
© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

7 Conjunctions, Plurals, Mass Terms, and Kinds
In this section we will be concerned with various semantic phenomena that appear when we con-
sider plural noun phrases, conjunctions, and mass terms. We will see that they will lead us to a quite
fundamental reconsideration of the way how certain NPs work.

7.1 NP Conjunctions and Their Interpretation

7.1.1 VP Coordination

In chapter 3 we have discussed a way of extending the syntax and semantic interpretation of nega-
tion, which is basically a sentence operator (type Dtt), to an operator that is of type D(et)et, that is, a
VP operator. There is evidence that we should do the same for conjunction and disjunction, and we
have done so in various homeworks.

Let us repeat that here. First, we know that and and or can conjoin sentences, and hence
should be of type Dttt:

(1) a. [S[SLeopold is asleep] and [SMolly is awake]].
b. [S[SLeopold is asleep] or [SMolly is asleep]].

But if the subject is the same, we rather find that and and or conjoin VPs directly:

(2) a. Leopold [VP [VPslept] and [VPsnored]].
b. Molly [VP[VPloves Leopold] or [VPknows Stephen]].

The alternatives, e.g. Leopold slept and Leopold snored, sound rather pedantic. So we should as-
sume that and and or actually can be used according to the following syntactic rules:

(3) VP → VP Conj VP

Now, the meanings for and and or that we have specified in chapter 3, repeated here, certainly
does not fit this rule.

(4) a. [[and]] = λt∈Dt[λt′∈Dt[MIN({t, t′})]]
b. [[or]] = λt∈Dt[λt′∈Dt[MAX({t, t′})]]

These meanings required sentences as arguments, but now we should require VP-meanings.
We would like to say that, for example, and is ambiguous between (4.a) and (5):

(5) [[and]], as VP conjunction: λP∈Det[λQ∈Det[λx∈De[MIN({P(x), Q(x)})]]]

Notice that the VP-conjunction meaning takes two VP meanings, represented by the placeholder
variables P and Q, and gives a VP meaning specified by the lambda term λx∈De[...]. It gives us the
value true if both P and Q, when applied to x, give us the value true, and false otherwise. This ap-
pears to be the right interpretation.

If we interpret and as in (5.b) we get derivations like the following:

Coordination for Other Types of Expressions 106

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(6) a. [[[S [NP Leopold] [VP [VP [V sleeps]] [Conj and] [VP [V snores]]]]]]
b. = [[[VP [VP [V sleeps]] [Conj and] [VP [V snores]]]]]]([[[NP Leopold]]])
c. = [[and]]([[sleeps]])([[snores]])([[Leopold]])
d. = λP∈Det[λQ∈Det[λx∈De[MIN({P(x), Q(x)})]]](λy∈De[y sleeps])(λz∈De[z
snores])(LB)
e. = λx∈De[MIN({λy∈De[y sleeps](x), λz∈De[z snores](x)})](LB)
f. = λx∈De[MIN([x sleeps], [x snores])](LB)
g. = MIN([LB sleeps], [LB snores])
h. = 1, if [LB sleeps] = [LB snores] = 1,

= 0, else.

We get the same result as we would have gotten for Leopold sleeps and Leopold snores.

The meaning of or can be given in a similar way:

(7) [[or]] as VP conjunction: λP∈Det[λQ∈Det[λx∈De[MAX({P(x), Q(x)})]]]

There is an important point to be made here. We just have assumed that the meanings of and
and or are actually ambiguous. Granted that their ambiguity is systematic, quite unlike to the er-
ratic ambiguity of words like pen or bank. But they are ambiguous. Now, so far we have given the
meaning of an expression α by rules of the format [[α]] = ..., that is, we gave a definite meaning to
an expression α. But now we have a situation in which α can have one of two meanings. One way
is to make a difference between different kinds of α’s. For example, we can differentiate between
and and and , and have the following intepretation rules:

(8) a. [[and]] = λt∈Dt[λt′∈Dt[MIN({t, t′})]
b. [[and]] = λP∈Det[λQ∈Det[λx∈De[MIN({P(x), Q(x)})]]]

We will later see that we can avoid stipulating such spurious ambiguities.

We have seen that the interpretation of conjunction and disjunction can be systematically am-
biguous. The meaning of and for sentences and for verb phrases can be given on the basis of the
function MIN. The only difference is in the type of arguments that and expects, and the type of value
that it delivers. We therefore say that these expressions show type flexibility. Notice that our
philosophy, to assume fairly general semantic rules that combine meanings in whatever way possi-
ble, pays off here: The overall system of our grammar is quite simple, we just have to assume sys-
tematic ambiguity for certain expressions.

7.1.2 Coordination for Other Types of Expressions

The conjunction and and the disjunction or can be used to conjoin other types of expressions as
well. For example, we can conjoin quantifiers:

(9) a. [NP [NP A girl] and [NP every boy]] came.
b. [NP [NP Seven apples] or [NP five pears]] were in the bowl.

Now, quantifiers are of type D(et)t, and we can define a meaning for conjunction and disjunction for
this type, as follows:

(10)a. [[and]], as quantifier conjunction: λQ∈D(et)tλQ′∈D(et)tλP∈Det[MIN{Q(P), Q′(P)}]
b. [[or]], as quantifier disjunction: λQ∈D(et)tλQ′∈D(et)tλP∈Det[MAX{Q(P), Q′(P)}]

Consider the following derivation of (9.a):

107 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(11)a. [[[S [NP [NP a girl] and [NP every boy]] [VPcame]]]]
b. = [[[NP [NP a girl] and [NP every boy]]]]([[came]])
c. = [[and]]([[[NP a girl]]])([[[NP every boy]]]([[came]])
d. = λQ∈D(et)tλQ′∈D(et)tλP∈Det[MIN{Q(P), Q′(P)}]

(λP′∈Det[[[girl]] ∩ P′ ≠ ∅])(λP″∈Det[[[boy]] ⊆ P″])([[came]])
e. = λP∈Det[MIN{λP′∈Det[[[girl]] ∩ P′ ≠ ∅](P), λP″∈Det[[[boy]] ⊆ P″](P)}](([[came]])
f. = MIN{λP′∈Det[[[girl]] ∩ P′ ≠ ∅]([[came]]), λP″∈Det[[[boy]] ⊆ P″](([[came]])}
g. = MIN{[[[girl]] ∩ [[came]] ≠ ∅], [[[boy]] ⊆ [[came]]]}
h. = 1, if [[[girl]] ∩ [[came]] ≠ ∅] = [[[boy]] ⊆ [[came]]] = 1,

= 0, else.

We get the truth value 1 if both the sentences a girl came and every boy came are true, and else 0.
This is obviously the right result. The meaning rule for and given in (9.a) gives us a way of reduc-
ing quantifier conjunction to sentence conjunction.

We can go even further. For we find cases in which determiners are coordinated:

(12)a. [NP [Det [Det more than three] and/but [Det less than seven]] boys] came.
b. [NP [Det [Det exactly two] or [Det exactly five]] boys] came.

We can handle such cases by assuming that and and or have meanings that allow to combine de-
terminer meanings, which are of type D(et)(et)t. Here is the rule for conjunction:

(13) [[and/but]], as determiner conjunction:
λD∈D(et)(et)tλD′∈D(et)(et)tλP∈DetλP′∈Det[MIN{D(P)(P′), D′(P)(P′)}]

We now can derive example (12.a), as follows:

(14)a. [[[S[NP [Det [Det more than three] but [Det less than seven]] boys] [VPcame]]]]
b. = [[[NP [Det [Det more than three] but [Det less than seven]] boys]]]([[came]])
c. = [[[Det [Det more than three] but [Det less than seven]]]]([[boys]])([[came]])
d. = [[but]]([[[Det more than three]]])([[[Det less than seven]]])([[boys]])([[came]])
e. = λD∈D(et)(et)tλD′∈D(et)(et)tλP∈DetλP′∈Det[MIN{D(P)(P′), D′(P)(P′)}]

([[[Det more than three]]])([[[Det less than seven]]])([[boys]])([[came]])
f. = MIN{[[[Det more than three]]]([[boys]])([[came]]), [[[Detless than seven]]])([[boys]])([[came]])}
g. = MIN{[#([[boy]] ∩ [[came]]) ≥ 3], [#([[boy]] ∩ [[came]]) ≤ 7]}
h. = 1, if #([[boy]] ∩ [[came]]) ≥ 3] and #([[boy]] ∩ [[came]]) ≤ 7,

= 0, else.

We get the same result as for the sentence More than three boys came and/but less than seven boys
came.

7.1.3 Conjunction and Disjunction Generalized

We have seen that conjunction and disjunction, which are originally defined for meanings of type t,
can be extended to meanings of a variety of other types. We have discussed, in particular, exten-
sions to meanings of type et, of type (et)t, and of type (et)(et)t. It is relatively easy to define what
and and or should mean for other constituents, like transitive verbs (type eet) or attributive adjec-
tives (type (et)et):

Conjunction and Disjunction Generalized 108

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(15)a. Leopold knows and likes Stephen.
b. a long and difficult book

The question is, why is this now relatively easy? What are the principles that allow us to give
the meanings of and and or for different types?

One important thing to notice is that all our definitions of and and or boil down to the use of
MIN and MAX, which basically can be applied to a set of expressions of type t. This shows up in the
fact that all the meanings for which we can define disjunctions and conjunctions “end” in the type t
— we have defined it for types et, eet, (et)t, (et)et, (et)(et)t, etc.

Secondly, we formulated conjunction and disjunction for various types by abstracting over the
remaining arguments. For example, for the conjunction for type et we abstracted over the e argu-
ment, for the conjunction of type (et)t we abstracted over the et argument, and for conjunction for
type (et)(et)t we abstracted over the two (et) arguments. Consider this case again (cf. (13)); P and P′
are the two arguments of type et that we have to abstract over.

(16) λD∈D(et)(et)tλD′∈D(et)(et)tλP∈DetλP′∈Det[MIN{D(P)(P′), D′(P)(P′)}]

This allows us now to define conjunction in general as follows:

(17) [[and]] is defined as follows:
a. If α, β are meanings of type t, then [[and]](α)(β) = MIN{α, β}
b. If α, β are of type (σ)τ, then [[and]](α)(β) = λX∈Dσ[[[and]](α(X))(β(X))]

This is a recursive definition. The first clause (a) gives the basic case, if the arguments are both of
type t. The second clause reduces the meaning of and for arguments of type (σ)τ to the simpler
case of arguments of type τ. The type τ might be complex, and things would have to be reduced
even further.

Notice that [[and]], according to this definition, is a function that allows for arguments of many
different types. If we want to describe its type, we would have to say that it is of type (τ)(τ)τ, where
τ can be any type that ends in t. We would have to extend our notion of types accordingly, essen-
tially to allow that meanings belong to SETS of types.

Let us see how definiton (17) works in two cases:

(18)a. Assume α, β are of type et, then [[and]](α)(β) = λx∈De[[[and]](α(x))(β(x))] ,
as α(x), β(x) are of type t, [[and]](α(x))(β(x)) = MIN{α(x), β(x)},
hence [[and]](α)(β) = λx∈De[MIN{α(x), β(x)}]

b. Assume α, β are of type eet, then [[and]](α, β) = λx∈De[[[and]](α(x))(β(x)) ,
as α(x), β(x) are of type et, [[and]](α(x), β(x)) = λy∈De [[and]](α(x)(y))(β(x)(y)) ,
as α(x)(y), β(x)(y) are of type t, [[and]](α(x)(y))(β(x)(y)) = MIN{α(x)(y), β(x)(y)}
hence [[and]](α, β) = λy∈Deλx∈De[MIN{α(x)(y), β(x)(y)}]

Notice that in the case of (b), the meaning of and for type eet is deduced in two steps. First, it is
reduced to the meaning of and for type et, and this in turn is reduced to the meaning of and for type
t. This is, as we know, typical for recursive definitions.

109 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

7.2 Collective Predication

7.2.1 Conjunction for Names

We have learned how to handle conjunction and disjunction for quantifiers. But of course it is pos-
sible to coordinate simple names with and or or:

(19)a. Leopold and Molly are asleep.
b. Leopold or Molly are awake.

We have seen that names, though basically of type e, can be lifted to the type of quantifiers,
(et)t, which then allows us to conjoin them:

(20)a. [[Leopold]], as a quantifier: λP∈Det[P(LB)]
b. [[Molly]], as a quantifier: λP∈Det[P(MB)]
c. [[Leopold and Molly]]

= [[and]]([[Leopold]])([[Molly]])
= λP∈Det[MIN{P([[Leopold]]), P([[Molly]])}]

d. [[[S [NP Leopold and Molly] [VP are asleep]]]]
= λP∈Det[MIN{P([[Leopold]]), P([[Molly]])}]([[asleep]])
= MIN{[[asleep]]([[Leopold]]), [[asleep]]([[Molly]])}

e. = 1, of [[asleep]]([[Leopold]]) = [[asleep]]([[Molly]]) = 1,
= 0, else.

In this way we can again reduce a conjunction of two noun phrases to a conjunction of sentences.

7.2.2 A Problem for Collective Interpretation

But now consider the following example:

(21)Leopold and Stephen met.

If we apply the same technique to this case — that is, type raising of the names to (et)t and con-
junction by and defined for this type — we get a statement that says that (21) is true if Leopold met
and Stephen met, and false otherwise. But this is not what this sentence means. It is even hard to see
what “Leopold met” should mean at all.

This problem was observed quite early. The Scottish philosopher James Beattie, in his work
The Theory of Language (1783), phrases it as follows:

So, when it is said, Peter and John went to the temple, it may seem, that the conjunction and
connects only the two names, Peter and John; but it really connects two sentences,  Peter
went to the temple,  John went to the temple. [But this is different from examples] like the
following: Saul and Paul are the same, [...], There is war between England and France: Each
of these, no doubt, is one sentence, and if we keep the same phraseology, incapable of being
broken into two. For, if instead of the first we say, “Saul is the same  Paul is the same”,
we utter nonsense; because the predicate same, though it agrees with the two subjects in
their united state, will not agree with either when separate. [... And] if we say, “There is war
between England  there is war between France”, we fall into nonsense as before; because
the preposition between, having a necessary reference to more than one, cannot be used
where one only is spoken of (p. 346-7).

Sum Individuals 110

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

Today we say that a sentence like Leopold and Molly are asleep contains a distributive interpre-
tation; the predicate be asleep “distributes” over the two conjuncts, Leopold and Molly. And we
say that Leopold and Stephen met contains a collective predication; the predicate met is true of
the “collective” of Leopold and Stephen.

So far we have seen cases in which predicates were either interpreted as collective or as dis-
tributive. But there are cases in which we have an ambiguity between these interpretations:

(22)Leopold and Stephen lifted the piano.

This can mean that Leopold and Stephen together lifted the piano (collective interpretation), or that
Leopold lifted the piano, and Stephen lifted the piano (distributive interpretation). With our current
theoretical tools we can just handle the distributive interpretation. — Another example that is am-
biguous is the following:

(23)Leopold and Molly received a letter.

Either there was one letter addressed to Leopold and Molly collectively, or there were two let-
ters, one addressed to Leopold, the other to Molly. In this case the predicate received a letter applies
to Leopold and Molly distributively.

7.2.3 Sum Individuals

The crucial property of the collective interpretation seems to be that we predicate VPs like met or
lifted the piano to John and Mary together, or to three girls together. Formally, we should have enti-
ties in our model that correspond to the collection or the sum individual of John and Mary, or of
three girls. So let us introduce sum individuals into the domain of discourse.

Let us assume that the domain of discourse De is structured in the following way: For any two
entities x, y, there is a third entity that is the sum of x and y. We write x⊕y for that entity. Example:
if LB and SD are entities in De, so is LB⊕SD. We may apply predicates to such entities:

(24) [[Leopold and Stephen met]] = [[met]](LB⊕SD)

What this says is that the sum individual consisting of LB and SD has the “met” property, which
we can understand as saying that the parts of this sum individual met with each other.

What are the properties of the sum operation ⊕? First, notice that we can coordinate any two
names. Hence ⊕ should map any two entities x, y in the domain De to an entity x⊕y. Furthermore,
two entities x, y should be mapped to a unique sum individual. What this all means is that ⊕ is a
function from De × De to De. Second, the order in which we combine two entities should not mat-
ter. John and Mary met is true exactly if Mary and John met is true. Functions with this property
are called commutative.

(25)x⊕y = y⊕x, for all x, y ∈ De

In more complex sum formations the order in which we perform the sum operations should
not matter. John and [Mary and Sue] met should be true if, and only if, [John and Mary] and Sue
met is true. Functions with this property are called associative.

(26)x⊕[y⊕z] = [x⊕y]⊕z, for all x, y, z ∈ De

This allows us to omit brackets and write x⊕y⊕z instead. In natural language coordination, the con-
stituents are typically treated as belonging to the same level, as in John, Mary and Sue met.

111 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

The sum of an entity with itself is that entity again. John and John left means the same as
John left, if we are not talking about two different Johns here. Of course, a sentence like John and
John left sounds quite strange, but this is simply because it means the same as the shorter sentence
John left, and so it is unclear why the speaker did not choose this simpler sentence instead. Func-
tions that have this property are called idempotent:

(27)x⊕x = x, for all x ∈ De.

The properties we have assumed for the sum operation ⊕ we have essentially stipulated. They
seem to reflect the properties of and, as we need it for collective predications, and therefore they
appear to be a good choice. Such basic assumptions of a theory (in this case, a theory of the sum
operation) are called axioms .

With the help of ⊕, we can define the relation of a part, in the sense that John is a part of
John and Mary, or that Mary is a part of the students (if she is a student). Let us write ≤ for the
part relation. We have the following definition:

(28)x ≤ y iff x⊕y = y, for all x, y ∈ De

The part relation has the following properties:

(29)a. For all x ∈ De, x ≤ x (reflexivity);
b. For all x, y, z ∈ De, if x ≤ y and y ≤ z, then x ≤ z (transitivity);
c. For all x, y ∈ De, if x ≤ y and y ≤ x, then x = y (antisymmetry).

These properties don’t have to be stipulated; they follow from the way how we have defined
the part relation (28) and the properties of the sum operation (25), (26) and (27). Take, for example,
transitivity.

(30)a. To prove: if x ≤ y and y ≤ z, then x ≤ z.
b. We assume x ≤ y and y ≤ z, and try to derive x ≤ z.
c. x ≤ y means x⊕y = y, by definition.

y ≤ z means y⊕z = z, by definition.
d. As x⊕y = y, we can replace y in y⊕z = z, which gets us (x⊕y)⊕z = z.
e. By associativity of ⊕, we have (x⊕y)⊕z = x⊕(y⊕z) (= z).
f. As y⊕z = z, we have x⊕(y⊕z) = x⊕z (= z).
g. As x⊕z = z, we have x ≤ z, by definition.

Statements like (29.a,b,c) that can be derived from other, basic assumptions (the axioms) are called
theorems.

Relations that are reflexive, transitive and antisymmetric are called weak order relations.
Notice that the part relation includes identity, that is, every entity is a part of itself. We normally do
not use the English word part in this way. But we can define a relation < that comes closer to the
English use, the proper part relation:

(31)x < y iff x ≤ y and not y ≤ x, for all x, y ∈ De.

That is, x is a proper part of y iff x is a part of y, but y is not a part of x. By this definition the part
relation has the following properties:

Sum Individuals 112

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(32)a. For no x ∈ De: x < x (irreflexivity)
b. For all x, y, z ∈ De: If x < y and y < z, then x < z (transitivity)
c. For no x, y ∈ De: x < y and y < x (asymmetry).

We want to be able to identify “simple” entities that don't have “proper” parts, such as LB.
Call them atoms. I will use A for the set of atoms. It is defined as follows:

(33)A =def {x∈De | there is no y∈De such that y < x}

As an example of a universe with sum individuals, let us assume a universe De with three at-
oms LB, MB, SD. We then have that De has 7 elements all in all: De = {LB, MB , SD, LB⊕MB,
LB⊕SD, MB⊕SD, LB⊕SD⊕MB}. The set of atoms A is {LB, MB, SD}.

We can depict this structure in a diagram as below. We have used the following convention: If
an entity x is part of another entity y, and there is no entity in between x and y, then x and y are
connected, and x is below y. Such diagrams are called Hasse diagrams .

(34)
 LB⊕MB⊕SD

 LB⊕MB LB⊕SD MB⊕SD

LB MB SD

Structures like that are called lattices. More precisely, they are join lettices, as they only have
the join operation ⊕. Regular lattices also have a so-called meet operation. The meet of two ele-
ments is what the two elements have in common. For example, the meet of LB⊕SD and LB⊕MB is
LB. But not every two elements have a meet in our lattice; for example, LB and MB⊕SD don’t have
a common part.

There is a way to model such a structure with set-theoretic means: If A is a set, then pow(A)-Ø
is a suitable structure, where ⊕ is rendered by ∪, and ≤ is rendered by ⊆ . Our example above then
can be rendered in the following way:

(35)
 {LB, MB, SD}

{LB, MB} {LB, SD} {MB, SD}

{LB} {MB} {SD}

In this model, singletons like {LB} represent the atoms. The join operation corresponds to set un-
ion, the part relation corresponds to the subset relation, and the meet operation corresponds to set
intersection. As our representation does not contain the empty set, we do not have a general meet
operation. Notice that the empty set would not correspond to any “real” object.

113 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

7.2.4 Treatment of Collective and Distributive Predication

Collective and distributive predication can be treated easily in this framework. The collective inter-
pretation can be generated in the following way. First, we have to assume that and allows for the
combination of two entities in De, which then is interpreted as the sum operation:

(36)If α, β ∈ De, then [[and]](α)(β) = α ⊕ β

Notice that this meaning of and is quite different from the generalized meaning defined in (17). The
generalized meaning was defined on the basis of the meaning of and for sentences, type t, but (36),
in a sense, specifies a new basic meaning. The meaning of and based on sentences is called Boo-
lean, after George Boole, a British logician of the 19th century (and together with disjunction and
negation we talk of “Boolean operators”). The meaning of and that is defined for entities of type e
and is based on the sum operation is called non-Boolean.

We can now treat collective interpretations, as follows:

(37)a. [[[S[NP[NPLeopold] and [NPStephen]] [VPmet]]]]
b. = [[met]]([[[NP[NPLeopold] and [NPStephen]]]])
c. = [[met]]([[and]]([[Leopold]])([[Stephen]])
d. = [[met]]([[Leopold]]⊕[[Stephen]])
e. = λx∈De[x met](LB⊕SD)
f. = [LB⊕SD met]
g. = 1, if LB⊕SD have the “met” property,

= 0, else.

Distributive interpretations can be derived as in (20) above, that is, by first type-lifting the
names to quantifiers and then using Boolean and for quantifiers. I give another derivation here:

(38)a. [[[S[NP[NPLeopold] and [NPMolly]] [VP are asleep]]]]
b. = [[[NP[NP Leopold] and [NPMolly]]]]([[are asleep]])
c. = [[and]]([[Leopold]])([[Molly]])([[asleep]])
d. = λQ∈D(et)tλQ′∈D(et)tλP∈Det[MIN{Q(P), Q′(P)}]([[Leopold]])([[Molly]])([[asleep]])
e. = MIN{[[Leopold]]([[are asleep]]), [[Molly]]([[asleep]])}
f. = MIN{λP∈Det[P(LB)](λx[x is asleep]), λP∈Det[P(MB)](λx[x is asleep])}
g. = MIN{λx[x is asleep](LB), λx[x is asleep](MB)}
h. = MIN{[LB is asleep], [MB is asleep]}
i. = 1 if [LB is asleep] = [MB is asleep] = 1,

= 0, else.

But we could also think about another way of deriving the distributive interpretation, one that
does not take the detour of type lifting of names to quantifiers and applying a type-lifted version of
conjunction. We may assume the following: If a predicate like be asleep is applied to a sum indi-
vidual x, then it gives us the truth value 1 only if be asleep applies to every atomic part of x. This
appears to be quite natural; if a collection of persons is asleep this means that each of those persons
is asleep. Let us call this the distributive interpretation of predicates like be asleep.

(39)Rule for [[asleep]]:
For all x∈De, [[asleep]](x) iff for all y ≤ x: If y∈A then [[asleep]](y).

The Semantic Side of Number Agreement 114

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

Now we can have a slightly simpler derivation of the distributive interpretation, one that is as a
matter of fact equivalent to the collective one:

(40) [[[S[NP[NPLeopold] and [NPMolly]] [VPare asleep]]]]
b. = [[asleep]]([[[NP[NPLeopold] and [NPMolly]]]])
c. = [[asleep]]([[and]]([[Leopold]])([[Molly]])
d. = [[asleep]]([[Leopold]]⊕[[Molly]])
e. = λx∈De[x is asleep](LB⊕MB)
f. = [LB⊕MB asleep]
g. = [LB is asleep] and [MB is asleep]
h. = 1, if [LB is asleep] = [MB is asleep] = 1,

= 0, else.

But what about cases in which we have a real ambiguity, as in Leopold and Stephen lifted the
piano? We certainly cannot have a rule for lifted the piano that is similar to the rule for asleep in
(39). But we may assume that there is an operator that enforces a distributive interpretation of the
verb phrase. Evidence from that comes from the fact that English has an overt operator of this kind,
each:

(41)a. Leopold and Stephen each lifted the piano.
b. Leopold and Stephen each got £100.

We can assume the following meaning for each and the silent distributive operator:

(42) [[each]] = λP∈Detλx∈De[{y∈A | y ≤ x} ⊆ P]

This means that the set of entities y that are atomic parts of x all have the property P. Consider the
following derivation:

(43)a. [[[S[NP[NPLeopold] and [NPStephen]] [VP each [VP lifted the piano]]]]]
b. = [[each]]([[lifted the piano]])([[Leopold]]⊕[[Stephen]])
c. = λP∈Detλx∈De[{y∈A | y ≤ x} ⊆ P]([[lifted the piano]])(LB⊕SD)
d. = {y | y ≤ LB⊕SD} ⊆ [[lifted the piano]]
e. = 1 if [[lifted the piano]](LB) = [[lifted the piano]](SD) = 1,

= 0, else.

7.2.5 The Semantic Side of Number Agreement

We now have two ways of deriving the distributive interpretation: By type-lifting of names to quan-
tifiers and applying Boolean conjunction, or by non-Boolean conjunction and a distributive opera-
tor. Is there any way to decide which of these options is preferred?

Actually, there is. We haven’t paid attention so far to the fact that the verb shows number
agreement with the subject. There is one basic difference between conjunctive NPs and disjunctive
NPs in this respect: With the former, the verb typically shows plural agreement, and with the latter,
singular agreement:

(44)a. Leopold and Molly are / ??is asleep.
b. Leopold or Molly ??are / is asleep.

This can be explained as follows: Disjunctive NPs like Leopold or Molly are always conjoined by a
Boolean coordinator that reduces things to sentence disjunction, here Leopold is asleep or Molly is

115 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

asleep. In those disjuncts the verb is singular, as the subject is singular. The singular in the original
sentence presumably reflects the fact that the sentence is, in a sense, just a shorthand for a disjunc-
tion of two sentences with singular subjects.

Conjunctive NPs like Leopold or Molly can, in theory, be conjoined by non-Boolean and or
by Boolean and. If they were conjoined by Boolean and, we would expect singular verb agreement,
by the same reasoning. We don’t, hence we should expect that the NPs are conjoined by non-
Boolean and.

We can integrate this role of verb agreement into our representation as follows. First, subject-
verb agreement is a feature of the auxiliary, or, more generally, the I0 node (cf. chapter 5). We can
intepret this feature as follows:

(45)a. [[SG]] = λP∈Detλx∈A[P(x)]
b. [[PL]] = λP∈Detλx∈[De—A][P(x)]

That is, the singular feature presupposes that the entity x is an atom, whereas the plural feature
presupposes that x is not an atom (i.e., x is in the set De minus A). Now consider the following
derivations. First, we have a case of non-Boolean conjunction.

(46)a. [[[S [NP [NP Leopold] and [NP Molly]] [I′ are [VP asleep]]]]]

b. = [[PL]]([[asleep]])([[[NP [NP Leopold] and [NP Molly]]]])

c. = λP∈Detλx∈[De—A][P(x)]([[asleep]])(LB⊕MB)

d. = [[asleep]](LB⊕MB), provided that LB⊕MB ∈ De—A, i.e. LB⊕MB is not an atom.

The condition is satisfied, and we get the same result as we had for (40) above. Now, consider
an analysis of the same sentence under Boolean conjunction:

(47)a. [[[S [NP [NP Leopold] and [NP Molly]] [I′ are [VP asleep]]]]]
b. = [[[NP [NP Leopold] and [NP Molly]]]]([[PL]]([[asleep]]))
c. = λQ∈D(et)tλQ′∈D(et)tλP∈Det[MIN{Q(P), Q′(P)}]([[Leopold]])([[Molly]])([[PL]]([[asleep]]))
e. = MIN{[[Leopold]]([[PL]]([[asleep]])), [[Molly]]([[PL]]([[asleep]]))}
f. = MIN{λP[P(LB)](λx∈De—A[[[asleep]](x)]), λP[P(MB)](λx∈De—A[[[asleep]](x)])}
g. = MIN{[[asleep]](LB)], [[asleep]](MB)]}, if LB, MB ∈ De—A

Now, the conditions that LB is not an atom and that MB is not an atom are not satisfied — they are
atoms. But this means that we get neither 1 nor 0 as a result. The sentence violates the presupposi-
tion of the plural agreement. Of course, the presupposition of the singular agreement would be sat-
isfied here, but singular agreement is only very marginally possible.

This can be seen as evidence that a sentence like Leopold and Molly are asleep is not formed
via type-raising of the names to quantifiers and Boolean conjunction, but by non-Boolean conjunc-
tion. If this is so, we should assume that in cases in which non-Boolean conjunction is ruled out,
and hence we have Boolean conjunction, singular number agreement becomes possible again. This
is indeed the case:

(48)a. Every boy and every girl is / ?? are asleep.
b. No boy but every girl is / ?? are asleep.

Singular and Plural Nouns 116

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

Non-boolean conjunction is defined for entities of type De. Quantifiers like every boy or no
boy are of type D(et)t. Fore meanings of this type we only find Boolean conjunction. And interest-
ingly we find singular agreement in these cases.

One might perhaps doubt that the type-raising from De to D(et)t is possible at all. However,
notice that we can conjoin names and true quantifiers, which can be done only if we type-raise the
name first. We have singular agreement in this case, just as predicted.

(49)Molly and every boy is asleep.

So it seems that type-lifting of names is possible after all. But then we should expect that Boolean
conjunctions are possible, which means that the following example should be grammatical:

(50) ??Leopold and Molly is asleep.

It appears that the reason why (50) is not possible is that type-lifting of names is a “costly” opera-
tion, one that occurs only if there is no other way to derive a sentence, as in (49). If there is a sim-
pler derivation, like using non-Boolean coordination, this is preferred, and this will block alternative,
more costly derivations that would lead to (50).

7.3 Singular and Plural NPs

When we treated quantifiers like three girls or most girls in chapter 6 we did not really do anything
about the fact that the nouns in these NPs are plural, in contrast to the nouns in a girl or every girl.
We have seen that the number of verb phrases matters, and so we should expect that number in
nouns plays a semantic role as well.

7.3.1 Singular and Plural Nouns

Let us start with number in nouns. A plausible assumption is that singular nouns apply only to at-
oms. We can say that Mary is a girl and that Sue is a girl, but we cannot say *Mary and Sue is a
girl. In a sense this is neither true nor false, which we take as indicating that the function that de-
fines the meaning of girl is only defined for atoms. On the other hand, a plural noun should apply
only to non-atoms. We can say Mary and Sue are girls, but not *Mary is/are girls. This suggests
meanings like the following:

(51)a. [[girl]] = λx∈A[x is a girl]

b. [[girls]] = λx∈De—A[x are girls]

We can derive the meaning of the plural girls from the meaning of the singular girl by the
following definition:

(52)a. The set GIRLS is the smallest function that satisfies the following conditions:
(i) For all x∈De, if [[girl]](x) then GIRLS(x).
(ii) For all x, y ∈ De, if GIRLS(x) and GIRLS(y), then GIRLS(x⊕y).

b. [[girls]] = λx∈De—A[GIRLS(x)]

The first step (a) is a recursive definition of a function GIRLS. The first clause (i) states that eve-
rything that falls under girl also falls under GIRLS, and the second clause states that whenever
there are two individuals x, y that fall under GIRLS, their sum falls under GIRLS as well. For ex-
ample, if it is established that Jane and Sue both fall under girl, then it will follow that Jane⊕Sue

117 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

falls under GIRLS. And if Mary falls under girl as well, it will follow that Jane⊕Sue⊕Mary fall
under GIRLS. In mathematical parlance, GIRLS is the closure of [[girl]] under the sum operation
⊕. We also say that GIRLS is cumulative because whenever two entities fall under it, their sum
falls under it as well.

Notice that even single girls will fall under GIRLS, due to clause (i). The second step (b) re-
moves these cases by restricting the function to non-atoms.

Another way of defining the meaning of a plural noun from the meaning of its basic singular
form is the following:

(53) [[girls]] = λx∈De—A[{y∈A | y < x} ⊆ [[girl]]]

That is, [[girls]] is a function from sum individuals x to truth values that maps x to 1 if all the atomic
parts y of x fall under [[girl]], and else to 0.

It is actually debatable whether we should exclude atomic girls from the meaning of girls. Consider
the following dialogue:

(54)a. Speaker A: Do you have children?

b. Speaker B: Yes, one. / *- No, one.

If the plural children does not apply to atomic children, then the answer yes or yes, one should
be quite strange. Nevertheless, it is normal, and the denial No, or No, (just) one is decidedly pecu-
liar. So we should assume that the plural children does include atomic children as well. But why,
then, would it be strange for someone to say I have children if he or she in fact has just one child is
because the sentence I have one child would be more informative in such a situation. Hence scalar
implicature can account for that.

Another problem arises with nouns that denote collectives, like couple, committee, rock band
or battalion. Take committee. A plausible assumption is to assume that it applies to people that
form a committee. If Mary, Sue and Jane form the International Dinner Committee, we should be
able to say:

(55)Mary, Sue and Jane are a committee.

But then we have a case in which a singular noun, committee, applies to a singular entity, contra-
dicting our previous assumption.

What should we do? Fortunately, there is independent evidence that nouns like committee do
not simply apply to the sum of the members of a committee. For example, the members of a com-
mittee can change; Jane might be replaced by John on the International Dinner Committee, and it
stays the same committee. But the members of a sum individual cannot change; the sum individual
Mary⊕Sue⊕Jane is distinct from Mary⊕Sue⊕John. Also, the same persons can form different
committees; Mary, Sue and Jane could also be on the Defense Celebration Committee. But there is
only one sum individual that represents the sum of Mary, Sue and Jane.

So it seems that committees, couples, battalions etc. are special kinds of entities that have
members, but that are atoms, elements of A. For example, the International Dinner Committee is an
atom in A that stands in a membership relation to Mary, to Sue, and to Jane. We can then distin-
guish between the committee itself and the sum of its members.

Existential Quantifiers 118

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

For our current purposes we should notice that it is not necessary to change the atomicity re-
quirement for singular nouns like committee.

7.3.2 Existential Quantifiers

We can now treat sentences with plural NPs that have the determiner some, which can be used both
for singular and plural nouns:

(56)a. [[[S [NP [Det some] [N girls]] [VP sang]]]]
b. = [[some]]([[girls]])([[sang]])
c. = λP∈DetλP′∈Det[P ∩ P′ ≠ ∅]([[girls]])([[sang]])
d. = [[[girls]] ∩ [[sang]] ≠ ∅]
e. = [λx∈De—A[{y∈A | y≤x} ⊆ [[girl]]] ∩ [[sang]] ≠ ∅]
f. = 1, if there is some x whose atomic parts consist of girls and which sang,

= 0, else.

This is the right interpretation; we get the value True if there is a sum individual consisting of girls
that also has the property expressed by sang.

In many cases it is not even necessary to use an overt determiner, like some. The following
two sentences have truth conditions that are pretty much identical:

(57)a. Some girls arrived.
b. Girls arrived.

This holds in particular if some is destressed (sometimes written sm in the linguistic literature). If
some is stressed, it is often understood as referring to a subset of a group of girls (a reading that
can be made more obvious by some of the girls).

To handle cases like (57.b) it is often assumed that we have an empty determiner which I will
call 0 that is interpreted just like some. We then have the following interpretation:

(58)a. [[[S [NP [Det 0] [N girls]] [VP arrived]]]]
b. = [[0]]([[girls]])([[arrived]])
c. = λP∈DetλP′∈Det[P ∩ Q ≠ ∅]([[girls]])([[arrived]])
d. = [[[girls]] ∩ [[arrived]] ≠ ∅]

We will see another potential use of the empty determiner 0 in the next section.

7.3.3 Number Words

In chapter 6 we have treated number words as determiners that form Generalized Quantifiers. For
example, three is interpreted as follows:

(59) [[three]] = λP′∈DetλP∈Det[#(P′ ∩ P) ≥ 3]

That is, the number of elements in the intersection between the noun meaning P′ and the VP mean-
ing P is at least three. We then have derivations like the following:

(60)a. [[[S [NP [Det three] [N girls]] [VP arrived]]]]
b. = [[three]]([[girls]])([[arrived]])
c. = [#([[girls]] ∩ [[arrived]]) ≥ 3]

119 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

With the introduction of sum individuals we are facing a propblem here: What (60.c) literally
says is that there are at least three entities that fall both under girls and under arrived. But not these
entities could be sum individuals that could contain many girls. Obviously, this interpretation is on
the wrong track.

One way to set it right is to disregard the number marking on girls and treat it as if it were
girl, which applies only to atomic entities. We could say that number marking of nouns is a purely
syntactic phenomenon, and that number words greater than one require a plural noun.1 This is
against our previous argument that number of nouns is semantically relevant.

Another way to go is to assume that number words aren’t determiners, but adjectives, and that
the role of the determiner is satisfied by the empty determiner 0 as in (58).

It is easy to give an adjectival meaning to number words in our framework with sum individu-
als. Let us assume a function AT that gives us the number of atoms that a sum individual consists of,
its atomic number. We have, for example, AT(LB⊕MD⊕SD) = 3. This function can be defined as
follows:

(61)For all x∈De, AT(x) = #{y∈A | y≤x}

That is, the atomic number of x is the cardinality of the set of atoms y that are a part of x.

Now we can interpret number words as expressions of type D(et)et, just like adjectives:

(62) [[three]] = λP∈Detλx∈De[MIN{P(x), AT(x) = 3}]

This allows derivations like the following:

(63)a. [[[S [Det 0] [N [A P three] [Ngirls]]] [VP arrived]]]]
b. = [[0]]([[three]]([[girls]])([[arrived]])
c. = [[0]](λP∈Detλx∈De[MIN{P(x), AT(x) = 3]([[girls]]))([[arrived]])
d. = [[0]](λx∈Det[MIN{[[girls]](x), AT(x)=3])([[arrived]])
e. = [λx∈Det[MIN{[[girls]](x), AT(x)=3] ∩ [[arrived]] ≠ ∅]
f. =1, if there is an x that falls under [[girls]], that has three atoms, and that falls under arrived;

= 0, otherwise.

That is, the sentence is true if there is sum individual consisting of three girls that arrived. Under the
assumption that arrived is a distributive predicate, this has the same truth condition as the original
formalization, using generalized quantifiers as in (60).

In particular, both representations state that a sentence like Three girls arrived need not be
false if actually, four girls arrived. The GQ approach did this by explicitly stipulating that the num-
ber of girls that arrived is equal or GREATER than 3. In our new approach we need no stipulation like
that. The formula in (63.f) gives us all we need. Notice that it just states that there be one individual
consisting of three girls that arrived. There might be very well other, and more comprehensive
groups of girls that arrived as well.

It is clear that predicates like three girls are not cumulative: If x is a sum individual of three
girls, and y is a sum individual of three girls, then x⊕y, in general, will not be a sum individual of
three girls anymore. In addition, we find that whenever we have an individual x that falls under the

1 Something like this has tobe done for decimal fractions, which always require the plural of the noun. Cf. e.g. three point
fifty dollars or zero point seventy-five dollars, and even one point zero dollars (as contasted with one dollar).

The Definite Article 120

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

predicate three girls, and we have a proper part y of x, then y will not fall under three girls any-
more. In this property, three girls d⇔ers from girls. We say that three girls is quantized.

The meaning of the predicates two girls and girls can be illustrated in a Hasse diagram as
follows (here I assume that m and s are girls):

(64)

 j⊕m⊕s

 j⊕m j⊕s m⊕s

 j m s

7.3.4 The Definite Article

A strong argument in favour of the adjectival analysis of number words is the fact that there are
NPs that contain a determiner and a number word:

(65)The three girls sang.

Obviously, the definite article the and the number word three cannot both fill the determiner role. In
GQ theory it was sometimes assumed that the three forms a complex determiner (just like both,
which has the same meaning as the two). But obviously a theory that gives a compositional inter-
pretation to expressions like the three girls is to be preferred.

Our original approach to the meaning of the definite article was the following: It combines
with a noun; it presupposes that the noun applies to exactly one entity, and it gives as a value this
entity (cf. chapter 5).

(66) [[the]] = λP∈Det[#(P) = 1 | ι(P)]

Now this is precisely the meaning that we would need for the three girls:

(67)a. [[[NP [Det the] [N [Adj three] [N girls]]]]]
b. = [[the]]([[three]]([[girls]]))
c. = [[the]](λx∈De—A[MIN{[[girls]](x), AT(x)=3}])
d. = ι(λx∈De—A[MIN{[[girls]](x), AT(x)=3}]),

provided that #(λx∈De—A[MIN{[[girls]](x), AT(x)=3}]) = 1, else undefined.

The condition here is that the function that maps entities x to 1 if x falls under girls and has
the atomic number 3 can be applied to just one sum individual x. This is the case if there are exactly
three girls in De. If there are fewer than three girls, then there is no such x, and the value of #(...) is
0. If there are more than three girls, there is more than just one such x, and the value of #(...) is
greater than x. For example, if j, m, s and b are girls, then there are four individuals that satisfy the
description three girls, namely j⊕m⊕s, j⊕m⊕b, m⊕s⊕b, and j⊕s⊕b.

But notice that we can use the definite article with a simple plural noun, too:

(68) The girls sang.

[[two girls]]

[[girls]]

121 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

What does the girls refer to in this case? It refers to the sum individual that contains all the girls.
But notice that the meaning of the, as defined in (66), does not give us that as a result.

(69)a. [[[NP [Det the] [N girls]]]]
b. = [[the]]([[girls]])
c. = ι([[girls]]), provided that #([[girls]]) = 1, else undefined.

Assume that we have three girls, j, m, and b. We would expect that the meaning of the girls is de-
fined, and that it refers to j⊕m⊕b. But notice that the condition is not satisfied. If the noun girls
applies to two or more girls, there are not one but four individuals that satisfy the description,
namely, j⊕m, j⊕b, m⊕b, and j⊕m⊕b.

We must make it a part of the meaning of the definite article to pick out the maximal individ-
ual that falls under a description. Let us introduce a new notation of the sum operator ⊕, as follows:

(70)If P∈Det , then ⊕P is the sum of all entities x such that P(x).

In a more formal definition, we can define ⊕P as the smallest entity that contains all the entities in
P as parts:

(71) ⊕P = x iff
a. for all y such that P(y) it holds that y ≤ x;
b. for all z such that for all P(y) it holds that y ≤ z, it holds that x ≤ z.

If we render P as a set, we have, for example, ⊕{j, m, b} = j⊕m⊕b. Notice that ⊕P is undefined if P
is empty.

Now we can give the meaning of the definite article as follows:

(72) [[the]] = λP∈Det[P≠∅ | ⊕P]

That is, the definite article can be applied to predicates P of type Det , provided that P is not empty,
and gives us the sum of entities x that fall under P.

Let us derive the meaning of the girls sang:

(73)a. [[[S [NP [Det the] [N girls]] [VP sang]]]]
b. = [[sang]]([[the]]([[girls]]))
c. = [[sang]](λP∈Det[P≠∅ | ⊕P]([[girls]]))
d. = [[sang]](⊕([[girls]])), if [[girls]] ≠ ∅, undefined else.
e. = 1, if ⊕([[girls]]) sang,

= 0, if ⊕([[girls]]) did not sing,
undefined, if [[girls]] = ∅

We have that [[girls]] = ∅ if there is no girl, or if there is just one girl. In this case the sentence has
no truth value; in all other cases, it is true if the sum of all girls sang (i.e., if every girl sang), and
otherwise false.

However, the meaning of the definite article (72) doesn’t give us the right result for cases like
the three girls sang:

Mass Nouns 122

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(74)a. [[[S [NP [Det the] [N [A P three] [N girls]]] [VP sang]]]]
b. = 1, if ⊕([[three]]([[girls]])) sang,

= 0, if ⊕([[three]]([[girls]])) did not sing,
undefined, if [[three]]([[girls]]) = ∅

Where [[three]]([[girls]]) is a predicate that applies to sum individuals consisting of three girls. The
interpretation here tells us that the sentence does not have a truth value if there aren’t three girls
around, and this is fine. But intuitively we want it to be undefined if there are more than three girls
around. However, this is compatible with the condition [[three]]([[girls]]) = ∅: If there are four girls,
then there are four distinct sum individuals that fall under three girls.

But notice that in this case the sum of all individuals that fall under three girls does not itself
fall under three girls. While, on the other hand, the sum of all individuals that fall under girls cer-
tainly falls under girls again, due to the cumulativity of this meaning. This suggests the following
meaning rule for the definite article:

(75) [[the]] = λP∈Det[P≠∅, P(⊕P) | ⊕P]

That is, it is required that the property P applies to the sum individual ⊕P. This will give us the fol-
lowing derivations for the girls sang and the three girls sang:

(76)a. [[[S [NP [Det the] [N girls]] [VP sang]]]]
b. = [[sang]]([[[girls]]([[[girls]] ≠ ∅, [[girls]](⊕[[girls]]) | ⊕([[girls]])])
c. = 1, if ⊕([[girls]]) sang,

= 0, if ⊕([[girls]]) did not sing,
undefined, if [[girls]] = ∅ or [[girls]](⊕[[girls]]) = 0

(77)a. [[[S [NP [Det the] [N [A P three] [N girls]]] [VP sang]]]]
b. = 1, if ⊕([[three]]([[girls]])) sang,

= 0, if ⊕([[three]]([[girls]])) did not sing,
undefined, if [[three]]([[girls]]) = ∅ or [[three]]([[girls]])(⊕[[three]]([[girls]]))

We will also get the right result for the girl sang, if the meaning of girl applies to atomic girls only:

(78)a. [[[S [NP [Det the] [N girl]] [VP sang]]]]
b. = 1, if ⊕([[girl]]) sang,

= 0, if ⊕([[girl]]) did not sing,
undefined, if [[girl]] = ∅ or [[girl]](⊕[[girl]]) = 0

If there is exactly one girl x, everything is fine, as the sum of all entities that fall under girl is that
girl x, and x is certainly a girl. If there are two girls x, y, then the sum of x and y does not fall under
girl anymore (it falls under girls), and hence the meaning of the expression the girl is undefined.

7.4 Mass Nouns and Measure Phrases

7.4.1 Mass Nouns

Nouns in English, and in many other languages, come in two types: count nouns like apple, girl,
book, and mass nouns like water, sand, money. They show important morphological and syntactic
differences. For example, mass nouns have no plural form and cannot be combined with number
words or the quantifier every.

123 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

In certain respects mass nouns like water, sand, money behave similar to plural nouns like
apples. For example, they don’t need an article or number word to form an NP (cf. Apples were
sold in the shop / Milk was sold in the shop), and simple mass nouns are cumulative: if x and y fall
under water, then x⊕y falls under water again.

We can assume that mass nouns refer to entities, just like count nouns. For example, water re-
fers to quantities of water — that puddle here, the ocean over there, but also to parts of the puddle or
parts of the ocean.

One crucial difference to plural nouns is that we do not have to assume that there are “mini-
mal” parts. The mathematical structure for plural nouns can be derived by assuming that there are
simple, atomic individuals, and that sum individuals consist of combinations of these atomic indi-
viduals. For mass nouns we cannot assume atomicity. Of course, we know that, for example, water
consists of H

2
O molecules, which could be considered the “atoms” of the predicate water. But that

water consists of molecules (instead of a homogenous mass) is a relatively recent discovery, and it
is certainly not dictated by the English language.

If there are no atoms, then the function AT that gives us the atomic number of an object is un-
defined. This explains several facts about mass nouns.

• First, the lack of atoms in the extension of mass nouns explains that they do not have a plural
form (which contains in its definition the condition AT(x) ≥ 2). Their singular form obviously
does not make use of AT either; the singular is simply the morphologically unmarked form.

• Second, the lack of atoms also explains why mass nouns cannot be combined with number
words (as in *three water(s)). Again, number words make use of the AT function, which is not
defined for the entities that fall under a mass noun.

• Third, count nouns allow for distributive readings (cf. The apples cost 50c each), whereas mass
nouns do not (cf. *The water costs 10c each).

However, one should not take the lack of atoms in a “literal” sense. There are nouns that de-
note practically the same things, like coins and change, one of which is a count noun and the other
one a mass noun. Also, there are mass nouns, like furniture, which quite clearly apply to things that
have minimal parts (e.g., a minimal part of the furniture in this room is that chair over there, but not
the front left leg of that chair). When we talk about atoms we rather refer to the way how we con-
ceptualize things, and not how things “really” are.

Also, we often find that one noun can be used both as a count noun and as a mass noun. For
example, water can be used as a count noun, as in three waters, especially in a restaurant context,
where it refers to a quantity of water of customary size (e.g., a glass). And lamb can be used as a
mass noun, referring to the meat or in general the substance that makes up a lamb or lambs, as in
We had lamb for dinner).

7.4.2 Measure Phrases

Mass nouns cannot be combined with number words, but they can be combined with measure
phrases, as in three gallons of water or five ounces of gold. Measure words like gallon or ounce
relate to a way of singling out quantities of a certain size. They are based on so-called additive
measure functions which have the following property:

Measure Phrases 124

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(79)m is an additive measure function for the entities in a set S if the following holds:
a. m is a function from S to numbers;
b. there is a sum operation ⊕ for the elements of S such that the following holds:

For all x, y ∈ S that don’t have common parts (that is, there is no z with z≤x and z≤y),
m(x⊕y) = m(x) + m(y)

For example, gallon is an additive measure function in this respect. If x are 3 gallons of water and y
are 5 gallons of water, and x and y are distinct quantities of water, then x⊕y are 8 gallons of water.
Notice that the function AT is an additive measure function as well. Can you think of non-additive
measure functions?

Assume that GALLON is the measure function for gallon. Then we can give the following inter-
pretation to three gallons of water:

(80)a. [[three gallons of water]]
b. = [[three gallons]]([[water]])
c. = [[gallons]]([[three]])([[water]])
d. = λn∈R+λP∈Detλx∈De[MIN{GALLON(x) = 3, P(x)}](3)([[water]])
e. =λx∈De{MIN{GALLON(x) = 3, [[water]](x)}]

That is, we get a predicate that applies to entities x if they are water and measure three gallons.

We find measure constructions not only with conventionalized measures like gallon. One fre-
quent type uses containers, as in three glasses of water. Another type makes use of some promi-
nent feature of the entities to be counted, as in fifty head of cattle. Terms of this type are called clas-
sifier constructions, where head is called a classifier. In many languages, especially in East Asia,
this is the predominant construction, that is, there are hardly any “count nouns” as in English.

7.5 Kind reference

NPs that consist of simple mass nouns or plural nouns (so-called bare plurals and bare mass
terms) also can give rise to another reading. Consider the following difference:

(81)a. Dogs are faithful.
b. Dogs are sitting on my lawn.

The first sentence makes a claim about dogs in general -- the kind Canis. Such sentences are also
called generic. The second sentence says something about particular dogs. We have similar reading
distinctions with mass terms:

(82)a. Milk is healthy.
b. Milk was spilled all over the floor.

The difference in reading seems to be due to the nature of the verb phrase. The VP be faithful ex-
presses something like a permanent property, whereas the the VP be sitting on the lawn expresses a
temporary property, an event.

One rather influential theory for such sentences was proposed by G. Carlson (1977). Here are
some of the ingrediences of this theory:

• We have to assume a special sort of entities, kinds. Bare plurals like dogs and mass terms like
milk are names of kinds.

125 Conjunctions, Plurals, Mass Terms, and Kinds

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

• Kinds are related to objects that realize them. We express this by a relation R; for example, if
Fido is a dog, then we have R(f, d) (where f is the dog Fido, and d is the kind Canis.

• Predicates like be faithful, be healthy can be applied to objects as well as to kinds. If they are
applied to kinds, then they express that the objects that realize the kind typically have the prop-
erty in question. For example, dogs are social creatures is true because entities that realize the
kind dogs are typically social creatures. But note that there are certain predicates that just apply
to kinds, as e.g. be extinct. We cannot say, for example, *Fido is extinct.

• Predicates like be sitting on the lawn, be barking, be spilled all over the floor do not apply to
individuals directly, but only to temporal stages of individuals. For example, if Fido sat on the
lawn between 3 pm and 4 pm, then the predicate be sitting on the lawn applies to the stage of
Fido between 3 pm and 4 pm.

• Stages can be seen as a special sort of entity. Stages are related to both objects and kinds via a
relation R*. For example, if s is the stage of Fido between 3 pm and 4 pm, then we have
R*(s, f) and R*(s, d).

• Objects and kinds together are called individuals, and are contrasted with stages. Predicates
like be a social creature are called individual-level, predicates like be sitting on the lawn are
called stage-level.

Given all that machinery, Carlson can give the following analysis for sentences with different
predicates and different noun phrases:

(83)a. Dogs are faithful.
[[faithful]](d)

b. Fido is faithful.
[[faithful]](f)

c. Dogs are sitting on the lawn.
λx∈De[there is an s, R*(s, x), and [[sit on the lawn]](s)](d)
= [there is an s, R*(s, d), and [[sit on the lawn]](d)]

d. Fido is sitting on the lawn.
λx∈De[there is an s, R*(s, x), and [[sit on the lawn]](s)](f)
= [there is an s, R*(s, f), and [[sit on the lawn]](f)]

Note that stage-level predicates, like be sitting on the lawn, are analyzed in such a way that they can
be applied to individuals, but internally they reduce to predications about stages. Also, notice that
they have an existential quantifier built into their meaning.

This analysis predicts a crucial difference between singular indefinite NPs, like a dog, and
bare plurals. Consider the following example:

(84)A dog is sitting on the lawn, and a dog is not sitting on the lawn.

This sentence is not contradictory; it simply says:

Measure Phrases 126

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(85)a. [[A dog is sitting on the lawn and a dog is not sitting on the lawn]]
b. = [[and]([[a dog is sitting on the lawn]], [[a dog]]([[not sitting on the lawn]]))
c = MIN({[[a dog]]([[sitting…]]}, [[a dog]]([[not]]([[sitting on the lawn]]))})
d. = MIN({λP[[[dog]]∩P≠∅](λx[there is an s, R*(s,x) ∧ [[sit…]](s)]),

λP[[[dog]]∩P≠∅](λPλx[1-P(x)](λx[there is an s, R*(s,x) ∧ [[sit…]](s)]))})
e. = MIN({[there is an x and an s, R*(s,x) ∧ [[sit…]](s)]],

[there is an x and there is no s, R*(s,x) ∧ [[sit…]](s)]})

But contrast it with the following sentence:

(86)Dogs are sitting on the lawn, and dogs are not sitting on the lawn.

This sentence IS contradictory. This is brought out by our analysis.

(87)a. [[Dogs are sitting on the lawn, and dogs are not sitting on the lawn.]]
b. = MIN({[[dogs are sitting …]], [[dogs are not sitting…]]})
c. = MIN({λx[there is an s, R*(s,x), [[sit…]](s)]([[dogs]]),

 [[not]](λx[there is an s, R*(s,x), [[sit…]](s)])([[dogs]])})
d. = MIN({λx[there is an s, R*(s,x), [[sit…]](s)](d),
 λx[1-[there is an s, R*(s,x), [[sit…]](s)]](d)})
e. = MIN({[there is an s, R*(s,d), [[sit…]](s)], [there is no s, R*(s,d), [[sit…]](s)]})

Carlson also discusses cases where an inherently stage-level predicate is changed to an indi-
vidual-level predicate (so-called habituals). For example, bark (or be barking) is inherently stage-
level, as it is stages of dogs that bark. Example:

(88)a. Dogs are barking.
there is an s such that [R*(s, d) ∧ [[bark]](s)]

b. Fido is barking.
there is an s such that [R*(s, d) ∧ [[bark]](f)]

However, we can also express individual-level properties:

(89)a. Dogs bark.
b. Fido barks.

This means, for example, that dogs have the tendency to bark in certain situations. Carlson proposes
that stage-level predicates can be shifted to individual-level predicates. But it is notoriously difficult
to say anything about the truth conditions of these habitual individual-level predicates, as they typi-
cally allow for exceptions. For example, sentences like Frenchmen eat horsemeat, or Texans carry
guns, will be considered true by many people, even though the exceptions clearly outnumber the
non-exceptional cases.

