3. Phrase Structure Rules and Semantic I nterpretation

In this section we will deal with asmall fragment of real English, “Toy English” This fragment will
be extremely limited. Neverthelessit will illustrate afew important principles of semantic theory, in
particular the way how syntax and semantics are related to each other and how the meaning of
complex expressions can be computed from the meaning of more basic expressions.

3.1. The Syntax of Toy English
3.1.1. The Task of Syntax

We expect from the syntax of anatural language that it will specify exactly those expressions that
native speakers will consider to be correct, or well-formed. This cannot be done by simply enu-
merating all the correct expressions of alanguage. The reason is that this set isinfinite, for every
natural language. This can be illustrated very easily by looking at the following sentences of Eng-
lish:
(1) Mary ran.

Mary ran and Mary ran.

Mary ran and Mary ran and Mary ran.

Whenever we have a correct English sentence, we can add to it and Mary ran, and we get another
correct English sentence. (Of course these sentences are not very interesting or informative, but
they are certainly grammatically correct -- and that’ s the point!) It is obvious that the set of all sen-
tences of English isinfinite, and can never be fully specified by simply listing al the correct ex-
pressions.

Our exampleillustrates another point: We obviously followed some rule in constructing ever-
new English sentences. This should remind you of the way arecursive definition works: We have
basic cases, and we have induction steps that allow us to derive new cases. We could try to de-
velop something similar for the description of correct expressions of alanguage:

The basic expressions of anatural language are the words of the lexicon, like Mary, came, car,
red, and etc. (or perhaps more precisely the morphems, as words can be complex, cf. grand-
mother, great-grandmother, great-great-grandmother, etc.).

Theinduction steps are the syntactic rules of the language that tell us how expressions can be
combined to form new expressions.

Notice that this way of defining the correct expressions of alanguage allows us to represent an
infinite set with finite means, provided that

the set of basic expressionsisfinite;
the set of syntactic rulesisfinite.

Thisis of course an attractive view when we have the idea that syntax should model (parts of) the
capacity of the speaker of alanguage. Speakers of alanguage certainly do not have an immediate
grasp of infinite sets!
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35 Phrase Sructure Rules and Semantic Interpretation

3.1.2. Phrase Sructure Grammars

One popular way of specifying the set of correct expressions of a natural language is by using a
phrase structure grammar. A phrase structure grammar, in atechnical sense, isa mathematical ob-
ject that consists of the following components:

A finite set of labelsfor linguistic categories,
like Sfor “sentence”, NP for “noun phrase”, VP for “verb phrase”,
N for “noun”, DET for “article”, etc.

A finite set of basic expressions (the “lexicon”).
A finite set of phrase structure rules that have the following form:

X®Y,Y,..Y,

where X isalabel for alinguistic category,
andY, Y, ... Y, areeither labelsfor linguistic categories or basic expressions.

One label for alinguistic category as a starting symbol, usually S.

The idea behind phrase structure rulesisthe following: A rulelike X ® Y Z allows usto re-
place or rewrite alabel X by the sequence of symbolsY and Z, whereY and Z are either |abels or
words. By thiswe express that the sequence Y Z is considered to be of the syntactic category X.

Let us specify the syntax of Toy English, which isavery small, but yet infinite fragment of
real English.

3.1.3. Phrase Sructure Rules for Toy English

We specify the syntax of English asfollows:
Labelsfor categories. S, NP, VP, V, Coor, Mod

Basic expressions: Leopold, Stephen, Molly, sleeps, snores, loves, knows, and, or, it-is-not-
the-case-that

Phrase-Structure rules:

(20 a S® NPVP
b. VP® V NP
S® SCoor S
S® Mod S
NP ® Leopold, NP® Sephen, NP ® Molly
(we abbreviate these threerulesby NP ® { Leopold, Stephen, Molly})
VP® {deeps, snores}
V ® {loves, knows}
Coor ® {and, or}
Mod® it-is-not-the-case-that

a0

ol R

Starting symbol: S

We can derive well-formed expressions of toy English by starting with the symbol S and re-
placing it step by step, following the phrase-structure rules, until we arrive at a string of basic ex-
pressions. Here is an example:
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3 S (Starting symbol)
SCoor S (Rulec)
NP VP Coor S (Rule a)
NP VP Coor NP VP (Rule @)
NP VP Coor NPV NP (Ruleb)
Leopold VP Coor NPV NP (Ruleeg)
Leopold snoresCoor NPV NP (Rulef)
Leopold snoresand NPV NP (Rule h)
Leopold snores and Molly V NP (Ruleeg)

Leopold snores and Molly loves NP (Rule g)
Leopold snores and Molly loves Stephen(Rule €)

The resulting string, Leopold snores and Molly loves Stephen, is a correct expression of toy Eng-
lish: It consists only of basic expressions, and it was generated from the starting symbol S by re-
cursive applications of the phrase-structure rules.

We applied the rules to derive our example in aparticular order. But it is obvious that nothing
hinges on the particular order that we followed. If you have time to spare, you can try to figure out
how many different derivations of the sentence there are!

One interesting fact about the syntax of toy English isthat it will generate infinitely many
sentences. Thisisdueto rule (c),

S® SCoor S,

which allows us to rewrite the symbol “S’ by the sequence “S Coor S’, in which S occurs again.
This alows derivations that start as follows
S
SCoor S
S Coor SCoor S
S Coor S Coor S Coor S

and may lead to sentences like

Leopold snores and Molly sleeps or Leopold loves Molly and Sephen sleeps or
Leopold snores and it-is-not-the-case-that Molly snores.

Obviously, there is no maximal length for correct sentences of toy English. So our little
grammar of toy English captures one fact about real English, namely that it generates infinitely
many sentences.

3.1.4. Phrase Sructure Trees

The above derivations of correct expressions of toy English are rather clumsy and cover aspects
that we are not really interested in, namely the order in which the phrase structure rules are applied.

A more perspicuous way to specify the derivation of a string with a phrase structure grammar
isby atree, which gives usjust the essential information.
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(4)

S

ﬂconj\

l\mP and N‘P/\P
Leopold  snores MOl
Y v N
P

loves Sebhen
It is obvious how to construct atree: We start by writing down the starting symbol, S, and proceed
in the following way:
Whenever we havein aderivationaruleX ® Y, Y, ... Y, we add to the node that repre-
sents X the branches thet lead tothenodes Y, Y ,,... Y, below X (in that order).

(5) AruleX® Y, Y, Y, alowsusto perform the following replacement:

X

x =_—===> /I\
Y1 Y2 Y3

Ideally, the phrase structure grammar of alanguage should lead to phrase structure trees that
show syntactic groupings or constituents that are independently motivated by syntactic tests. For
example, we analyze a sentence with atransitive verb like Molly loves Stephen in a way where
loves and Stephen form a phrase, a VP, and not in away where Molly and loves form a phrase.
There are syntactic reasons for that; for example, there are pronominal formslike so for a VP, but
not for a purported constituent that consists of a subject NP and atransitive verb:

(6) Molly loves Stephen, and so does Leopold.
(i.e., Leopold loves Stephen as well; it cannot mean that Molly loves Leopold as well!)

The reasons for favouring particular phrase structure analyses over other ones are particular con-
stituent tests; they will be dealt with in the syntax course.

Frequently, treeswill be specified in alinear way, with the help of brackets and indices. The
above tree could have been given in the following way as well:

(7) [sls[npl-eopold[psnores|][c,q andl[<[nsMollyl[ [, | Oves] [-Stephen]]]]
Often we represent only those parts in brackets and with labels that we are currently interested in.
3.1.5. Syntactic Ambiguity

As we have seen, trees abstract away from spurious differences in which we derive a particular
expression of our language. However, we still may derive one and the same string in a number of
different ways that shows up in different trees. Example:
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8 a
S
Mod
Itis notthe
casethat
Conj
R LN N
P
Leopold snores '
Molly V/\NP
loves Sephen
b.
S

Conj

/\5 e M
Mod P

It isnot N up Molly e

thecasethat ' . . .
Leopold  snores loves  Stephen

In the first case, we havefirst replaced “S’ by “Mod S’, following rule (d). In the second case, we
have first replaced “S’ by “S Coor S’, following rule (c). The result is the same expression (i.e.,
the same sequence of words).

There are semantic reasons to distinguish between the two derivations. We can argue that the
first denies both that Leopold snores and that Molly loves Stephen, whereas the second asserts that
Leopold does not snore, and that Molly loves Stephen. Thisis clearly something different; for ex-
ample, if Leopold snores, the second reading is certainly false, whereas the first one still could be
true.

The two derivations of our sentence are instances of astructural ambiguity. In the case of
structural ambiguity we have that one and the same expression can have more than one syntactic
structure, and typically it will have different meanings under these syntactic structures.

3.2. Semanticsof Toy English:
Names, I ntransitive Verbs and Sentence Connectors

L et us come back to our main goal, the compositional semantics for a small fragment of English.
So far we have described the correct expressions of toy English, using phrase-structure rules.
Now let us turn to semantics. The purpose of this section is not to give a final account of the se-
mantics of English constructions (or even a serious candidate for that), but to illustrate how a se-
mantic theory for complex expressions of alanguage looks like.
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The underlying principle that we follow is the compositionality principle: It must be possible
to compute the meaning of a complex expression by knowing the meanings of the parts and the
syntactic rules by which the parts are combined. This leads to the following procedure:

We will assign meanings to the basic expressions of Toy English.
We will specify, for each syntactic rule, a corresponding semantic rule.

One consequence of the second rule is that we cannot simply assign meanings to the expres-
sions of Toy English. Thisis because one and the same expression can have different syntactic
structures, and have different meanings under those syntactic structures.

3.2.1. NPs, Sentences, and Intransitive Verbs

The only NPs we have in Toy English are names. (We will discuss NPs like a woman or every
woman later). Names have satur ated meanings, they denote individuals (in this case, the heroes
of James Joyce's “Ulysses’). Hence we have:

(9) a [Leopold] = Leopold Bloom (abbreviated: LB)
b. [Molly] = Mally Bloom (MB)
C. [Stephen] = Stephen Dedalus (SD)

The set of al persons and things we care to talk about is called the univer se of discourse. | will
usethe D, for that, where D stands for “domain” and e for “entity”. D, contains at least LB, MB
and SD as distinct entities, and perhaps more.

(10)D, = the domain of entities = the universe of discourse.

How should we model the meanings of sentences? At the beginning of this course we have
argued for atruth-conditional approach to sentence meanings, in which we take the truth condi-
tions of a sentence to be crucial for the determination of its meanings. This led us to the idea that
the meaning of a sentenceisthe set of all possible circumstances, or possible worlds, in which this
sentence istrue. For example,

(12) [[[ypLeopold][,-Sleeps]]] = {w|w is apossible world and LB sleepsin w}

However, for the time being we will be content with a simpler representation of sentence
meanings. We will say that a sentence has a truth value as its meaning: It means “true”’ (or
“17),if itistruein therea world, and “false” (or “0”), if it is false. We will return to the more
sophisticated version using possible worlds later. For the time being we will work under the fol-
lowing assumption:

(12)If F isasentence, then [F] = 1if F istrue, and [F] = 0if f isfalse.

Now let us turn to intransitive verbs. Intransitive verbs b, like snores, can be used in the
following syntactic configuration:

(13)
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What form should the meaning of an intransitive verb have, then? Interestingly, we can come
up with an answer by following the compositionality principle. Thisis because we already
know the type of meaning an NP has -- it isan individual --, and we know the type of meaning a
sentence has -- it isatruth value, 0 or 1. The compositionality principle tells us that the meaning of
a complex expression results from the meaning of itsimmediate syntactic parts and the way they
are combined. So we will best assume that the meaning of a VP is afunction that, when combined
with the meaning of a NP, will give us the meaning of a sentence.

Hence the meaning of a VP will be afunction from individuals (NP meanings) to truth values
(S meanings). In particular, we have the following:

(14)a. [sleeps) = | xI D[x Seeps],
the function from individuals to truth values such that for al individualsy,
| X[x sleeps]|(y) = [y Sleeps] = 1if y sleeps, and = 0 if y does not sleep.
b. [snores] = | xI DJx snores].

Notice that VP meanings are unsatur ated. They need an argument, here, an entity like a
person, to form a sentence meaning, which again is a saturated meaning.

So far we have given the meanings of the NPs and the meanings of the intransitive verbs (or
simple VPs) of Toy English. NP meanings are individuals, and VP meanings are functions from
individuals to truth values. Now it is easy to give the meaning rule that corresponds to the syntactic
ruleS® NPVP:

(15) [[slweallvebll] = [[vebl1 ([ neall)

That is, whenever we have a syntactic structure that isa S consisting of an NPa and a VP b,
then the meaning of this S can be computed by applying the meaning of the VP b (which is a func-
tion from individuals to truth values) to the meaning of the NP a (which isan individual). The
result will be atruth value, of course.

We still need arule that gives us the meaning of atree that consists of one syntactic label
dominating a word, like [NPLeopold], or [V Psnores|. We simply assume that in this case the
meaning of the tree will be the same as the meaning of the word:

(16)If a isaword and X isasyntactic label, then [[,a]] = [a]

Let us now illustrate how the meaning of a complex sentence can be derived. Let us assume
that Leopold snores. Then we can compute the meaning of the syntactic tree
[s[xpLeopold][,-snores]]

asfollows:

(17)a. [[pLeopold][,snores]]]
b. = [[,.snored]([[,,Leopoid]])  (Rule(15))

C. =[snores|([Leopold]) (Rule (16))
d. =1 xI DJx snores|(LB) (Rule (9), (14))
e. =[LB snoreg| (Function Application)
f.=1 (if LB deeps)
=0 (if he doesn't).

We see that our rulesindeed allow usto compute the meaning of a sentence.
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3.2.2. Trandsitive verbs

Let’sturn to transitive verbs. A transitive verb, like loves, expresses a relation between two enti-
ties. So we may treat it asa set of pairs, as before in our informal discussion. We could do so eas-
ily when we assume a syntactic rule that combines subject and object NP at the same time with a
transitive verb, such as:

(18)S® NPV NP

However, there are syntactic arguments that tell us that the relation between atransitive verb and its
object is closer than the relation between atransitive verb and its subject. The syntactic rules reflect
that by having two rulesinstead of one:

(19)a. S® NPVP
b. VP® V NP

We have aready developed the semantic rule that corresponds to the first syntactic rule. Ide-
aly, it should be applicable to the case of complex VPs aswell. Now let us turn to the semantic
rule that corresponds to the second syntactic rule. The question hereis: What is the form of the
meaning for transitive verbs, V? Again, we find the answer when we follow the compositionality
principle. Now we have the following situation:

(20) VPO
I\
V2 NPO

We already know that NP-meanings are individuals, and VP-meanings are functions from indi-
viduals to truth values. We also assume compositionality, that is, the VP-meaning should be com-
putable from the V-meaning and the NP-meaning. The most obvious way of anayzing V mean

ings then is as functions from individuals to VP-meanings. For example:
(21) [loves] =1yl DJI xI D[x lovesy]],
the function that maps every individua utol yI DI xI DJx lovesy]](u)
(whichisl xI D[x lovesu]),
that is, afunction that maps every individual v to| xI D [x loves u](v)
(whichis[v lovesu], that is1if v loves u, and O if v does not love u).

Notethat | yI D[l xI D[x lovesy]] isan unsaturated meaning that, when combined with an indi-
vidual u, yields another unsaturated meaning, | xI D[x loves u]. Only when | xI D[x lovesu] is
combined with an individual do we get a saturated meaning.

What we have done is to express a function with two arguments (the first analysis of loves)
by afunction with one argument that yields another function with one argument as value.

We now can formulate the semantic rule that corresponds to the syntactic rule VP® V NP:
(22 [[velvallnebll] = [[vall([lxeol])

Analysis of an example; assume that Leopold loves Molly.
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(23)a. [[dypLeopold][,l,loves][.Molly]]]] =

b. =[[ye[ loves][y-Molly]]] ([[ysLeopold)]) (Rule (15))

c. = [[Joves]] ([[Molly]])([[\-Leopold)])  (Rule(22))

d. =[loves]([Molly])([Leopold]) (Rule (16))

e. =1yl DJI xI D[x lovesy]](MB)(LB) (Rules (9), (21))

f. =1 xI D[x lovesMB](LB) (Function application)
g. =[LB lovesMB] (Function application)
h. =1 (if LB lovesMB)

=0 (if LB doesn’'t love MB)

3.2.3. Modularity and Type-Driven Interpretation

So far we have two separate semantic rules for the combination of an NP with aVP, and of aV
with an NP, namely (15) and (22). They are repeated here:

(24)a. [[s[weallveb]]] = [[veP]]([[ne2]1)
b. [[velvallnebll] = [[vall([lwebl])

In both cases, the meaning of one subexpression is applied to the meaning of the other one, and we
have specified explicitly which isto be applied to which. But this is perhaps not necessary. For
example, we could not have applied the meaning of a name to the meaning of a VP, because thisis
not the way how these meanings can be combined. So it is perhaps more general to have just one
genera rulefor branching nodes:

(25)Generd rule for branching structures:
[[a b]] =[a]([b]) or [b]([a]), whichever makes sense, that is, whichever is possible.

This rule does not mention any specific categories like NP or VP or V. It applies to all binary
structures [a b]. It leavesit up to the semantics whether we apply the meaning of the first constitu-
ent to the meaning of the second, or vice versa. We call the general nature of the meaning of an
expression — whether it stands for an entity, atruth value, afunction from entities to truth values
etc. — the semantic type of thisexpression. An interpretation rule like (25) iscalled type-driven
because it depends on the types of the parts. For example, we can combine a function from entities
to truth values and an entity only in one way, by applying thefirst to the second.

For non-branching structures we simply assume that the interpretation of the mother nodeis
the interpretation of the daughter node:

(26)Genera rule for non-branching structures: [[a]] = [a]

Furthermore, we can now simplify our phrase structure rules a bit. They should not make a
distinction between intransitive verbs like snores and transitive verbs like loves. After all, this ap-
pears to be a genuinely semantic difference. So we have the following rules:

(2 j. VP® V (NP)
k. V® {sleeps, snores, loves, knows}

Therule format for (j) isan abbreviation for thetwo rulesVP ® V and VP ® V NP; that is, the
parentheses around NP indicate that thisnode is optional.
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It is evident that we can derive the sentences like Leopold snoresor Leopold loves Molly with
rule (25). But perhaps this rule gives us too much. For example, we can now derive things like
*Leopold loves and, even worse, ** Leopold snores Molly. But even though we can derive this
syntactically, what we get doesn’t make much semantic sense:

(27)3- [[slne Leopold] [, [, loves]]]]

[[v» [ oves]]]([[y» Leopold]])
or [[ye Leopold]]([[,» [, loves]]]), whichever makessense  (Rule (25))

c. = [loves]([Leopold])
or [Leopold]([loves]), whichever makes sense (Rule (26))

d. = 1yl DJI xI DJx lovesy](LB)
or LB(I yI DJI xI DJx lovesy]), whichever makessense  (Rules (9), (21))
e. = |yl DJI xI D[x lovesy](LB) (only this makes sense)
f. = I xI DJxlovesLB] (function application)

We arrive at ameaning a meaning alright, but it is not a sentence meaning — thereis still an argu-
ment that needs to be satisfied.

(28)a. [y Leopald] [p [, snores] [, Molly]]]]

b. = [lye [y snoreq] [y, Mally]]]([[y Leopold]])
or [[ypLeopold]] ([[yp [, Snored [y, Molly]]]]), whichever makes sense

C. = [lve [y snoregl]](I[yr Molly]])([[» Leopold]])
or [ Molly]J ([, [y snores]]])([ [ Leopold]])

or [ Leopol] ([[,» [, snores|T] ([ > Molly]])
or [[» Leopold] ({[» [, snores|]])([[,,» Leopolcl]), whichever makes sense

d. = | xI DJ[x snores|(MB)(LB), = [MB snores|(LB)
or MB(l xI D[x snores])(LB)
or LB(I xI DJx snores|(MB)), = LB([MB snores])
or LB(MB(l xi DJx snores])), whichever makes sense

The problem with thisis that nothing makes sense at all. We can reduce the first and the third for-
mula a bit, but in none of the four cases do we end up with a sentence meaning. In fact, all four
cases are totally meaningless.

We see here that even though the syntax does allow for the formation of expressions like
Leopold loves, or Leopold snores Molly, such sentences cannot be interpreted. In the way how we
sketched the collaboration of syntax and semanticsin this subsection, they together determine
whether an expression is well-formed or not. An expression may be ill-formed because it cannot be
generated by the syntax, or it may be ill-formed because it cannot be interpreted.

We can think of syntax and semantics as representing two different modules that jointly de-
termine what is a good sentence of English. Syntax tells us, for example, that *loves Leopold
Molly is no good (it would be good, with different words of course, in a so-called VSO language,
like Irish). Semanticstells us that, for example, * Leopold snores Molly is no good. A theoretical
framework that distributes the load of explanation to different subtheories that are themselves sm-
ple and general iscalled modular. We will come back to the issue of modularity later.
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The particular phenomenon that averb like snores allows only for one NP, whereas a verb

likeloves needs two has been called thetheta criterion. It states that for each semantic argument

of averb there must be exactly one syntactic constituent that fills that argument, and vice versa, for

each syntactic constituent that stands in a certain syntactic configuration with averb there must be
one semantic argument of the verb that it fills.

Type-driven interpretation, as introduced in this section, issimpler than arule-by-rulein-
terpretation, as used in the previous sections. In particular, one global semantic rule replace severd
construction-specific rules. Furthermore, type-driven interpretation is more restrictive. For ex-
ample, in arule-by-rule interpretation we could alow for “active” VPsand “passive’ VPs that dif-
fer just in the way how the NPs are mapped to the semantic arguments:

(29)a. S® NPVP,,
S® NPVP,
VPactive

VP

passive

b. [Lvpaive [v @l [ye b11] = [[v @l] ([[e BI])
C. [[vmpacsve [v @] [y PI] = 1 XI DA[[, al] (x)([b])]

Notice that the interpretation rule (c) leads to a switch of argument positions so that a sentence
likeLeopold [, py.sve I0VES Molly] would be true if Leopold isloved by Molly. However, we could
achieve this only by avery rule-specific intepretation, which is not an option when we adhere to
type-driven interpretation. In that framework we will have to analyze passive sentences differently.

3.2.4. Sentential Operators

Let us now discuss the semantic side of rules having to do with the sentential operators and, or and
it-is-not-the-case-that.

First, let’s have alook at the negation modifier it-is-not-the-case-that, which is a one-
place sentence operator. It's semantic contribution is obviously that it reverses the truth value
of asentence: If the original sentence is true, the resulting sentence will be false, and vice versa.
Hence we should assume that the meaning of this modifier is afunction that maps 1 to 0 and O to
1. Thisfunction can be rendered as a set of pairs, { 41,0/ 80,17} . Can we also render it as alambda
term?Yes. Let ususe“D,” for the set of truth values, {0, 1}.

(30)D, = the domain of truth values = {0, 1}
Then we can render negation by the following lambda term:
(31) [itisnot the casethat] = | ti D[1—t]

When we apply this function to the argument 1, we get 1—1 = 0 as aresult, and when we apply it
to 0, we get 1—0 = 1. (So it turns out that it was quite useful to work with 1 and 0 as truth val-
ues...)

With the general interpretation rule for branching structures (25) we don’t need any specific
rule for sentences consisting of a negation and another sentence. As an example, we have the fol-
lowing derivation:

ive?

® VNP
® V NP
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(32)a. [[4[yeqit-isnot-the-case-that][;Molly snoresd]]]

b. = [[\oqlt-iSnot-the-case-that]]| ([[sMolly snored]]) (Rule (25);
only this order makes sense)
C. = [[it-is-not-the-case-that] | ([ snores| ([Molly])) (Rules (25), (26))
d. =1l DJ1—t](I x[x snores](MB)) (lexicd rules)
e. =1 tl DJ1—t]([MB snores]) (function application)
f. =[1—[MB snoreg]] (function application)
g. =1, if [MB snores] =0,

=0,if [MB snores] = 1

We get the right result: The sentence has the truthvalue O if Molly snores, and the truthvalue 1 if
Molly doesn’t snore.

Let us now consider the two-place sentence oper ators, the so-called conjunction and
and thedisjunction or. Recall that we have assumed the following syntactic rule:

(33)S® SCoor S

This creates a structure that is not a simple binary branching, and our interpretation rule (25) con-
sequently will not apply. We can introduce interpretation rules for such structures in a number of
ways. Oneisto assume the following rule:

(34) [[s [s @l [coor PI [s A1 = [[cor PII(E[s al], [[s 1D

This says that the meaning of sentence [ [ a] [, P] [sdl] consistsin applying the meaning of the
coordination [, b] to the pair of the meanings of the two conjuncts, [ a] and [ g]. What then is
the meaning of a coordination? Take and. When and combines two sentences, it should give us a
true sentence if both sentences are true, else it gives us a fal se sentence. We can express this by
using the function mIN that gives us the smalest number of a set. In particular, we have
mMIN({1, 1}) = 1 and mIN({ 1, O}) = mIN({O, 1}) =mIN({O, O}) = 0.

(35)[and] =1 &, t€ImiNn({t, t¢)]

Thisisafunction from pairs of truth values &, tdito atruth value, namely, the minimum of t and t¢
We then have derivations like the following:

(36)a. [[s[sMolly sleepd] [, and] [sLeopold snored]]]
b. = [[coyand] (& [sMolly sleeps]], [[sLeopold snoreq] R (Rule (35))

c. =1 &, tefmin({t, t&)](§MB sSleeps], [LB snores|i) (lexical rules, application)
e. = MIN{[MB sleeps], [LB snores]}) (application)
f. =1,if [MB snores] = [LB snores] = 1,

=0, else.

This gives us the correct result. However, we again have assumed a specific semantic rule for a
syntactic rule, (35). Also, in the interpretation of a coordination like and we have used a rather
complex notation for variables, namely, the pair notation &, t€ We have seen with transitive verbs
that we can reduce a function from pairs to functions from simple entities. We can now do the
same here and assume the following meaning for and:

(37)[and] =!I & DI td DImIN{t, t¢)]]
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Here, the meaning of andis afunction that first takes one sentence meaning, and yields afunction
that then takes the other sentence meaning.

The general semantic rule (25) still does not fit for structures with three daughter nodes. Can
we generalize it for the case at hand? The basic ideais that categories should combine in whatever
way is semantically possible. This suggests arule like the following:

(38)[[a b d] = [a]([k])([d]) or [b]([al)([d]) or [g]([a])([P]), whichever makes sense.

There might be even more possible combinations, like [a]([d])([b]), which | did not list here to
keep things ssimple.

Thereis one potential problem with this generalization: It may be that more than one combi-
nation is possible. Thisis certainly the case for coordinations. For example, the meaning of and
could first be combined with the first sentence, and then with the second, or vice versa. Luckily,
this doesn’t matter — we will always get the same semantic result, for min({t, t@ ) is of course the
same asMIN({t¢ t}). So we can work with the generalized semantic rule indicated in (34).

Consider the following example derivation:

(39)a. [[[Molly sleeps] [¢,,and] [sLeopold snored]]
b. = [[coand ] ([[sMolly sleeps]])([[sLeopold snoreg]]) (Rule (38))

c. = [and] ([sleeps] ([Molly]))([snores] ([ Leopold])) (Rules (25), (26))
d. =1t DJI t¢ D[min({t, t¢)]](IMB sleeps])([LB snores])  (lexical rules, application)
e. = MIN({[MB slegps], [LB snores]}) (application)
f. =1, if [MB snores| = [LB snores] =1,

=0, else.

What about digunction, or? There are two possible approaches. Oneisto say that two sen-
tences conjoined with or are true if either one sentenceis true, but not both. We indeed use or often
in thisway:

(40)a. John (either) went to Paris or he went to London.
b. You may have candy, or you may haveice cream.

However, notice that this meaning element can easily be cancelled:

(41)a. John (either) went to Paris or he went to London, perhaps he went to both cities.
b. Y ou may have mustard or mayonnaise on your sandwich (of course, you can have both).

Henceit presumably isjust animplicatur e, as discussed in section #. And the real meaning of or
should give us atrue sentence if both sub-sentences are true. This allows us to model its meaning
with the help of the function max, which gives us the maximal number of a set of numbers. In
particular, we have max({ 1, 1}) = max({0, 1}) = max({ 1, 0}) = 1, and max({0, O} ) = 0.

(42)[or] =1 I DJ td D[max({t, t¢)]

And we have derivations like the following:
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(43)a. [[JMoally sleepd] [, 0r] [sLeopold snored]]]

b. = [[con 0]l ([[Molly Sleeps]])([[sLeopold snore]]) (Rule (38))
c. = [or] (Isleeps| (IMolly]))([ snores] ([ Leopold])) (Rules (25), (26))
d. =1t DJI t¢ D[max({t, t@)]1([MB sleeps])([LB snores]) (lexical rules, application)
e. = MAX({[MB sleeps|, [LB snores]}) (function application)
f. =0, if [MB snores] = [LB snores] =0,

=1, else

3.2.5. Syntactic and Semantic Ambiguity

We have seen that the syntax of Toy English allows for structural ambiguities. Now, it isinterest-
ing to notice that a structurally ambiguous sentence may be true on one reading, but false on an-
other one. Take our previous example, and assume that Molly does not sleep (hence the meaning
of Molly sleeps is 0), and that Molly does not love Stephen (hence the meaning of Molly loves
Sephen is 0). We get the following truth values for the two structures:

(44)

Mod
It isnotthe
casethat
_____________________ e
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(45)

Mod | | Mcl)ll /VP\
| Leopold  snores y v NP
Itisnot ~ ————— 0—————— Conj | |
thecasethat loves Sephen
_____________ 1 ———_ . | -_————— Q—_——_— — ———
and

We see that under the first syntactic analysis, the sentence it is not the case that Molly sleeps or
Leopold snoresistrue, and under the other analysisit isfalse.

One consequence of thisisthat we cannot just give the interpretation of the string of words it
is not the case that Molly sleeps or Leopold snores, but we have to specify the meaning of this
sentence with respect to a syntactic analysis. Thisis the reason why our meaning rules give mean-
ings to syntactic treesinstead of sequences of syntactic labels or sequences of words.

3.2.6. Flexible Types for Negation

The rule that we have proposed for negation is quite clumsy. Instead of (46.a) we normally ex-
pressthingsasin (b).

(46)a. Itisnot the casethat Molly snores.
b. Molly doesn’'t snore.

From a syntactic point, it is remarkable that in (46.b) the verb is an auxiliary, does, with a
negative suffix, n't. Thisis a peculiarity of modern English; Shakespeare would have said, Molly
snores not (and that’ s still the way how things are in Dutch and German). If we take syntax seri-
oudly, then we cannot anlyze negation as a sentence modifier. The negative operator doesn’t rather
forms a constituent with the non-finite verb phrase:

(47)a. [Molly [doesn’t snore]]
b. [Molly [doesn’t [love Leopold]]

Let us add the following syntactic rulesto our rule system:

(2 I. VP® Aux VP,
m.VP,® V., (NP)
n. V., ® {sleep, snore, love, know}

0. Aux® doesn't
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Obvioudly therules (2.)), VP® V (NP), and (2.m), are versions of the same general pattern, and
our grammar should capture that. But for the time being we assume that they are two distinct rules.
Also, the lexical rules (2.n) correspond to the lexical rulesfor the finite verbs. The lexical rulesfor
infinite verbs are just the same as the ones for finite verbs.

All we have to add now is the interpretation rule for doesn’t: It should be afunction from VP-
meanings to VP-meanings. How should we specify the domain of these functions? We could, of
course, introduce a new symbol, perhaps D, .. But notice that VP-meanings are functions from
entitiesin D, to entitiesin D,, and it would be good to indicate that in the name for this domain. We
commonly call thisdomain D, to indicate that it comprises functions from D, to D..

(48)D, = the domain of functions from D, to D..

| will use variableslike P, Q for this domain. We then have the following interpretation rule for
doesn't:

(49) [doesn’'t] =1 Pl Dl xI DJ1—P(x)]

This function takes a VP-meaning P and gives a function from entities x to truth values. In
particular, it assigns the truth value of 1 minus P applied to x. To see how this works, consider the
following example:

(50)&. [[S [NP MO”y] [VP [Aux doesn’t] [Van [Vinf Snor‘ﬂ]]]]

b. = [[aux does’t ] [y Lyiee SNOre]]11] ([[ne Molly]]) (Rule (25))

c. = [doesn’t]([snoreg])([Molly]) (Rules (25), (26))

d. =1 Pl D xI DJ1—P(x)](I xI D[x snores])(MB) (lexical rules)

e. =1 Pl DIyl DJ1—P(y)](I xI D[x snores])(MB) (variable renaming)
f. =1yl DJ1—I xI D[x snores](y)](MB) (function application)
g. =1yl DJ1—[y snores]](MB) (function application)
h. = [1—[MB snoreg]] (function application)
i.

=1, if [MB snores] =0,
=0, if [MB snores] =1

We get the same result as before, but we arrived at that in a slighty different way. away that is
truer to the ordinary syntax of English. In step (e) | have renamed the variable x in the meaning of
doesn’t to y so that we do not mix it up with the variable x in the meaning of snores. While this
was not absolutely necessary in this case, it iswise to do so to avoid confusion.
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