

Conditional Sentences as Conditional Speech Acts

Workshop Questioning Speech Acts Universität Konstanz September 14-16, 2017

> Manfred Krifka krifka@leibniz-zas.de

Leibniz-Zentrum Allgemeine Sprachwissenschaft

Two analyses of conditionals

- Two examples of conditional sentences:
- 1) If Fred was at the party, the party was fun.
- 2) If 27419 is divisible by 7, I will propose to Mary.
- Analysis as conditional propositions (CP): conditional sentence has truth conditions, e.g. Stalnaker, Lewis, Kratzer: Stalnaker 1968: [φ > ψ] = λi[ψ(ms(i, φ))], ms(i, φ) = the world maximally similar to i such that φ is true in that world Explains embedding of conditionals:
- 3) Wilma knows that if Fred was at the party, the party was fun.
- Conditional assertion / speech act (CS): suppositional theory, e.g. Edgington, Vanderveken, Starr: Under the condition that Fred was at the party it is asserted that it was fun. Explains different speech acts, e.g. questions, exclamatives:
- 4) If Fred was at the party, was the party fun?
- 5) If Fred had been at the party, how fun it would have been!

Some views on conditionals

- Linguistic semantics: overwhelmingly CP Philosophy of language: mixed CS / CP
- Quine 1950: CS

"An affirmation of the form 'if p, then q' is commonly felt less as an affirmation of a conditional than as a conditional affirmation of the consequent."

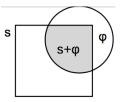
Stalnaker 2009: CP or CS?

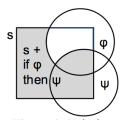
"While there are some complex constructions with indicative conditionals as constituents, the embedding possibilities seem, intuitively, to be highly constrained. (...) The proponent of a non-truth-conditional [CA] account needs to explain what embeddings there are, but the proponent of a truth-conditional [CP] account must explain why embedded conditionals don't seem to be interpretable in full generality."

- My goals: defend CS
 - Develop a formal framework for CS, this is done within Commitment Space Semantics (Cohen & Krifka 2014, Krifka 2015).
 - Explain (restrictions of) embeddings of conditional clauses
 - · Propose a unifying account for indicative and counterfactual conditionals

Modeling the Common Ground

- Common Ground: Information considered to be shared
- Modeling by context sets (propositions):
 - s: set of possible worlds (= proposition)
 - s + ϕ = s $\cap \phi$, update with proposition ϕ as intersection
 - s + [if φ then ψ] = s [[s + φ] [s + φ + ψ]], update with conditional (Heim 1983)
 - Update with tautologies meaningless, s + '27419 is divisible by 7' = s
- Modeling by sets of propositions
 - c: sets of propositions
 - c not inconsistent: no φ such that c ⊨ φ and c ⊨ ¬φ, where ⊨ may be a weaker notion of derivability
 - $c + \phi = c \cup {\phi}$, update with proposition as adding proposition
 - update as a function: c + f(ϕ) = f(ϕ)(c) = λ c'[c' $\cup \{\phi\}$](c) = c $\cup \{\phi\}$



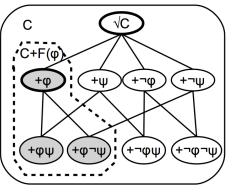


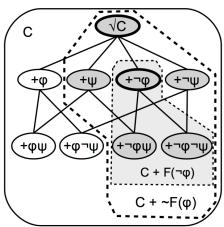
Commitment States

- Propositions enter common ground by speech acts, e.g. assertion (Ch. S. Peirce, Brandom, McFarlane, Lauer):
- 6) A, to B: The party was fun.
 - a. A commits to the truth of the proposition 'the party was fun'
 - b. (a) carries a risk for A if the proposition turns out to be false.
 - c. (a, b) constitute a reason for B to believe 'the party was fun'
 - d. A knows that B knows (a-d), B knows that A knows (a-d)
 - e. From (a-d): A communicates to B that the party was fun (Grice, nn-meaning).
- Update of common ground:
 - a. $c + A \vdash \phi = c'$ update with proposition 'A is committed to truth of ϕ '
 - b. If accepted by B: c' + ϕ = c"
- This is a conversational implicature that can be cancelled:
- 7) Believe it or not, the party was fun.
- As c contains commitments, we call it a **commitment state**
- Commitment operator ⊢ possibly represented in syntax, e.g. verb second in German, declarative affixes in Korean Suggested analysis for German: [ActP . [CommitP ⊢ [TP the party was fun]]]
- Other acts, e.g. exclamatives, require other operators.

Commitment Spaces

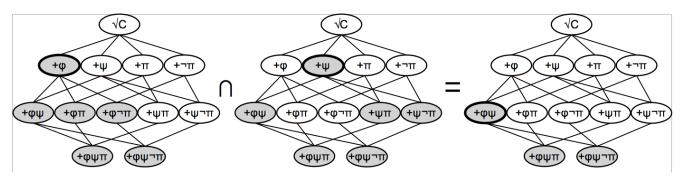
- Commitment Spaces (CS): commitment states with future development, cf. Cohen & Krifka 2014, Krifka 2014, 2015
- A CS is a set C of commitment states c with ∩C∈C and ∩C≠Ø;
 ∩C is the **root** of C, written √C
- Update: C + φ = {c∈C | φ∈C}, as function: F(φ) = λC {c∈C | φ∈C}
- Denegation of speech acts (cf. Searle 1969, Hare 1970, Dummett 1973)
- 8) I don't promise to come.
- 9) I don't claim that Fred spoiled the party.
 Formal representation of denegation:
 C + ~A = C [C + A]
 this is dynamic negation in Heim 1983
- Speech acts that do not change the root: meta speech acts (cf. Cohen & Krifka 2014)





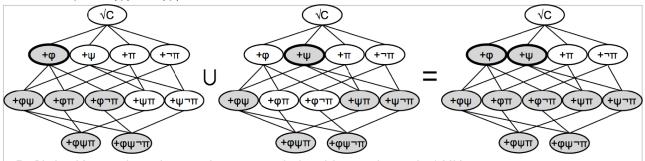
Boolean Operations on CSs

- Speech acts 𝔅 as functions from CS to CS: λC {c∈C | ...}
- Denegation: ~𝔄 = λC[C [C + 𝔅]]
- Dynamic conjunction: $[\mathfrak{A}; \mathfrak{B}] = \mathfrak{B}(\mathfrak{A}(C))$, function composition
- Boolean conjunction: $[\mathfrak{A} \& \mathfrak{B}] = \lambda C[\mathfrak{A}(C) \cap \mathfrak{B}(C)]$, set intersection
- Example: F(φ) & F(B), same result as F(φ) ; F(ψ)



Boolean operations: Disjunction

- Boolean Disjunction: $[\mathfrak{A} \lor \mathfrak{B}] = \lambda C[\mathfrak{A}(C) \cup \mathfrak{B}(C)]$
- Example: F(φ) V F(ψ)



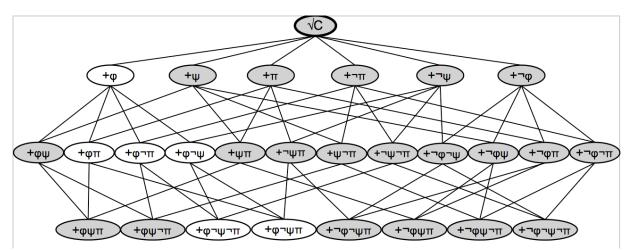
 Note: Disjunction does not necessarily lead to single-rooted CS Problem of speech-act disjunction,

cf. Dummett 1973, Merin 1991, Krifka 2001, Gärtner & Michaelis 2010

- Solution: allow for multi-rooted commitment spaces;
 √C, the set of roots of C, =_{def} {c∈C | ¬∃c'∈C[c'⊂c]}
- In this reconstruction, we have Boolean laws,
 e.g. double negation: ~~𝔄 = 𝔄, de Morgan: ~[𝔄 ∨ 𝔅] = [~𝔅 & ~𝔅]
- But there is pragmatic pressure to avoid multi-rooted CSs
- 10) It is raining, or it is snowing understood as: It is raining or snowing.

Conditional speech acts

- Conditionals express a conditional update of a commitment space that is effective in possible future developments of the root.
- if ϕ then ψ : If we are in a position to affirm ϕ , we can also affirm ψ .
 - hypothetical conditionals in Hare 1970
 - Krifka 2014 for biscuit conditionals
- Proposal for conditionals: $[\phi \Rightarrow \psi] = \lambda C \{c \in C \mid \phi \in c \rightarrow \psi \in c\}$
- Note that this is a meta-speech act: it does not change the root



Conditional speech acts

- Conditionals in terms of updates:
 - $\bullet \ [\mathfrak{A} \Rightarrow \mathfrak{B}] = \lambda C\{c \in C \mid c \in \mathfrak{A}(C) \to c \in \mathfrak{B}(\mathfrak{A}(C))\}$
 - $[\mathfrak{A} \Rightarrow \mathfrak{B}] = [[\mathfrak{A} ; \mathfrak{B}] \lor \sim \mathfrak{A}]$ (cf. Peirce / Ramsey condition)
 - $[\mathfrak{A} \Rightarrow \mathfrak{B}] = [\sim \mathfrak{A} \lor \mathfrak{B}]$ (if no anaphoric bindings between A and B)
- Antecedent not a speech act (cf. Hare 1970); if/wenn updates without commitment; verb final order in German, embedded clauses without illocutionary force:
- 11) Wenn Fred auf der Party war, [dann war die Party lustig]. lack of speech act operators in antecedent
- 12) If Fred (*presumably) was at the party, then the party (presumably) was fun.
- Conditional speech act analysis of conditionals, acknowledging that antecedent is a proposition, not a speech act:
 [φ ⇒ 𝔅] = [F(φ) ⇒ 𝔅] = [~F(φ) ∨ 𝔅]

Conditional speech acts

- Pragmatic requirements for [φ ⇒ 𝔅]: Grice 1988, Warmbröd 1983, Veltman 1985:
 - Update of C with $F(\phi)$ must be pragmatically possible i.e. informative and
 - Update of C + F(ϕ) + \mathfrak{B} must be pragmatically possible not excluded
- Theory allows for other speech acts, e.g. imperatives, exclamatives; questions: C + S1 to S₂: if φ then QUEST ψ = C + [[F(φ); ?(S₂⊢ψ)] V ~F(φ)] see Krifka 2015, Cohen & Krifka (today) for modeling of questions
- Conversational theory of conditionals; analysis of if ϕ then ASSERT(ψ) as:
 - if ϕ becomes established in CG, then S is committed for truth of $\psi;$
 - not: if ϕ is true, then speaker vouches for truth of ψ
- 13) If Goldbach's conjecture holds, then I will give you one million euros.
 - 'If it becomes established that G's conjecture holds, I will give you 1Mio €'
 - S can be forced to accept "objective" truth, decided by independent referees
- 14) Father, on deathbed to daughter: If you marry, you will be happy.
 - Future development of CS is generalized to times after participants even exist

Embedding of Conditionals

- What does this analysis of speech acts tell us about the complex issue of embedding of conditionals?
- Cases to be considered:
 - Conjunction of conditionals: \checkmark
 - Disjunction of conditionals: %
 - Negation of conditionals: %
 - Conditional consequents: \checkmark
 - Conditional antecedents: %
 - Conditionals in propositional attitudes: \checkmark

Embedding: Conjunctions 🗸

- Dynamic conjunction = Boolean conjunction (without anaphoric bindings) [[𝔄 ⇒ 𝔅]; [𝔅' ⇒ 𝔅']] = [𝔅 ∨ ¬𝔅] & [𝔅' ∨ ¬𝔅']
- This gives us transitivity: $[C + [\mathfrak{A} \Rightarrow \mathfrak{B}] \& [\mathfrak{B} \Rightarrow \mathfrak{C}]] \subseteq C + [\mathfrak{A} \Rightarrow \mathfrak{C}]$
- For CP analysis, transitivity needs stipulation about ms relation:
 - $[\phi \geq \psi] \land [\psi \geq \pi] = \lambda i[\psi(ms(i,\phi)) \land \pi(ms(i,\psi))],$
 - $[\phi > \pi] = \lambda i[\pi(ms(i,\phi))],$
 - $[\phi \geq \psi] \land [\psi \geq \pi] \subseteq [\phi \geq \pi]$ if $ms(i,\phi) = ms(i,\psi)$

Embeddings: Disjunctions %

- Disjunction of conditionals often considered problematic (cf. Barker 1995, Edgington 1995, Abbott 2004, Stalnaker 2009).
- 15) If you open the green box, you'll get 10 euros, or if you open the red box you'll have to pay 5 euros.
- We have the following equivalence (also for material implication) $[[\mathfrak{A} \Rightarrow \mathfrak{B}] \lor [\mathfrak{A}' \Rightarrow \mathfrak{B}']] = [[\sim \mathfrak{A} \lor \mathfrak{B}] \lor [\sim \mathfrak{A}' \lor \mathfrak{B}']]$
 - $= [[\sim \mathfrak{A} \lor \mathfrak{B}'] \lor [\sim \mathfrak{A}' \lor \mathfrak{B}]] = [[\mathfrak{A} \Rightarrow \mathfrak{B}'] \lor [\mathfrak{A}' \Rightarrow \mathfrak{B}]]$
- This makes (15) equivalent to (16):
- 16) If you open the green box, you'll pay five euros, or if you open the red box, you'll get 10 euros

• Typically the two antecedents are mutually exclusive, resulting in a tautology:

- a. $[[\mathfrak{A} \Rightarrow \mathfrak{B}] \lor [\mathfrak{A}' \Rightarrow \mathfrak{B}']] = [[\mathfrak{A} \& \mathfrak{A}'] \Rightarrow [\mathfrak{B} \lor \mathfrak{B}']]$
- b. if C + [A & A'] = Ø, this results in a tautology, antecedents of disjunctions are easily understood as mutually exclusive
- c. Following Gajewski (2002), systematic tautology results in ungrammaticality.

Embeddings: Disjunctions %

- For the CP theory, conditionals should not be difficult to disjoin;
 - $[\phi > \psi] \lor [\phi' > \psi']$ is not equivalent to $[\phi > \psi'] \lor [\phi' > \psi]$,
 - if $\phi' = \neg \phi$, this does not result in a tautology.
- Some disjoined conditionals are easy to understand, cf. Barker 1995:
- 17) Either the cheque will arrive today, if George has put it into the mail, or it will come with him tomorrow, if he hasn't.
- Parenthetical analysis:
- 18) The cheque will arrive today (if George has put it into the mail) or will come with him tomorrow (if he hasn't).

[ASSERT(ψ) V ASSERT(π)]; [F(ϕ) \Rightarrow ASSERT(ψ)]; [F($\neg \phi$) \Rightarrow ASSERT(ω)] Entails correctly that one of the consequents is true.

Embeddings: Negation %

- Regular syntactic negation does not scope over if-part:
- 19) If Fred was at the party, the party wasn't fun.

Predicted by CS theory, as conditional is a speech act, not a proposition.

The closest equivalent to negation that could apply is denegation:
 ~[𝔄 ⇒ 𝔅] = ~[~𝔅 ∨ 𝔅] = [𝔅 & ~𝔅]

But the following clauses are not equivalent

- (i) I don't claim that if the glass dropped, it broke.
- (ii) The glass dropped and/but I don't claim that it broke.

Reason: Pragmatics requires that \mathfrak{A} is informative, hence (i) implicates that it is not established that the glass broke, in contrast to (ii).

Another reason: (ii) establishes the proposition the glass dropped without any assertive commitment, just by antecedent.

Embeddings: Negation %

• Forcing wide scope negation: Barker 1995, metalinguistic negation:

20) It's not the case that if God is dead, then everything is permitted.'Assumption that God is dead does not license the assertion that everything is permitted.'

- Punčochář 2015, cf. also Hare 1970:
 negation of *if φ then ψ* amounts to: Possibly: φ but not ψ
- Implementation in Commitment Space Semantics: C + ◇𝔄 =_{def} C iff C + 𝔅 is defined, i.e. leads to a set of consistent commitment states.
- Speech act negation ◇~𝔅
- Use of *no* to express this kind of negation:
- 21) S_1 : This number is prime. S_2 : No. It might have very high prime factors.
- Applied to conditionals: $C + \bigcirc \sim [\mathfrak{A} \Rightarrow \mathfrak{B}] = C \text{ iff } C + \sim [\mathfrak{A} \Rightarrow \mathfrak{B}] \neq \emptyset$ $: \text{iff } C + [\mathfrak{A} \Rightarrow \mathfrak{B}] \neq \emptyset$

 $\operatorname{iff} \mathbb{C} + [\mathfrak{A} \& \sim \mathfrak{B}] \neq \emptyset$

i.e. in C, ${\mathfrak A}$ can be assumed without assuming ${\mathfrak B}$

Embeddings: Negation %

- Égré & Politzer 2013 assume three different negations:
 - $neg \ [\phi \rightarrow \psi] \Leftrightarrow \phi \land \neg \psi$, if speaker is informed about truth of ϕ
 - neg $[\phi > \psi] \Leftrightarrow \phi > \neg \psi$, if sufficient evidence that ϕ is a reason for $\neg \psi$
 - neg $[\phi > \psi] \iff \neg [\phi > \psi] \Leftrightarrow [\phi > \neg \Box \psi]$, basic form
- Reason: Different elaborations of the negation of conditionals,
- 22) S1: If it is a square chip, it will be black.
 - S₂: No (negates this proposition)
 - (i) there is a square chip that is not black.
 - (ii) (all) square chips are not black.
 - (iii) square chips may be black.
- However, we do not have to assume different negations;
 - (i), (ii) and (iii) give different types of contradicting evidence.
- This explanation can be transferred to the analysis of negation here:
- 23) $S_1: C + [F(\phi) \Rightarrow F(\psi)].$
 - S₂: No (rejects this move)
 - (i) $C + [F(\phi) \& F(\neg \psi)]$
 - (ii) $C + [F(\phi) \Rightarrow F(\neg \psi)]$
 - (iii) C + $\bigcirc \sim [F(\phi) \Rightarrow F(\psi)]$

Embeddings: Conditional consequents 🗸

- Easy to implement, as consequents are speech acts:
 - $[\mathfrak{A} \Rightarrow [\mathfrak{B} \Rightarrow \mathfrak{C}]] = [\sim \mathfrak{A} \lor [\sim \mathfrak{B} \lor \mathfrak{C}]]$ $= [[\circ \mathfrak{A} \lor [\sim \mathfrak{B} \lor \mathfrak{C}]] \lor [\circ \mathfrak{B} \lor \mathfrak{C}]$
 - $= [[\sim \mathfrak{A} \lor \sim \mathfrak{B}] \lor \mathfrak{C}]$
 - $= [[\mathfrak{A} \& \mathfrak{B}] \lor \mathfrak{C}] = [[\mathfrak{A} \& \mathfrak{B}] \Rightarrow \mathfrak{C}]$
- 24) If all Greeks are wise, then if Fred is Greek, he is wise. entails: If all Greeks are wise and Fred is a Greek, then he is wise.
- CP analysis achieves this result under stipulation:
 - $[\phi > [\psi > \pi]] = \lambda i[[\psi > \pi](ms(i, \phi))]$
 - $= \lambda i [\lambda i' [\pi(ms(i', \psi)](ms(i, \phi))]$
 - = λi[π(ms(ms(i, ϕ), ψ))]
 - $[[\phi \land \psi] > \pi] = \lambda i[\pi(ms(i, [\phi \land \psi]))]$
- Possible counterexample (Barker 1995):
- 25) If Fred is a millionaire, then even if if he does fail the entry requirement, we should (still) let him join the club.

Problem: scope of *even* cannot extend over conditional after conjunction of antecedents

Embeddings: Conditional antecedents %

 Conditional antecedents are difficult to interpret (cf. Edgington, 1995, Gibbard, 1981)

26) If Kripke was there if Strawson was there, then Anscombe was there.

- Explanation: Antecedent must be a proposition, but conditional is a speech act!
- Sometimes conditional antecedents appear fine (Gibbard):
- 27) If the glass broke if it was dropped, it was fragile.
 - Read with stress on broke, whereas if it was dropped is deaccented
 - This is evidence for if it was dropped to be topic of the whole sentence.
 - Facilitates reading If the glass was dropped, then if it broke, it was fragile; this is a conditional consequent, which is fine.
- Notice that for CP theorists, conditional antecedents should be fine
 [[φ > ψ] >π] = λi[π(ms(i, λi'[ψ(ms(i', φ)))].

Necessary assumption:

 $ms(ms(i, \phi), \psi)$

 $= ms(i, [\phi \land \psi])$

Embeddings: Propositional attitudes

- 28) Bill thinks / regrets / hopes / doubts that if Mary applies, she will get the job.
- 29) Bill thinks / regrets / hopes / doubts that Mary will get the job if she applies.
- 30) A: If Mary applies, she will get the job. B: I believe that, too. / I doubt that.
- ◆ [_{CP} that [_{TenseP} ...]] suggests an TP (propositional) analysis of conditionals
- Krifka 2014: Coercion of assertion to proposition, 𝔄 → '𝔅 is assertable'
 - (28) 🗢 Bill thinks / regrets / hopes / doubts
 - that it is assertable that if Mary applies, she will get the job,
 - that whenever established that Mary applies, it is assertable that she will get the job
- Assertability of A at a commitment space C:
 - A speaker S is justified in initiating C + \mathfrak{A} ,
 - a speaker S that initiates C + \mathfrak{A} has a winning strategy, i.e. can ultimately defend this update.
- Possibly similar with:
- 31) It is (not) the case that if Mary applies, she will get the job;
 - 'it is (not) assertable that if Mary applies, she will get the job'
- Evidence for this coercion: discourse / speech act operators in that clauses
- 32) they thought that, frankly, they made more complex choices every day in Safeway than when they went into the ballot box
- ◆ As in other cases of coercion, required by selection of lexical operator, e.g. *think, doubt* ...,

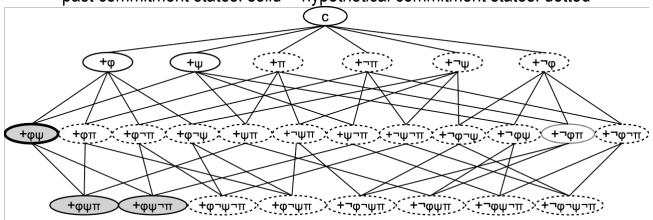
Counterfactual conditionals

- Indicative conditionals considered so far: The antecedent can be informatively added to the commitment space, e.g. C + if φ then ASSERT ψ pragmatically implicates that C + F(φ) ≠ Ø
- This is systematically violated with counterfactual conditionals:
- 33) If Mary had applied, she would have gotten the job.
- 34) If 27413 had been divisible by 7, Fred would have proposed to Mary.
- Proposal:
 - The counterfactual conditional requires **thinning out** the commitment states so that the antecedent $F(\phi)$ can be assed.
 - This requires "going back" to a hypothetical larger commitment space in which the actual commitment space is embedded.
- This leads to the notion of a commitment space with background, that captures the (possibly hypothetical) commitment space (background) "before" the actual commitment space

Commitment Space with Background

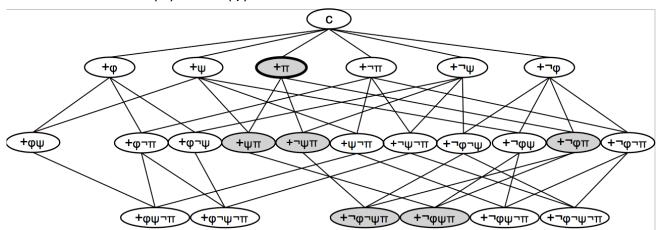
- A commitment space with background is a pair of commitment spaces (C_b, C_a), where
 - $C_a \subseteq C_b$
 - $\forall c \in C_b \ [c < C_a \rightarrow c \in C_a]$, where $c < C_a \ iff \ \exists c' \in C_a[c \subseteq c']$, i.e. $C_a \ is \ a \ "bottom" \ part \ of \ C_b$
- Example: (C, C+F(φ)+F(ψ))
 root: fat border.

root: fat border, actual commitment space: gray past commitment states: solid hypothetical commitment states: dotted



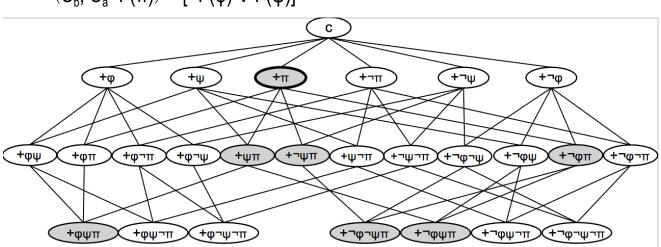
Update of CS with background

- Regular update of a commitment space with background: $\langle C_b, C_a \rangle + \mathfrak{A} = \langle \{c \in C_b \mid \neg [C_a + \mathfrak{A}] < c\}, [C_a + \mathfrak{A}] \rangle,$ where C < c: $\exists c' \in c[c' \subset c]$
 - Regular update of commitment space C_a
 - Eliminating commitment states "under" C_a in background
- Update with denegation "prunes" background CS, here: (C, C+F(π)) + ~F(φ)



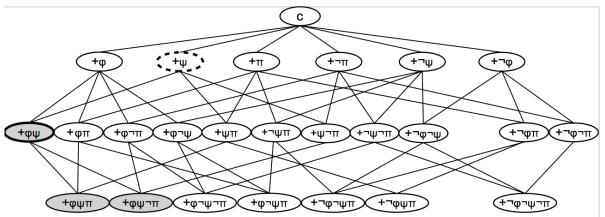
Update of CS w background by conditional

- As conditional update involves denegation, we also observe pruning
- Example:
 - $\begin{array}{l} \langle C_{\mathsf{b}}, \ C_{\mathsf{a}} + F(\pi) \rangle + [\phi \Rightarrow F(\psi)] \\ = \langle C_{\mathsf{b}}, \ C_{\mathsf{a}} + F(\pi) \rangle + [\sim F(\phi) \ V \ F(\psi)] \end{array}$



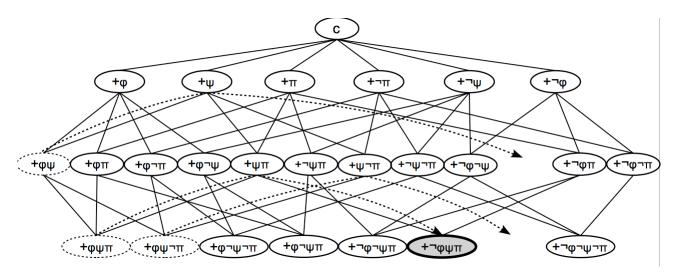
Counterfactual conditionals

- Update with counterfactual conditional:
 - Let C_a be C_b + F(ϕ) + F(ψ)
 - $\langle C_{b}, C_{a} \rangle + [F(\neg \phi) \Rightarrow F(\pi)] = \dots C_{a} + \sim F(\neg \phi) \dots = \dots C_{a} C_{a} + F(\neg \phi) \dots$
 - but $C_a + F(\neg \phi)$ not felicitous, as $\forall c \in C_a$: $\neg \phi \notin c$
- Revisionary update: go back to c.state where update is be defined:
 - C +_R F(φ) = {ms(c, φ) + f(φ) | c∈C}, ms(c, φ) = the c.state maximally similar to c that can be updated with φ
- Going back to dotted c.state; update with $[\neg \phi \Rightarrow F(\pi)]$; effect on background



Counterfactual conditionals

- Counterfactual conditional informs about hypothetical commitment states, which may have an effect under revisionary update,
- Example:
 - $C_{b} + F(\phi) + F(\psi) + (counterfactual) [\neg \phi \Rightarrow F(\pi)] + (revisionary) F(\neg \phi)$
- Notice that the effect of the counterfactual conditional remains, it is guaranteed that π is in the resulting commitment space



Counterfactuals and "fake past"

- Explaining of "fake past tense" in counterfactual conditionals Dudman 1984, latridou 2000, Ritter & Wiltschko 2014, Karawani 2014, Romero 2014
 - Past tense shifts commitment space from actual to a "past" commitment space; this does not have to be a state that the actual conversation passed through, but might be a hypothetical commitment space.
 - As conversation happens in time, leading to increasing commitments, this is a natural transfer from the temporal to the conversational dimension.
- Ippolito 2008 treats "fake tense" as real tense, going back in real time where the counterfactual assumption was still possible. Problem with time-independent clauses:
- 35) If 27413 had been divisible by 7, I would have proposed to Mary.
- 36) If 27419 was divisible by three, I would propose to Mary.
- Going from c to a commitment state c' ⊂ c with fewer assumptions to make a counterfactual assertion may involve going to different worlds for which a commitment state c' is possible. (cf. See Krifka 2014 for a model with branching worlds)

Wrapping up

- Modeling conditionals as conditional speech acts is possible!
- There are advantages over modeling as conditional propositions:
 - Flexibility as to speech act type of consequent
 - Restrictions for embedding of conditionals
 - Logical properties of conditionals without stipulations about accessibility relation.
- The price to pay:
 - Certain embeddings require a coercion from speech acts to propositions, e.g. from assertions to assertability
 - Conditionals are not statements about the world, but about commitment spaces in conversation; this requires idealizing assumptions about rationality of participants, extending commitment spaces beyond current conversation.
- A theory of counterfactuals
 - · Counterfactuals not about non-real worlds but about thinned-out commitment states
 - · Allows for counterfactual conditionals with logically false antecedents
 - Suggests a way to deal with fake past