
© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

3. Phrase Structure Rules and Semantic Interpretation
In this section we will deal with a small fragment of real English, “Toy English” This fragment will
be extremely limited. Nevertheless it will illustrate a few important principles of semantic theory, in
particular the way how syntax and semantics are related to each other and how the meaning of
complex expressions can be computed from the meaning of more basic expressions.

3.1. The Syntax of Toy English
3.1.1. The Task of Syntax

We expect from the syntax of a natural language that it will specify exactly those expressions that
native speakers will consider to be correct, or well-formed. This cannot be done by simply enu-
merating all the correct expressions of a language. The reason is that this set is infinite, for every
natural language. This can be illustrated very easily by looking at the following sentences of Eng-
lish:

(1) Mary ran.
Mary ran and Mary ran.
Mary ran and Mary ran and Mary ran.
. . .

Whenever we have a correct English sentence, we can add to it and Mary ran, and we get another
correct English sentence. (Of course these sentences are not very interesting or informative, but
they are certainly grammatically correct -- and that’s the point!) It is obvious that the set of all sen-
tences of English is infinite, and can never be fully specified by simply listing all the correct ex-
pressions.

Our example illustrates another point: We obviously followed some rule in constructing ever-
new English sentences. This should remind you of the way a recursive definition works: We have
basic cases, and we have induction steps that allow us to derive new cases. We could try to de-
velop something similar for the description of correct expressions of a language:

• The basic expressions of a natural language are the words of the lexicon, like Mary, came, car,
red, and etc. (or perhaps more precisely the morphems, as words can be complex, cf. grand-
mother, great-grandmother, great-great-grandmother, etc.).

• The induction steps are the syntactic rules of the language that tell us how expressions can be
combined to form new expressions.

Notice that this way of defining the correct expressions of a language allows us to represent an
infinite set with finite means, provided that

• the set of basic expressions is finite;

• the set of syntactic rules is finite.

This is of course an attractive view when we have the idea that syntax should model (parts of) the
capacity of the speaker of a language. Speakers of a language certainly do not have an immediate
grasp of infinite sets!

35 Phrase Structure Rules and Semantic Interpretation

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

3.1.2. Phrase Structure Grammars

One popular way of specifying the set of correct expressions of a natural language is by using a
phrase structure grammar. A phrase structure grammar, in a technical sense, is a mathematical ob-
ject that consists of the following components:

• A finite set of labels for linguistic categories,
like S for “sentence”, NP for “noun phrase”, VP for “verb phrase”,
N for “noun”, DET for “article”, etc.

• A finite set of basic expressions (the “lexicon”).

• A finite set of phrase structure rules that have the following form:

X → Y1 Y2 ... Yn,

where X is a label for a linguistic category,
and Y1 Y2 ... Yn are either labels for linguistic categories or basic expressions.

• One label for a linguistic category as a starting symbol, usually S.

The idea behind phrase structure rules is the following: A rule like X → Y Z allows us to re-
place or rewrite a label X by the sequence of symbols Y and Z, where Y and Z are either labels or
words. By this we express that the sequence Y Z is considered to be of the syntactic category X.

Let us specify the syntax of Toy English, which is a very small, but yet infinite fragment of
real English.

3.1.3. Phrase Structure Rules for Toy English

We specify the syntax of English as follows:

• Labels for categories: S, NP, VP, V, Coor, Mod

• Basic expressions: Leopold, Stephen, Molly, sleeps, snores, loves, knows, and, or, it-is-not-
the-case-that

• Phrase-Structure rules:

(2) a. S → NP VP
b. VP → V NP
c. S → S Coor S
d. S → Mod S
e. NP → Leopold, NP → Stephen, NP → Molly

(we abbreviate these three rules by NP → {Leopold, Stephen, Molly})
f. VP → {sleeps, snores}
g. V → {loves, knows}
h. Coor → {and, or}
i. Mod → it-is-not-the-case-that

• Starting symbol: S

We can derive well-formed expressions of toy English by starting with the symbol S and re-
placing it step by step, following the phrase-structure rules, until we arrive at a string of basic ex-
pressions. Here is an example:

The Syntax of Toy English 36

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(3) S (Starting symbol)
S Coor S (Rule c)
NP VP Coor S (Rule a)
NP VP Coor NP VP (Rule a)
NP VP Coor NP V NP (Rule b)
Leopold VP Coor NP V NP (Rule e)
Leopold snores Coor NP V NP (Rule f)
Leopold snores and NP V NP (Rule h)
Leopold snores and Molly V NP (Rule e)
Leopold snores and Molly loves NP (Rule g)
Leopold snores and Molly loves Stephen(Rule e)

The resulting string, Leopold snores and Molly loves Stephen, is a correct expression of toy Eng-
lish: It consists only of basic expressions, and it was generated from the starting symbol S by re-
cursive applications of the phrase-structure rules.

We applied the rules to derive our example in a particular order. But it is obvious that nothing
hinges on the particular order that we followed. If you have time to spare, you can try to figure out
how many different derivations of the sentence there are!

One interesting fact about the syntax of toy English is that it will generate infinitely many
sentences. This is due to rule (c),

S → S Coor S,

which allows us to rewrite the symbol “S” by the sequence “S Coor S”, in which S occurs again.
This allows derivations that start as follows

S
S Coor S
S Coor S Coor S
S Coor S Coor S Coor S
.. .

and may lead to sentences like

Leopold snores and Molly sleeps or Leopold loves Molly and Stephen sleeps or
Leopold snores and it-is-not-the-case-that Molly snores.

Obviously, there is no maximal length for correct sentences of toy English. So our little
grammar of toy English captures one fact about real English, namely that it generates infinitely
many sentences.

3.1.4. Phrase Structure Trees

The above derivations of correct expressions of toy English are rather clumsy and cover aspects
that we are not really interested in, namely the order in which the phrase structure rules are applied.

A more perspicuous way to specify the derivation of a string with a phrase structure grammar
is by a tree, which gives us just the essential information.

37 Phrase Structure Rules and Semantic Interpretation

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(4)

 S

S

NP
Leopold

VP
snores

Conj
and

S

NP
Molly

VP

V

loves

NP

Stephen

It is obvious how to construct a tree: We start by writing down the starting symbol, S, and proceed
in the following way:

Whenever we have in a derivation a rule X → Y1 Y2 ... Yn, we add to the node that repre-
sents X the branches that lead to the nodes Y1, Y2,... Yn below X (in that order).

(5) A rule X → Y1 Y2 Y3 allows us to perform the following replacement:

X ====>

 X

Y 1 Y2 Y3

Ideally, the phrase structure grammar of a language should lead to phrase structure trees that
show syntactic groupings or constituents that are independently motivated by syntactic tests. For
example, we analyze a sentence with a transitive verb like Molly loves Stephen in a way where
loves and Stephen form a phrase, a VP, and not in a way where Molly and loves form a phrase.
There are syntactic reasons for that; for example, there are pronominal forms like so for a VP, but
not for a purported constituent that consists of a subject NP and a transitive verb:

(6) Molly loves Stephen, and so does Leopold.
(i.e., Leopold loves Stephen as well; it cannot mean that Molly loves Leopold as well!)

The reasons for favouring particular phrase structure analyses over other ones are particular con-
stituent tests; they will be dealt with in the syntax course.

Frequently, trees will be specified in a linear way, with the help of brackets and indices. The
above tree could have been given in the following way as well:

(7) [S[S[NPLeopold][VPsnores]][Conjand][S[NPMolly][VP[Vloves][NPStephen]]]]

Often we represent only those parts in brackets and with labels that we are currently interested in.

3.1.5. Syntactic Ambiguity

As we have seen, trees abstract away from spurious differences in which we derive a particular
expression of our language. However, we still may derive one and the same string in a number of
different ways that shows up in different trees. Example:

Semantics of Toy English:

Names, Intransitive Verbs and Sentence

Connectors 38

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(8) a.

 S

Mod

Itis notthe
casethat

S

S

NP
Leopold

VP
snores

Conj

and

S

NP

Molly

VP

V

loves

NP

Stephen

b.

 S

S

Mod

It isnot
thecasethat

S

NP

Leopold

VP

snores

Conj
and

S

NP
Molly

VP

V

loves

NP

Stephen

In the first case, we have first replaced “S” by “Mod S”, following rule (d). In the second case, we
have first replaced “S” by “S Coor S”, following rule (c). The result is the same expression (i.e.,
the same sequence of words).

There are semantic reasons to distinguish between the two derivations. We can argue that the
first denies both that Leopold snores and that Molly loves Stephen, whereas the second asserts that
Leopold does not snore, and that Molly loves Stephen. This is clearly something different; for ex-
ample, if Leopold snores, the second reading is certainly false, whereas the first one still could be
true.

The two derivations of our sentence are instances of a structural ambiguity. In the case of
structural ambiguity we have that one and the same expression can have more than one syntactic
structure, and typically it will have different meanings under these syntactic structures.

3.2. Semantics of Toy English:
Names, Intransitive Verbs and Sentence Connectors

Let us come back to our main goal, the compositional semantics for a small fragment of English.
So far we have described the correct expressions of toy English, using phrase-structure rules.
Now let us turn to semantics. The purpose of this section is not to give a final account of the se-
mantics of English constructions (or even a serious candidate for that), but to illustrate how a se-
mantic theory for complex expressions of a language looks like.

39 Phrase Structure Rules and Semantic Interpretation

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

The underlying principle that we follow is the compositionality principle: It must be possible
to compute the meaning of a complex expression by knowing the meanings of the parts and the
syntactic rules by which the parts are combined. This leads to the following procedure:

• We will assign meanings to the basic expressions of Toy English.

• We will specify, for each syntactic rule, a corresponding semantic rule.

One consequence of the second rule is that we cannot simply assign meanings to the expres-
sions of Toy English. This is because one and the same expression can have different syntactic
structures, and have different meanings under those syntactic structures.

3.2.1. NPs, Sentences, and Intransitive Verbs

The only NPs we have in Toy English are names. (We will discuss NPs like a woman or every
woman later). Names have saturated meanings, they denote individuals (in this case, the heroes
of James Joyce’s “Ulysses”). Hence we have:

(9) a. [[Leopold]] = Leopold Bloom (abbreviated: LB)
b. [[Molly]] = Molly Bloom (MB)
c. [[Stephen]] = Stephen Dedalus (SD)

The set of all persons and things we care to talk about is called the universe of discourse. I will
use the De for that, where D stands for “domain” and e for “entity”. De contains at least LB, MB
and SD as distinct entities, and perhaps more.

(10)De = the domain of entities = the universe of discourse.

How should we model the meanings of sentences? At the beginning of this course we have
argued for a truth-conditional approach to sentence meanings, in which we take the truth condi-
tions of a sentence to be crucial for the determination of its meanings. This led us to the idea that
the meaning of a sentence is the set of all possible circumstances, or possible worlds, in which this
sentence is true. For example,

(11) [[[S[NPLeopold][VPsleeps]]]] = {w| w is a possible world and LB sleeps in w}

However, for the time being we will be content with a simpler representation of sentence
meanings. We will say that a sentence has a truth value as its meaning: It means “true” (or
“1”), if it is true in the real world, and “false” (or “0”), if it is false. We will return to the more
sophisticated version using possible worlds later. For the time being we will work under the fol-
lowing assumption:

(12)If Φ is a sentence, then [[Φ]] = 1 if Φ is true, and [[Φ]] = 0 if φ is false.

Now let us turn to intransitive verbs. Intransitive verbs β, like snores, can be used in the
following syntactic configuration:

(13)

 S

NP

α

VP

β

Semantics of Toy English:

Names, Intransitive Verbs and Sentence

Connectors 40

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

What form should the meaning of an intransitive verb have, then? Interestingly, we can come
up with an answer by following the compositionality principle. This is because we already
know the type of meaning an NP has -- it is an individual --, and we know the type of meaning a
sentence has -- it is a truth value, 0 or 1. The compositionality principle tells us that the meaning of
a complex expression results from the meaning of its immediate syntactic parts and the way they
are combined. So we will best assume that the meaning of a VP is a function that, when combined
with the meaning of a NP, will give us the meaning of a sentence.

Hence the meaning of a VP will be a function from individuals (NP meanings) to truth values
(S meanings). In particular, we have the following:

(14)a. [[sleeps]] = λx∈De[x sleeps],
the function from individuals to truth values such that for all individuals y,

 λx[x sleeps](y) = [y sleeps] = 1 if y sleeps, and = 0 if y does not sleep.
b. [[snores]] = λx∈De[x snores].

Notice that VP meanings are unsaturated. They need an argument, here, an entity like a
person, to form a sentence meaning, which again is a saturated meaning.

So far we have given the meanings of the NPs and the meanings of the intransitive verbs (or
simple VPs) of Toy English. NP meanings are individuals, and VP meanings are functions from
individuals to truth values. Now it is easy to give the meaning rule that corresponds to the syntactic
rule S → NP VP:

(15) [[[S[NPα][VPβ]]]] = [[[VPβ]]]([[[NPα]]])

That is, whenever we have a syntactic structure that is a S consisting of an NP α and a VP β,
then the meaning of this S can be computed by applying the meaning of the VP β (which is a func-
tion from individuals to truth values) to the meaning of the NP α (which is an individual). The
result will be a truth value, of course.

We still need a rule that gives us the meaning of a tree that consists of one syntactic label
dominating a word, like [NPLeopold], or [VPsnores]. We simply assume that in this case the
meaning of the tree will be the same as the meaning of the word:

(16)If α is a word and X is a syntactic label, then [[[Xα]]] = [[α]]

Let us now illustrate how the meaning of a complex sentence can be derived. Let us assume
that Leopold snores. Then we can compute the meaning of the syntactic tree

[S[NPLeopold][VPsnores]]

as follows:

(17)a. [[[S[NPLeopold][VPsnores]]]]
b. = [[[VPsnores]]]([[[NPLeopold]]]) (Rule (15))
c. = [[snores]]([[Leopold]]) (Rule (16))
d. = λx∈De[x snores](LB) (Rule (9), (14))
e. = [LB snores] (Function Application)
f. = 1 (if LB sleeps)

= 0 (if he doesn’t).

We see that our rules indeed allow us to compute the meaning of a sentence.

41 Phrase Structure Rules and Semantic Interpretation

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

3.2.2. Transitive verbs

Let’s turn to transitive verbs. A transitive verb, like loves, expresses a relation between two enti-
ties. So we may treat it as a set of pairs, as before in our informal discussion. We could do so eas-
ily when we assume a syntactic rule that combines subject and object NP at the same time with a
transitive verb, such as:

(18)S → NP V NP

However, there are syntactic arguments that tell us that the relation between a transitive verb and its
object is closer than the relation between a transitive verb and its subject. The syntactic rules reflect
that by having two rules instead of one:

(19)a. S → NP VP
b. VP → V NP

We have already developed the semantic rule that corresponds to the first syntactic rule. Ide-
ally, it should be applicable to the case of complex VPs as well. Now let us turn to the semantic
rule that corresponds to the second syntactic rule. The question here is: What is the form of the
meaning for transitive verbs, V? Again, we find the answer when we follow the compositionality
principle. Now we have the following situation:

(20) VP√
 / \

 V? NP√

We already know that NP-meanings are individuals, and VP-meanings are functions from indi-
viduals to truth values. We also assume compositionality, that is, the VP-meaning should be com-
putable from the V-meaning and the NP-meaning. The most obvious way of analyzing V mean

ings then is as functions from individuals to VP-meanings. For example:
(21) [[loves]] = λy∈De[λx∈De[x loves y]],

 the function that maps every individual u to λy∈De[λx∈De[x loves y]](u)
(which is λx∈De[x loves u]),

 that is, a function that maps every individual v to λx∈De[x loves u](v)
(which is [v loves u], that is 1 if v loves u, and 0 if v does not love u).

Note that λy∈De[λx∈De[x loves y]] is an unsaturated meaning that, when combined with an indi-
vidual u, yields another unsaturated meaning, λx∈De[x loves u]. Only when λx∈De[x loves u] is
combined with an individual do we get a saturated meaning.

What we have done is to express a function with two arguments (the first analysis of loves)
by a function with one argument that yields another function with one argument as value.

We now can formulate the semantic rule that corresponds to the syntactic rule VP → V NP:

(22) [[[VP[Vα][NPβ]]]] = [[[Vα]]]([[[NPβ]]])

Analysis of an example; assume that Leopold loves Molly.

Semantics of Toy English:

Names, Intransitive Verbs and Sentence

Connectors 42

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(23)a. [[[S[NPLeopold][VP[Vloves][NPMolly]]]]] =
b. = [[[VP[Vloves][NPMolly]]]]([[[NPLeopold)]]) (Rule (15))
c. = [[[Vloves]]]([[[NPMolly]]])([[[NPLeopold)]]) (Rule (22))
d. = [[loves]]([[Molly]])([[Leopold]]) (Rule (16))
e. = λy∈De[λx∈De[x loves y]](MB)(LB) (Rules (9), (21))
f. = λx∈De[x loves MB](LB) (Function application)
g. = [LB loves MB] (Function application)
h. = 1 (if LB loves MB)

= 0 (if LB doesn’t love MB)

3.2.3. Modularity and Type-Driven Interpretation

So far we have two separate semantic rules for the combination of an NP with a VP, and of a V
with an NP, namely (15) and (22). They are repeated here:

(24)a. [[[S[NPα][VPβ]]]] = [[[VPβ]]]([[[NPα]]])
b. [[[VP[Vα][NPβ]]]] = [[[Vα]]]([[[NPβ]]])

In both cases, the meaning of one subexpression is applied to the meaning of the other one, and we
have specified explicitly which is to be applied to which. But this is perhaps not necessary. For
example, we could not have applied the meaning of a name to the meaning of a VP, because this is
not the way how these meanings can be combined. So it is perhaps more general to have just one
general rule for branching nodes:

(25)General rule for branching structures:
[[[α β]]] = [[α]]([[β]]) or [[β]]([[α]]), whichever makes sense, that is, whichever is possible.

This rule does not mention any specific categories like NP or VP or V. It applies to all binary
structures [α β]. It leaves it up to the semantics whether we apply the meaning of the first constitu-
ent to the meaning of the second, or vice versa. We call the general nature of the meaning of an
expression — whether it stands for an entity, a truth value, a function from entities to truth values
etc. — the semantic type of this expression. An interpretation rule like (25) is called type-driven
because it depends on the types of the parts. For example, we can combine a function from entities
to truth values and an entity only in one way, by applying the first to the second.

For non-branching structures we simply assume that the interpretation of the mother node is
the interpretation of the daughter node:

(26)General rule for non-branching structures: [[[α]]] = [[α]]

Furthermore, we can now simplify our phrase structure rules a bit. They should not make a
distinction between intransitive verbs like snores and transitive verbs like loves. After all, this ap-
pears to be a genuinely semantic difference. So we have the following rules:

(2) j. VP → V (NP)
k. V → {sleeps, snores, loves, knows}

The rule format for (j) is an abbreviation for the two rules VP → V and VP → V NP; that is, the
parentheses around NP indicate that this node is optional.

43 Phrase Structure Rules and Semantic Interpretation

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

It is evident that we can derive the sentences like Leopold snores or Leopold loves Molly with
rule (25). But perhaps this rule gives us too much. For example, we can now derive things like
*Leopold loves and, even worse, **Leopold snores Molly. But even though we can derive this
syntactically, what we get doesn’t make much semantic sense:

(27)a. [[[S[NP Leopold] [VP [V loves]]]]]
b. = [[VP [V loves]]]([[NP Leopold]])

or [[NP Leopold]]([[VP [V loves]]]), whichever makes sense (Rule (25))
c. = [loves]([Leopold])

or [Leopold]([loves]), whichever makes sense (Rule (26))
d. = λy∈De[λx∈De[x loves y](LB)

or LB(λy∈De[λx∈De[x loves y]), whichever makes sense (Rules (9), (21))
e. = λy∈De[λx∈De[x loves y](LB) (only this makes sense)
f. = λx∈De[x loves LB] (function application)

We arrive at a meaning a meaning allright, but it is not a sentence meaning — there is still an argu-
ment that needs to be satisfied.

(28)a. [[[S[NP Leopold] [VP [V snores] [NP Molly]]]]]

b. = [[[VP [V snores] [NP Molly]]]]([[[NP Leopold]]])
or [[[NP Leopold]]]([[[VP [V snores] [NP Molly]]]]), whichever makes sense

c. = [[[VP [V snores]]]]([[[NP Molly]]])([[[NP Leopold]]])
or [[[NP Molly]]]([[[VP [V snores]]]])([[[NP Leopold]]])
or [[[NP Leopold]]]([[[VP [V snores]]]]([[[NP Molly]]])
or [[[NP Leopold]]]([[[VP [V snores]]]])([[[NP Leopold]]]), whichever makes sense

d. = λx∈De[x snores](MB)(LB), = [MB snores](LB)
or MB(λx∈De[x snores])(LB)
or LB(λx∈De[x snores](MB)), = LB([MB snores])
or LB(MB(λx∈De[x snores])), whichever makes sense

The problem with this is that nothing makes sense at all. We can reduce the first and the third for-
mula a bit, but in none of the four cases do we end up with a sentence meaning. In fact, all four
cases are totally meaningless.

We see here that even though the syntax does allow for the formation of expressions like
Leopold loves, or Leopold snores Molly, such sentences cannot be interpreted. In the way how we
sketched the collaboration of syntax and semantics in this subsection, they together determine
whether an expression is well-formed or not. An expression may be ill-formed because it cannot be
generated by the syntax, or it may be ill-formed because it cannot be interpreted.

We can think of syntax and semantics as representing two different modules that jointly de-
termine what is a good sentence of English. Syntax tells us, for example, that *loves Leopold
Molly is no good (it would be good, with different words of course, in a so-called VSO language,
like Irish). Semantics tells us that, for example, *Leopold snores Molly is no good. A theoretical
framework that distributes the load of explanation to different subtheories that are themselves sim-
ple and general is called modular. We will come back to the issue of modularity later.

Semantics of Toy English:

Names, Intransitive Verbs and Sentence

Connectors 44

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

The particular phenomenon that a verb like snores allows only for one NP, whereas a verb
like loves needs two has been called the theta criterion. It states that for each semantic argument
of a verb there must be exactly one syntactic constituent that fills that argument, and vice versa, for
each syntactic constituent that stands in a certain syntactic configuration with a verb there must be
one semantic argument of the verb that it fills.

Type-driven interpretation, as introduced in this section, is simpler than a rule-by-rule in-
terpretation, as used in the previous sections. In particular, one global semantic rule replace several
construction-specific rules. Furthermore, type-driven interpretation is more restrictive. For ex-
ample, in a rule-by-rule interpretation we could allow for “active” VPs and “passive” VPs that dif-
fer just in the way how the NPs are mapped to the semantic arguments:

(29)a. S → NP VPactive,
S → NP VPpassive,
VPactive → V NP,
VPpassive → V NP

b. [[[VPactive [V α] [NP β]]]] = [[[V α]]]([[[NP β]]])

c. [[[VPpassive [V α] [NP β]]] = λx∈De[[[[V α]]](x)([[β]])]

Notice that the interpretation rule (c) leads to a switch of argument positions so that a sentence
like Leopold [VPpassive loves Molly] would be true if Leopold is loved by Molly. However, we could
achieve this only by a very rule-specific intepretation, which is not an option when we adhere to
type-driven interpretation. In that framework we will have to analyze passive sentences differently.

3.2.4. Sentential Operators

Let us now discuss the semantic side of rules having to do with the sentential operators and, or and
it-is-not-the-case-that.

First, let’s have a look at the negation modifier it-is-not-the-case-that, which is a one-
place sentence operator. It’s semantic contribution is obviously that it reverses the truth value
of a sentence: If the original sentence is true, the resulting sentence will be false, and vice versa.
Hence we should assume that the meaning of this modifier is a function that maps 1 to 0 and 0 to
1. This function can be rendered as a set of pairs, {〈1,0〉,〈0,1〉}. Can we also render it as a lambda
term? Yes. Let us use “Dt” for the set of truth values, {0, 1}.

(30)Dt = the domain of truth values = {0, 1}

Then we can render negation by the following lambda term:

(31) [[it is not the case that]] = λt∈Dt[1—t]

When we apply this function to the argument 1, we get 1—1 = 0 as a result, and when we apply it
to 0, we get 1—0 = 1. (So it turns out that it was quite useful to work with 1 and 0 as truth val-
ues...)

With the general interpretation rule for branching structures (25) we don’t need any specific
rule for sentences consisting of a negation and another sentence. As an example, we have the fol-
lowing derivation:

45 Phrase Structure Rules and Semantic Interpretation

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(32)a. [[[S[Modit-is-not-the-case-that][SMolly snores]]]]
b. = [[[Modit-is-not-the-case-that]]]([[[SMolly snores]]]) (Rule (25);

only this order makes sense)
c. = [[it-is-not-the-case-that]]]([[snores]]([[Molly]])) (Rules (25), (26))
d. = λt∈Dt[1—t](λx[x snores](MB)) (lexical rules)
e. = λt∈Dt[1—t]([MB snores]) (function application)
f. = [1 — [MB snores]] (function application)
g. = 1, if [MB snores] = 0,

= 0, if [MB snores] = 1

We get the right result: The sentence has the truthvalue 0 if Molly snores, and the truthvalue 1 if
Molly doesn’t snore.

Let us now consider the two-place sentence operators, the so-called conjunction and
and the disjunction or. Recall that we have assumed the following syntactic rule:

(33)S → S Coor S

This creates a structure that is not a simple binary branching, and our interpretation rule (25) con-
sequently will not apply. We can introduce interpretation rules for such structures in a number of
ways. One is to assume the following rule:

(34) [[[S [S α] [Coor β] [S γ]]]] = [[[Coor β]]](〈[[[S α]]], [[[S γ]]]〉)

This says that the meaning of sentence [S [S α] [Coor β] [S γ]] consists in applying the meaning of the
coordination [Coor β] to the pair of the meanings of the two conjuncts, [S α] and [S γ]. What then is
the meaning of a coordination? Take and. When and combines two sentences, it should give us a
true sentence if both sentences are true, else it gives us a false sentence. We can express this by
using the function MIN that gives us the smallest number of a set. In particular, we have
MIN({1, 1}) = 1 and MIN({1, 0}) = MIN({0, 1}) = MIN({0, 0}) = 0.

(35) [[and]] = λ〈t, t′〉[MIN({t, t′})]

This is a function from pairs of truth values 〈t, t′〉 to a truth value, namely, the minimum of t and t′.
We then have derivations like the following:

(36)a. [[[S[SMolly sleeps] [Conjand] [SLeopold snores]]]]
b. = [[[Conjand]]](〈[[[SMolly sleeps]]], [[[SLeopold snores]]]〉) (Rule (35))
c. = λ〈t, t′〉[MIN({t, t′})](〈[MB sleeps], [LB snores]〉) (lexical rules, application)
e. = MIN({[MB sleeps], [LB snores]}) (application)
f. = 1, if [MB snores] = [LB snores] = 1,

= 0, else.

This gives us the correct result. However, we again have assumed a specific semantic rule for a
syntactic rule, (35). Also, in the interpretation of a coordination like and we have used a rather
complex notation for variables, namely, the pair notation 〈t, t′〉. We have seen with transitive verbs
that we can reduce a function from pairs to functions from simple entities. We can now do the
same here and assume the following meaning for and:

(37) [[and]] = λt∈Dt[λt′∈Dt[MIN({t, t′})]]

Semantics of Toy English:

Names, Intransitive Verbs and Sentence

Connectors 46

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

Here, the meaning of and is a function that first takes one sentence meaning, and yields a function
that then takes the other sentence meaning.

The general semantic rule (25) still does not fit for structures with three daughter nodes. Can
we generalize it for the case at hand? The basic idea is that categories should combine in whatever
way is semantically possible. This suggests a rule like the following:

(38) [[[α β γ]]] = [[α]]([[β]])([[γ]]) or [[β]]([[α]])([[γ]]) or [[γ]]([[α]])([[β]]), whichever makes sense.

There might be even more possible combinations, like [[α]]([[γ]])([[β]]), which I did not list here to
keep things simple.

There is one potential problem with this generalization: It may be that more than one combi-
nation is possible. This is certainly the case for coordinations. For example, the meaning of and
could first be combined with the first sentence, and then with the second, or vice versa. Luckily,
this doesn’t matter — we will always get the same semantic result, for MIN({t, t′}) is of course the
same as MIN({t′, t}). So we can work with the generalized semantic rule indicated in (34).

Consider the following example derivation:

(39)a. [[[S[SMolly sleeps] [Conjand] [SLeopold snores]]]]
b. = [[[Conjand]]]([[[SMolly sleeps]]])([[[SLeopold snores]]]) (Rule (38))
c. = [[and]]([[sleeps]]([[Molly]]))([[snores]]([[Leopold]])) (Rules (25), (26))
d. = λt∈Dt[λt′∈Dt[MIN({t, t′})]]([MB sleeps])([LB snores]) (lexical rules, application)
e. = MIN({[MB sleeps], [LB snores]}) (application)
f. = 1, if [MB snores] = [LB snores] = 1,

= 0, else.

What about disjunction, or? There are two possible approaches. One is to say that two sen-
tences conjoined with or are true if either one sentence is true, but not both. We indeed use or often
in this way:

(40)a. John (either) went to Paris or he went to London.
b. You may have candy, or you may have ice cream.

However, notice that this meaning element can easily be cancelled:

(41)a. John (either) went to Paris or he went to London, perhaps he went to both cities.
b. You may have mustard or mayonnaise on your sandwich (of course, you can have both).

Hence it presumably is just an implicature, as discussed in section #. And the real meaning of or
should give us a true sentence if both sub-sentences are true. This allows us to model its meaning
with the help of the function MAX, which gives us the maximal number of a set of numbers. In
particular, we have MAX({1, 1}) = MAX({0, 1}) = MAX({1, 0}) = 1, and MAX({0, 0}) = 0.

(42) [[or]] = λt∈Dtλt′∈Dt[MAX({t, t′})]

And we have derivations like the following:

47 Phrase Structure Rules and Semantic Interpretation

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(43)a. [[[S[SMolly sleeps] [Conjor] [SLeopold snores]]]]
b. = [[[Conjor]]]([[[SMolly sleeps]]])([[[SLeopold snores]]]) (Rule (38))
c. = [[or]]([[sleeps]]([[Molly]]))([[snores]]([[Leopold]])) (Rules (25), (26))
d. = λt∈Dt[λt′∈Dt[MAX({t, t′})]]([MB sleeps])([LB snores]) (lexical rules, application)
e. = MAX({[MB sleeps], [LB snores]}) (function application)
f. = 0, if [MB snores] = [LB snores] = 0,

= 1, else.

3.2.5. Syntactic and Semantic Ambiguity

We have seen that the syntax of Toy English allows for structural ambiguities. Now, it is interest-
ing to notice that a structurally ambiguous sentence may be true on one reading, but false on an-
other one. Take our previous example, and assume that Molly does not sleep (hence the meaning
of Molly sleeps is 0), and that Molly does not love Stephen (hence the meaning of Molly loves
Stephen is 0). We get the following truth values for the two structures:

(44)

 S

Mod

It isnotthe
casethat

S

S

NP
|

Leopold

VP
|

snores
––– – – 0 – – – – – –

Conj
|

and

S

NP
|

Molly
VP

V
|

loves

NP
|

Stephen
– – – – – – – – 0 – – – – – – – –

– – – – – – – – – – – – – – – – 0 – – – – – – – – – – – – – – – – – – –

– 1 –

Semantics of Toy English:

Names, Intransitive Verbs and Sentence

Connectors 48

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

(45)

We see that under the first syntactic analysis, the sentence it is not the case that Molly sleeps or
Leopold snores is true, and under the other analysis it is false.

One consequence of this is that we cannot just give the interpretation of the string of words it
is not the case that Molly sleeps or Leopold snores, but we have to specify the meaning of this
sentence with respect to a syntactic analysis. This is the reason why our meaning rules give mean-
ings to syntactic trees instead of sequences of syntactic labels or sequences of words.

3.2.6. Flexible Types for Negation

The rule that we have proposed for negation is quite clumsy. Instead of (46.a) we normally ex-
press things as in (b).

(46)a. It is not the case that Molly snores.
b. Molly doesn’t snore.

From a syntactic point, it is remarkable that in (46.b) the verb is an auxiliary, does, with a
negative suffix, n’t. This is a peculiarity of modern English; Shakespeare would have said, Molly
snores not (and that’s still the way how things are in Dutch and German). If we take syntax seri-
ously, then we cannot anlyze negation as a sentence modifier. The negative operator doesn’t rather
forms a constituent with the non-finite verb phrase:

(47)a. [Molly [doesn’t snore]]
b. [Molly [doesn’t [love Leopold]]

Let us add the following syntactic rules to our rule system:

(2) l. VP → Aux VPinf

m.VPinf → Vinf (NP)
n. Vinf → {sleep, snore, love, know}
o. Aux → doesn’t

 S

S

Mod
|

Itisnot
thecasethat

S

NP
|

Leopold

VP
|

snores
– – – – – 0 – – – – – –

– – – – – – – – – – – – – 1 – – – – – – – – –

Conj
|

and

S

NP
|

Molly
VP

V
|

loves

NP
|

Stephen
– – – – – – – – 0 – – – – – – – –

– 0 –

49 Phrase Structure Rules and Semantic Interpretation

© Manfred Krifka, Institut für deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001

Obviously the rules (2.j), VP → V (NP), and (2.m), are versions of the same general pattern, and
our grammar should capture that. But for the time being we assume that they are two distinct rules.
Also, the lexical rules (2.n) correspond to the lexical rules for the finite verbs. The lexical rules for
infinite verbs are just the same as the ones for finite verbs.

All we have to add now is the interpretation rule for doesn’t: It should be a function from VP-
meanings to VP-meanings. How should we specify the domain of these functions? We could, of
course, introduce a new symbol, perhaps DVP. But notice that VP-meanings are functions from
entities in De to entities in Dt, and it would be good to indicate that in the name for this domain. We
commonly call this domain Det, to indicate that it comprises functions from De to Dt.

(48)Det = the domain of functions from De to Dt.

I will use variables like P, Q for this domain. We then have the following interpretation rule for
doesn’t:

(49) [[doesn’t]] = λP∈Detλx∈De[1—P(x)]

This function takes a VP-meaning P and gives a function from entities x to truth values. In
particular, it assigns the truth value of 1 minus P applied to x. To see how this works, consider the
following example:

(50)a. [[[S [NP Molly] [VP [Aux doesn’t] [VPinf [Vinf snore]]]]]]
b. = [[[Aux doesn’t] [VPinf [Vinf snore]]]]]]([[[NP Molly]]]) (Rule (25))
c. = [[doesn’t]]([[snore]])([[Molly]]) (Rules (25), (26))
d. = λP∈Detλx∈De[1—P(x)](λx∈De[x snores])(MB) (lexical rules)
e. = λP∈Detλy∈De[1—P(y)](λx∈De[x snores])(MB) (variable renaming)
f. = λy∈De[1—λx∈De[x snores](y)](MB) (function application)
g. = λy∈De[1—[y snores]](MB) (function application)
h. = [1—[MB snores]] (function application)
i. = 1, if [MB snores] = 0,

= 0, if [MB snores] = 1

We get the same result as before, but we arrived at that in a slighty different way. a way that is
truer to the ordinary syntax of English. In step (e) I have renamed the variable x in the meaning of
doesn’t to y so that we do not mix it up with the variable x in the meaning of snores. While this
was not absolutely necessary in this case, it is wise to do so to avoid confusion.

