Accommodating Indefinites
Manfred Krifka

Introduction

Goal: Explain interpretation of indefinites depending on accent. (Cf. Krifka (2001)).

(1) a. A freshman usually wears a baseball cap.
 ‘Most freshmen wear a baseball cap.’
 b. A fréshman usually wears a baseball cap.
 ‘Most wearers of baseball caps are freshmen.’

Focus-based accounts and the requantification problem

Focus-based account on accent and quantification, cf. Rooth (1985):

(2) [Mary usually took John to the movies];
 MOST([Mary took John to the movies]λ, [Mary took John to the movies]β)
 MOST([Mary took someone to the movies], [Mary took John to the movies])

Focus-sensitive interpretation of usually, schematic:

(3) [usually Φ] = MOST(∪[Φ]λ, [Φ]β)

Detour: Dynamic Interpretation

Assume the following format (we disregard possible world parameter):

(4) a. Discourse referents (DRs): numbers; variables i, i’ etc.
 b. Assignments: partial functions from DRs to entities; variables g, h, k.
 c. Extension of an assignment g for an index i resulting in assignment h,
 g < h iff g ⊆ h and DOM(h) = DOM(g) ∪ {i}
 d. The increment of an assignment g with h, g&h:
 g ∪ h, if DOM(g) ∩ DOM(h) = ∅, undefined else.
 e. Common grounds (contexts): Sets of assignments, all with the same domain,
 variables c, c’ etc.; DOM(c) = the domain of the assignments of c.
 f. Clause meanings: Context change potentials, CCPs,
 functions from input contexts to output contexts., var. α, β etc.
 g. Dynamic conjunction of CCPs: α β = λc[α + β]
 h. Dynamic conjunction of a context c by a CCP α, written c + α, instead of α(c)
 i. Reduction of a context c to those assignments that support α:
 c[α] = {g ∈ c | g ∪ αc ≠ ∅}

Interpretation of indefinites and defines:

(5) a. A man came in. He smoked a cigar.
 b. LF: [a man], [t1, came in] [a cigar], [he, smoked t2]

 Interpretation with respect to an input context cλ:
 cλ + [a man]λ, [t1, came in]λ [a cigar]λ, [he, smoked t2]
 + [t1, came in] λ + [a cigar]λ
 + [he, smoked t2]
 + [he, smoked t2] λ
 cλ = {h | ∃g ∈ c[g < h ∧ MN(h)] ∧ CI(h) ∧ CG(h) ∧ SM[h, h2]}

Interpretation of quantified sentences:

(6) USUALLY(α, β) = λc[α + MOST(h | g ∪ h ∈ [g] + α)]. [h | (g&h) + β ≠ ∅])
 ‘Reduce the input context c to those assignments g
 such that: for most increments h induced by α on g,
 g&h supports the truth of β.’

(7) a. Usually, if a man came in, he smoked a cigar.
 b. cλ = cλ + USUALLY([a man], [t1, came in]), [a cigar], [he, smoked t2])
 c. = cλ + USUALLY([a man], [t1, came in]), [a cigar], [he, smoked t2])
 d. = [g ∈ cλ] MOST(h | g ∪ h ∈ {g + [a man], [t1, came in]})
 [h | (g&h) + [a cigar], [he, smoked t2] ≠ ∅])
 e. = [g ∈ cλ] MOST(h | g ∪ h ∧ MN(g&h) ∧ CI(g&h),
 [h | ∃k | (g&h) ∧ k ∧ CG(k) ∧ SM[k, k2]])

The resulting context contains those assignments g of the input context cλ such that
-- most increments h that extend g insofar as they map the index 1 to a man that came in
-- are also increments that can be extended to an assignment k that map the index 2 to a cigar
such that 1 smoked 2.

This amounts to a quantification over incoming men.

Focus-based accounts in dynamic interpretation

(8) A blue-eyed dog is usually intelligent.
 ‘Most blue-eyed dogs are intelligent.’

Ordinary meanings and alternatives:

(9) a. [a dog], [t1, is intelligent]λ])
 = λc[h | ∃g ∈ c[g < h ∧ DG(h) ∧ IN(h)])
 b. [a dog], [t1, is intelligent]λ])λ
 = λc[h | ∃g ∈ c[g < h ∧ DG(h) ∧ P(h)]) | P ∈ ALT(IN)]
 c. Assuming that alternatives are ‘intelligent’ and ‘dumb’:
 = λc[h | ∃g ∈ c[g < h ∧ DG(h) ∧ IN(h)])
 + λc[h | ∃g ∈ c[g < h ∧ DG(h) ∧ DU(h)])

Union sets of context-change potentials should be context-change potentials, hence:

(10) If A is a set of context-change potentials with the same domain (input contexts),
 then ∪A = {c, c’} | c ∈ DOM(A) ∧ c’ = ∪{c + α | α ∈ A})

(11) ∪(9, c) = λc[h | ∃g ∈ c[g < h ∧ DG(h) ∧ IN(h) ∨ DU(h)])
Focus-sensitive interpretation of *usually*:

(12) \[\text{[usually } \Phi] = \text{USUALLY}(\cup \{ \Phi \}),\ [\Phi]\]

(13) a. \[\text{[usually } \{a \ \text{dog}, \ [t, \ [\text{is intelligent}]]\}]\]

b. If ALT(IN) = \{IN, DU\}:
\[\text{= USUALLY}(\{\lambda c[h \ \exists g \in c[\varepsilon g^1 h \ \land (DG(h) \land \ [\text{IN}(h) \lor DU(h)])]\},\ [\lambda c[h \ \exists g \in c[\varepsilon g^1 h \ \land (DG(h) \land \text{IN}(h))]])\}

c. \[\text{= } \lambda c[\exists g \in c]\]
\[\text{MOST}(\{h \ | \ g \land h \in c \ \land \lambda c[h \ \exists g \in c[\varepsilon g^1 h \ \land (DG(h) \land \text{IN}(h))],\ [\lambda c[h \ \exists g \in c[\varepsilon g^1 h \ \land (DG(h) \land \text{IN}(h)))]\})\]

d. \[\text{= } \lambda c[\exists g \in c]\]
\[\text{MOST}(\{h \ | \ g^1 h \ \land (DG(h) \land \ [\text{IN}(g^1 h)])],\ [\lambda c[h \ \exists g \in c[\varepsilon g^1 h \ \land (DG(h) \land \text{IN}(h)))]\})\]

The requantification problem

Problem with (13.d): The conditions \(g^1 h\) and \(g^1 h\) cannot hold both, as 1 is not a novel index for \(g^1 h\) anymore. This is the *requantification problem* (von Fintel (1994), Rooth (1995)). Informally, the following analysis is given:

(14) ‘For most cases where there is a dog that is intelligent or dumb, there is a dog that is intelligent.’

Rooth’s proposal (‘domain regulator theory’): Give up the novelty conditions for indefinites, incorporated in \(g^1 h\), assume that indices may be new or old. Problem: Without novelty condition, indefinites may pick up old discourse referents.

(15) *A man, came in. A man, sat down.*

could be interpreted as ‘A man came in. He sat down.’

Why are indefinites not used for picking up discourse referents? Perhaps because indefinites, which require an old index, do a better job in normal cases because they are more specific (quantity implicature). Cf. reasoning for distribution of pronominal forms (pronouns, reflexives) in Horn (1984).

Other proposals to deal with requantification problem: von Fintel (1994), quantification over minimal situations; Percus (1997), indefinites have uniqueness presuppositions. For problems of these accounts see Krifka (2001).

Presupposition-based accounts

Presupposition-sensitivity of quantification,
Cf. [Schubert, 1989 #8913], Kasper (1992):

(16) a. *Cats usually land on their feet.*
‘If a cat touches ground when falling, it usually lands on its feet.’

b. *Robin Hood never misses.*
‘If Robin Hood tries to hit something, he never misses (it).’

(17) *Mary would have solved the problem.*
‘If Mary were confronted with the problem, she would have solved it.’

Presupposition-sensitive interpretation of *usually*, schematic:

(18) \[\text{[usually } \Phi] = \text{MOST}((\text{Pres}(\Phi)), \ [\Phi]),\]

where \(\text{Pres}(\Phi)\): The cases where the presuppositions of \(\Phi\) are satisfied.

Goal: Only one interpretation rule for adverbial quantifiers. Options: (a) Reduce presupposition sensitivity to focus sensitivity; (b) Reduce focus sensitivity to presupposition sensitivity. For (b) cf. von Fintel (1994), Rooth (1999): Focus induces (existential) presupposition.

1 Non-novel indefinites and adverbial quantification

1.1 Proposal in a nutshell

In examples like (1) the quantificational adverbial does not exploit focus, but *non-novelty* of indefinite NPs. This is indicated by deaccentuation / topic accent (‘) of the indefinite, which results on default accent (‘) on some other part, cf. Ladd (1980).

(19) *Usually, a blue-eyed dog\textsubscript{hns} is intelligent.*

(20) a. *A\textsubscript{hns} freshman usually wears a baseball cap.*

b. *A\textsubscript{hns} freshman usually wears a baseball cap\textsubscript{bns}.*

Non-novel indefinites presuppose that their *discourse referent ist given* (an element of the input context). But in contrast to definites, they do not presuppose that the description identifies a given discourse referent uniquely, hence non-novel indefinites are only second choice for picking up given discourse referents.

As non-novel indefinites are not ideal for picking up a given discourse referent, their presupposition is typically accommodated, i.e. the common ground is changed minimally so that it contains a discourse referent under the given description.

The adverbial quantifier quantifies over all contexts in which the presuppositions of the sentence are satisfied, i.e. over all ways of interpreting the discourse referent of the non-novel discourse referent (cf. (18)).

A non-novel indefinite can pick up an existing discourse referent. This avoids the requantification problem. The otherwise better option of using a definite NP does not exist here, as we don’t have a second NP, and a definite NP cannot be used to create the domain of quantification. Schematically:

(21) *usually* \[\text{[a dog,]}\] accomodated indefinite presupposition picks up introduces DR 1 DR 1
1.2 Proposal in greater detail

Interpretation of indefinites and adverbs of quantification

Interpretation of non-novel indefinites:

(22) a. \([\text{a dog}_{1,NN}] = \lambda c(c \in \text{in} \land \forall h \in \text{DG}(h_1])\]
 b. \([^\text{a dog}_{1,NN}, I_t, \text{is intelligent}] = \lambda c(c \in \text{in} \land \forall h \in \text{DG}(h_1) \land \text{IN}(g))\]

Interpretation of anaphoric definites, and their use:

(23) \([^\text{the dog}_1]\] = \(\lambda c(c \in \text{in} \land \forall g \in \text{DG}(g) \land \forall i \in \text{DOM}(g)[\text{DG}(g) \rightarrow g_i = g])\]

Interpretation of adverbs of quantification, schematic:

(25) \(c + \{\text{usually}\}(\alpha, \beta)\) = \(c + \text{most ways} \in \text{in which} \ c \text{entails} \alpha\)
 i.e. an input context \(c\) is updated with \(\text{usually} \ \alpha \ \beta\), then it will be restricted to those input assignments \(g\) for which it holds that most ways in which \(g\) supports \(\alpha\) are also ways in which \(g\) supports \(\alpha\) and \(\beta\).

Accomodating Presuppositions

Accomodation of the presuppositions of a context-change potential \(\alpha\) at a context \(c\) involves a minimal change of \(c\) so that the presuppositions of \(\alpha\) are satisfied.

The context change that we get for \(c\) with \(c + \alpha = \emptyset\) by minimally changing it (i.e. by accomodating the presuppositions of \(\alpha\) in \(c\)) will be written \(c(\alpha)\).

(28) a. \(c'\) extends \(c\), satisfying (the presuppositions of) \(\alpha\), iff
 - \(c' + \alpha \neq \emptyset\)
 - \(\forall \in c' \exists g \in \text{DG}(g)\)
 b. \(c'\) extends \(c\) minimally, satisfying \(\alpha\), iff
 - \(c'\) extends \(c\), satisfying \(\alpha\),
 - there is no \(c''\), \(c'' \neq c'\), such that \(c''\) extends \(c\), satisfying \(\alpha\), and \(c''\) extends \(c'\), satisfying \(\alpha\).
 c. \(c'\) extends \(c\) properly, satisfying \(\alpha\) (rendered as \(c' = c(\alpha)\))
 iff \(c' = c(\alpha)\) and \(c'\) extends \(c\) minimally, satisfying \(\alpha\).

That is, if \(c + \alpha = \emptyset\) and \(c(\alpha)\), then \(c'\) is the most conservative change of \(c\) that satisfies the presuppositions of \(\alpha\). In particular, \(c'\) contains what is necessary to satisfy the presuppositions of \(\alpha\), but does not contain any excess information. This means that it does not introduce any unnecessary indices (b), and it does not make any unnecessarily specific claims about how the indices are anchored (c).

We have the following fact: If \(1 \notin \text{DOM}(c)\), then \(c'([\text{a dog}_{1,NN}]) = c + [\text{a dog}_{1,NN}]\). That is, accomodation of the non-novel indefinite \(\text{a dog}\) has the same effect as updating with the regular indefinite \(\text{a dog}\).

Accomodating presuppositions in adverbial quantification

In \([\text{a dog}_{1,NN} \text{is intelligent}]\), the adverbial restrictor is empty. Let \(0\) stand for the identity CCP, \(0 = \lambda c(c)\). If the protasis of the adverbial quantifier is not filled explicitly (e.g. by an if-clause), \(0\) is the default. Then we have:

(29) \(c_0 + \text{usually} (0, [\text{a dog}_{1,NN}, I_t, \text{is intelligent}])\)

This cannot be interpreted as is, as the restrictor is empty. The restrictor can be filled by accomodating the presupposition of \(\text{a dog}_{1,NN}\).

Three possible points of accomodation (cf. Heim (1983), van der Sandt (1992)); globally, immediately, or locally.

(30) a. \(c + \text{usually} (0, \beta)\)
 b. \(c = [\{g \in c | \text{MOST}^*(g)(\{g\}[0], \{g\}[0], \beta)]\}
 c. \(c = [\{g \in c | \text{MOST}^*(g)(\{g\}[0], \{g\}[0], \beta)]\}
 d. presuppositions of \(\beta\) are not satisfied in \(\{g\}[\beta]\).
 e. i) Global accomodation does not help:
 \(c(\beta) + \text{usually} (0, \beta)\) helps:
 \(c(\beta) + \text{usually} (0, \beta)\) helps:
 \(c(\beta) + \text{usually} (0, \beta)\) helps:
 ii) Local accomodation does not help:
 \(c(\beta) + \text{usually} (0, \beta)\) helps:
 \(c(\beta) + \text{usually} (0, \beta)\) helps:
 iii) Intermediate accomodation helps:
 \(c(\beta) + \text{usually} (0, \beta)\) helps:
 \(c(\beta) + \text{usually} (0, \beta)\) helps:

With intermediate accomodation, the context of the protasis, \(\{g\}\), is changed to the accomodated context \(g(\beta)\), and \(g\) and the elements in \(g(\beta)\) will differ if the accomodation involves the introduction of new discourse referents.
Asymmetric readings arise because quantification is just over accommodated variables:

\[a \subseteq \text{USUALLY}(0, \{a \text{ dog}_{NN1}, [t, \text{is intelligent}])\]

b. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ dog}_{NN1}, [t, \text{is intelligent}])\}\]

c. Intermediate accommodation:

\[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ dog}_{NN1}, [t, \text{is intelligent}])\}\]

\[\{g \subseteq c | \forall h e c \{ DG(h_i) \land IN(g_i)\}\}

d. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ dog}_{NN1}, [t, \text{is intelligent}])\}\]

\[\{h g \subseteq h \land DG(h_i)\}, \{h g h \subseteq h \land DG(h_i) \land IN(h_i)\}\]

e. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ dog}_{NN1}, [t, \text{is intelligent}])\}\]

\[\{h g \subseteq h \land DG(h_i)\}, \{h g h \subseteq h \land DG(h_i) \land IN(h_i)\}\]

f. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ dog}_{NN1}, [t, \text{is intelligent}])\}\]

\[\{h g \subseteq h \land DG(h_i)\}, \{h g h \subseteq h \land DG(h_i) \land IN(h_i)\}\]

Examples with non-empty protasis

Local accomodation of non-novel indefinite in the protasis

(32) a. If a dog has blue eyes, it usually is intelligent.

b. \[\{g \subseteq c | \text{USUALLY}(0, \{a \text{ dog}_{NN1}, [t, \text{has blue eyes}]\} [t, \text{is intelligent}])\]\n
c. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ dog}_{NN1}, [t, \text{has blue eyes}]\} [t, \text{is intelligent}])\}\]

d. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ dog}_{NN1}, [t, \text{has blue eyes}]\} [t, \text{is intelligent}])\}\]

e. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ dog}_{NN1}, [t, \text{has blue eyes}]\} [t, \text{is intelligent}])\}\]

Asymmetric readings (cf. Kadmon (1987)):

(33) a. If a farmer owns a donkey, he usually beats it.

b. If a farmer owns a donkey he usually beats it.

Most donkeys owned by a farmer are beaten by him.

Asymmetric readings arise because quantification is just over accommodated variables:

(34) a. \[\{g \subseteq c | \text{USUALLY}(0, \{a \text{ farmer}_{NN1}, \text{a donkey}_{2}, [t_1, \text{owns} t_2]\}, [t_1, \text{beats} t_2])\]\n
b. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ farmer}_{NN1}, \text{a donkey}_{2}, [t_1, \text{owns} t_2]\}, [t_1, \text{beats} t_2])\}\]

c. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ farmer}_{NN1}, \text{a donkey}_{2}, [t_1, \text{owns} t_2]\}, [t_1, \text{beats} t_2])\}\]

d. \[\{g \subseteq c | \text{MOST}(g) \{ [g], \{a \text{ farmer}_{NN1}, \text{a donkey}_{2}, [t_1, \text{owns} t_2]\}, [t_1, \text{beats} t_2])\}\]

Cb. Chierchia (1992), who assumes that quantification is only over the “topical” parts in the protasis

Some consequences and predictions

Marking of non-novel indefinites

Crucial difference to association-with-focus theory: There is a special class of non-novel indefinites. They can be marked by deaccentuation / topic accent. But the association-with-focus theory explains the accent facts as well (focus marking of other constituents leads to deaccenting the indefinite). Is there evidence that special marking affects the indefinite NP? Optional marking non-novel indefinites by a given (examples: BNC).

(35) a. But, however suggestive it may be, the fact that a given phenomenon is successfully predicted by a theory does not prove the theory to be correct.

b. What limits a teacher wishes to set will depend entirely on her own intentions for a given student.

Use of definite articles for indefinites to be interpreted in the restrictor of an adverbial quantifier or a generic sentence, e.g. in Modern Greek (cf. Newton (1979)), Spanish (cf. Laca (1990) for the data). Can be explained by assuming that the definite article serves to mark both definite NPs and non-novel indefinites.

(36) a. Los vaqueros mascan tabaco.

b. Los vaqueros mascan el tabaco.

Differential object marking in Turkish, Persian (described as marking specificity):

(37) a. Kowboyeeha tanbako mijavand.

b. Kowboyeeha tanbako-ra mijavand.

Use of topic markers in Japanese for indefinites in the restrictor of quantifiers.

(38) Taieti, midori no me o shita inu wa rikou de aru.

usually, green of eye Acc did dog(s) Top intelligent Decl is/are

‘Usually, a green-eyed dog is intelligent’
Deaccented indefinites can be interpreted as anaphoric (Kerstin Schwabe), which is to expected for non-novel indefinites (but is disfavored because pronouns / definite NPs do a better job)

(40) Wenn ein Mann räucht, dann trinkt ein Mann auch.
If a man smokes then drinks a man too
If a man smokes, then he also drinks.

Case study: Scrambling in German

Proposal: Non-novel indefinites can scramble:
(41) a. weil einer alten Dáme,gewöhnlich eine Kátze, gehört
because an old lady (DAT) usually a cat (NOM) belongs
because most old ladies own a cat
b. weil eine Kátze,gewöhnlich t, einer alten Dáme gehört
because a cat (NOM) usually an old lady (DAT) belongs
because most cats belong to an old lady

Alternatives:
- Diesing (1992), existential closure over VP; scrambling allows indefinites to escape from the VP and get bound by the adverbial quantifier.
 Problem: deaccented indefinites within VP:
(42) weil ja doch eine Kätzegewöhnlich einer alten Dáme gehört.

 Problem: Presupposition-sensitivity to be analyzed as a different phenomenon.
- de Hoop (1992): Weak indefinites (existential indefinites) cannot scramble. Problem (Frey (2001)): “narrow scrambling” of weak indefinites in
(43) weil die Polizei gestern Demonstranten, im Stadtpark t, verhaftet hat.
‘because the police arrested some protesters in the city park yesterday’

Is it necessary that non-novel indefinites scramble? Probably not, cf. (42). But there are base-generated positions that do not allow for non-novel indefinites (or “strong” NPs in general), e.g. after a manner adverbial, or in complex predicates (cf. Frey (2001)). Deaccenting is impossible in this position.

(44) weil Hans gewöhnlich sorgfältig ein Hémd bügelt / *ein Hémd b’ügelt.
‘because Hans usually carefully a shirt irons’

Frey (2000) identifies an aboutness topic position in the German middle field, between left sentence bracket and the position for sentence adverbials. This position can house non-novel indefinites, but they don’t have to be realized there.

(45) a. weil Kinder vermutlich leicht Másern kriegen.
‘because children presumably easy measles get
b. weil vermutlich Kinder leicht Másern kriegen.

Hence, non-novelty of indefinites should not be reduced to aboutness topics.

Binding options
(46) a. Unless Pedro owns a dónkey, he doesn’t beat it.
b. *Unless Pedro owns a dónkey, he doesn’t beat it.

(47) a. If Pedro doesn’t owning a dónkey, he doesn’t beat it.
b. *If Pedro doesn’t own a dónkey, he doesn’t beat it.

Cataphora
[Chierchia, 1995 #6521], accent marks added:
(48) a. If it, is overcòoked, a hàmburger, usually doesn’t tásé good.
b. If a bòy, lies to her, a girl, won’t trúst him, anymore.

Can be explained if we assume that non-novel indefinites are possible antecedents from the place where they are accomodated. Problem for subject-centered account of Chierchia:
(49) If a boy lies to her, he risks lóosing a girlfriend.

A motivation for deaccenting
Bartels and Merin (1997): The general function of deaccenting (what Bartels & Merin identified as L"H+ tone) is to indicate transfer of authority of referent choice from the speaker to the hearer. In the case of indefinites this means that it is granted to the hearer to select an entity that satisfies the description. This relates to the way how universal statements are analyzed in game-theoretic semantics: To prove $\forall x\Phi[x]$, the speaker has to prove $\Phi[a]$ for some object a that can be chosen by a malevolent hearer, or “nature”. This idea can be generalized for other quantificational forces. For example, to prove $\text{USUALLY}(x)\Phi[x]$, the speaker has to prove that $\Phi[a]$, where a is chosen by the opponent, is true for most choices of a. In contrast, for the existential interpretation $\exists x\Phi[x]$ it remains in the authority of the speaker to choose an instantiation a such that $\Phi[a]$, and this situation is not marked by L"H+ but by H+L−.
Non-novel indefinites and specific indefinites
Fodor and Sag (1982) show that such NPs can scope out of syntactic islands and claim that they are referential and hence appear to have widest scope. Abusch (1993-1994) argues that the referential analysis of specific indefinites cannot be correct, as there are readings in which they are still in the scope of another operator:

(50) Every professor rewarded every student who read a book he had recommended.
 ‘For every professor x: x rewarded every student who read some books or other that x had recommended.

Cresti (1995) has developed an analysis of specific NPs as topical, where topichood introduces a certain presupposition, and this presupposition can be accommodated globally, locally, or on an intermediate level, as in (50). The presupposition introduced by an indefinite specific NP like [a student], is essentially that the variable assignment must satisfy the condition \(\text{student}(x) \), where \(x \) is the variable corresponding to the index \(i \) (see Cresti 1995 p. 164 for details).

Problem: The notion of topic applied here is perhaps wider than the notion of aboutness topics, identified e.g. by Japanese wa and the German topic position because non-novel NPs don’t have to be marked as topics.

Difference between non-novel indefinites interpreted in the restrictor of a quantifier and as specific NPs: Bare NPs can easily act in the first role, but are problematic in the second:

(51) a. Fréshmen usually wear baseball caps.
 ‘Most baseball caps are worn by freshmen.’
 ‘For every professor x: x rewarded every student that read some books or other that x had recommended.’

References