained using supervised
contrastive learning. The model was tested at different shingle lengths, with the
best performance with 20 seconds. Due to its strong retrieval accuracy and its
public availability,! we select this model for our case study.

Although the datasets used for training and evaluation VI models are rather
large 1,14, 15], none of the current datasets contains segment annotations. While
these annotations are rather expensive to obtain, several datasets have been
proposed targeting the task of music structure analysis [4, 8, 10]. The task deals
with the segmentation of musical tracks into meaningful segments, such as chorus
and verse and could therefore be beneficial for the task of VI.

3 Methodology

3.1 Dataset

To the best of our knowledge, there is no dataset which contains multiple versions
per musical work (as required by VI) and segment annotations. For this reason,

! See https://github.com/sony/clevs.
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Table 1: Versions in VerSegD. For each work we collect one ~ Table 2: Seg-
original (shown by the performing artist marked in bold) ment labels in

and another version. VerSegD.
Song Title Performing Artist Label Count
- . Bill Withers Verse 33
Ain’t No Sunshine Michael Jackson Chorus 23
Queen Riff 16
Bohemian Rhapsody The Braids (Silence) 9
Outro 7
Smoke on the Water Deep Purple Int'ro 5
Dave Rogers Bridge 5

The Beatles

Yesterday Ray Conniff & The Singers

we developed and here present the new Version Segment Dataset (VerSegD).
Given that CLEWS was trained and validated on the respective subsets of
Discogs-VI-YT [1], we selected four popular cliques of its respective test sub-
set to ensure that these were not seen by CLEWS during training. Furthermore,
we selected cliques with originals that we were familiar with, to simplify the
annotation process. For each of the selected cliques, we annotated two versions
with function labels (see Table 2), similar to ones proposed in the SALAMI
dataset [10]. We use Audacity? to listen to segment boundaries and annotate up
to a temporal resolution of a tenth of a second.

We publicly provide the metadata (i.e., timestamps for function labels per
version and YouTube identifiers) for our dataset.®> While VerSegD contains only
8 versions, it comprises 136 total segments. The mean and median lengths of
segments are 14.60 seconds and 13.95 seconds, respectively.

3.2 Analysis Design

Version-Segment Relationships We want to analyze different version-segment
relationships in the context of VI. Our dataset comprises the set V' of versions
(music tracks) which are partitioned into C' cliques, where one clique represents
all versions of one work. Moreover, each version consists of multiple segments
(e.g., verse, chorus), where S denotes the set of all segments and v : S — V
maps each segment to its corresponding version, and ¢ : S — C to the clique of
its version. We define the following relationships between pairs of segments:

vu(t)} (1)
vo(t) Ae(s) = c(t)} (2)
c(t)} 3)

V== {(s,t) € % | v(s)
VT = {(s,t) € S| v(s) #
V™= {(s,t) € S?* | c(s) #

2 https://www.audacityteam.org/
3 https://github.com/progsi/VerSegD
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Similarly, we define pairwise relationships based on the segment label (with
l:S — L mapping segments to their label, e.g., chorus or intro):*

LT :={(s,t) € S* | s £t Al(s) =1(t)} (4)
L™= {(s,t) € S* | I(s) # (1)} ()

Combining the obtained sets, we model version-segment relationships. For
these, we can define our expected outcomes with respect to the similarity of
segments. For instance, we expect the version segments in V+* N LT to have
a rather high similarity, because both resemble positive pairs in terms of VI
shingles. In contrast, V™ N L~ are positive pairs in the VI task, but could be
considered negative due to the non-matching segments. Lastly, V~ N LT and
V= N L~ are both strictly negative, since the compared versions are different.
However, one could argue that the matching segment label in the former could
influence the similarity, due to functional characteristics (e.g., higher loudness
of the chorus compared to the verse). Such characteristics are exploited in some
approaches in music structure analysis [11-13].

Impact of Offsets Current systems solely consider shingles of a fixed length.
Thus, we perform a second analysis in which we compare an anchor segment s
(with its length |s| in seconds) against another segment s, for which we apply
a fixed shingle length w € {10,20,30} (measured in seconds, corresponding to
three of the values tested for CLEWS [9]). Additionally, we consider an offset
0 € {-10,-8,-6,—4,-2,0,2,4,6,8, 10} which is the distance to the middle
point of the anchor segment s. We illustrate some examples of different offsets
and fixed-length shingle lengths in Figure 3.

s (|s|=17)

56=0, w=20

$6=0, w=30

S§=T, w=20

56=10, w=30

Fig. 1: Example of an anchor segment s of length 17 and segments of another
version of the same work with different offsets § from the middle of the anchor
segment and shingle lengths w.

4 We omit a definition for L=, since it would represent the identity relationship (e.g.,
comparing the chorus s of version v to itself) which is not useful for our analyses.
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Fig. 2: Segment-wise mean cosine similarities for the most frequent segment label
combinations for positive (V1) and negative (V) version-segment pairs. White
boxes indicate the absence of the pairs for Intro and Outro, since these occur
only with one segment each in the respective version.

3.3 VI System

We use the VI system CLEWS [9] with its provided checkpoint by the authors.
We set all parameters to the defaults except for the shingling parameters for
which we align start and end times of the shingle embeddings with the seg-
ment timestamps in the ground truth which results in variable length shingles
corresponding to anchor segments. After the pooling and projection layer, we
obtain embedding vectors of length 1,024. The authors propose the dimension-
normalized Euclidean distance to operate on the version embeddings during
training and inference. For better interpretability, we use the cosine similarity
instead, due to its fixed interval of possible values between -1 and 1. As we will
see in the next section however, the range of cosine values obtained from the
pre-trained CLEWS model on our dataset is quite narrow, with minimum val-
ues above 0.8. While VI evaluation usually relies on retrieval metrics such as
mean average precision (MAP), we avoid these metrics in our case study due to
their dependence on the dataset size which is rather small in our case.

4 Results

4.1 Version-Segment Relationships

Figure 2 shows an overview of version-segment relationships for positives V' and
negatives V'~ aggregated by label. Generally, the similarities are all rather high.
While the segment Silence consistently is more dissimilar to the other segments,
we also see that Chorus and Verse appear to be generally the most similar to
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Table 3: Statistics of pairwise cosine similarities by version-segment relationships.
Set  Mean Std. Median # Pairs

V=N LY 9958 .0034 .9968 174
V=N L™ .9910 .0066 .9929 456
VTN LT .9936 .0040 .9950 232
VTN L™ 9891 .0080 .9914 440

V=N LT .9908 .0036 .9913 1,238
V=N L™ .9880 .0068 .9901 2,716

each other and other segments in the case of positives and negatives. A potential
issue is that these two segments are even more similar in negative cases compared
to some other positive relationships, such as all the ones to Outro or most of
the ones to Intro. We also see that the Bridge appears to be rather dissimilar
across the versions in our dataset, and is even lower than the comparison of these
segments to different cliques or other segments.

To not only focus on the most frequently occurring segment label combina-
tions and gather more general results, Table 3 provides statistics of our defined
version-segment relationships. For all pair combinations of version-segment re-
lationship groups, we observe significant differences measured with the Mann-
Whitney-U test (p < 0.05) except for the comparison of V- N LT to VT NL™.
This confirms the previous observation in Figure 2 that in fact segments with a
different label but of actual positive version pairs are competing with segments
with the same label but of actual negative version pairs. With respect to other
expected observations we can confirm that V= N LT and V* N Lt have the
highest similarities. We also see that the negative pair V~ N LT has slightly
lower distances than the positive pair V+* N L~. Furthermore, V* N LT has a
higher mean than V=N L~. This is favorable, since the cross-version similarity
of the same segment is more important in VI than the intra-version similarity
of different segments.

4.2 Segment-to-Shingle Offsets

We investigate the impact of offsets to the middle of the anchor segments for
different fixed shingle lengths in Figure 3. We distinguish between short and long
anchor segment lengths by splitting at 15 seconds, which roughly corresponds
to the mean and median segment length in our dataset.

We generally see high similarities for fixed-length shingles of lengths 20 and 30
seconds, but low ones for shingles of 10 seconds. This is similar to the observation
by [9] and might be due to a natural lower limit for the segment length in VI.
Furthermore, a drop in similarity can be seen starting at = 6 for short segments
and w € {10,20}. Intuitively this is due to the low coverage of the anchor segment
where only a fraction of it is covered at the end. In contrast, we do not see this
effect for the analog negative offsets, which indicates that the information at the

1002



Proc. of the 17th International Symposium on CMMR, London, UK, Nov. 3-7, 2025

1.0000 1.0000
0.9975 0.9975+
2 0.9950 2 0.9950
© ©
= 0.9925 = 0.9925
& 0.9900 &% 0.9900
20.9875 £0.9875 w (seconds)
2 a 10
8 0.9850 8 0.9850 TS
0.9825 0.9825+ 30
0.9800 - T T T T T 0.9800 - T T T T T
-10 -6 -2 2 6 10 -10 -6 -2 2 6 10
6 (seconds) 6 (seconds)
(a) Short: length < 15 seconds. (b) Long: length >= 15 seconds.

Fig. 3: Mean Cosine similarities and 95% confidence intervals of version-segment
pairs in VT N LT for different offsets of the middle § and different fixed shingle
lengths w.

beginning of the embedding is prioritized. Some deeper analysis is necessary to
examine this observation further.

While its range of similarity values appears to be rather small, considering
the generally high similarities observed before, these deviations can still impact
the overall retrieval accuracy. However, overall the similarity still seems to be
rather stable for —10 < § < 4 and for the full range of tested values in the case
of long segments except for w = 10.

5 Conclusion

In this paper, we conducted a case study to encourage a more segment-aware
perspective on the task of VI. While previous studies focus on shingles of fixed-
length, we provide a novel VI dataset with segment annotations. While the
dataset is rather small in terms of versions, we believe that our analysis provides
insights about potential problems in VI regarding bias in correspondence with
segment similarities of negative pairs, possibly due to general characteristics of
segments because of the nature of segments. In future work, we plan to annotate
a larger dataset. Since the annotation effort of segments is rather large, we want
to evaluate whether we can find versions for existing datasets in the field of music
structure analysis. Additionally, existing music structure analysis algorithms can
be exploited to automatically annotate larger datasets.
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