#### Water Footprint Calculations for Pasture Based Beef Production

Dr. Horst Jürgen Schwartz Professor (retired), Chair of Livestock Ecology Humboldt University of Berlin Faculty of Agriculture, Institute of Animal Sciences schwartzhj@cooglemail.com

33 Congreso Argentino de Producción Animal Comarca Viedma, Patagonia – 13 al 15 octubre 2010 Conferencia Plenaria



| Gladarförstilen<br>af Water | New in 2008:<br>Book on 'Globalisation | The 2007-paper on 'Water<br>Footprints of Nations' | Download other publications |
|-----------------------------|----------------------------------------|----------------------------------------------------|-----------------------------|
|                             | of Water'                              | Water Footprints of Nations                        | List of publications        |
|                             |                                        | The 2008-paper on 'Water<br>Neutrality'            |                             |
|                             |                                        | Water Neutral                                      |                             |

Some facts and figures

#### **Global average water footprint of beef**

- > 15.5 m<sup>3</sup> of water per 1 kg of beef.
- In an industrial beef production system, it takes 3 years to slaughter and to produce about 200 kg of boneless beef.
- The animal consumes nearly 1300 kg of grains (wheat, oats, barley, corn, dry peas, soybean meal and other small grains),
- 7200 kg of roughages (pasture, dry hay, silage and other roughages).
- Producing the volume of feed requires about 15.3 m<sup>3</sup> water in average.
- > 24 m<sup>3</sup> water for drinking and 7 m<sup>3</sup> for servicing.

### Water cost of a continental menu [l/dish]



Source: IHE, 3rd World Water Forum, 2003

## B B C NEWS WORLD EDITION

Last Updated: Monday, 16 August, 2004, 16:45 GMT 17:45 UK

25 2-mail this to a friend

🖶 Printable version

### Hungry world 'must eat less meat'

By Alex Kirby BBC News Online

BBC News Online environment correspondent

World water supplies will not be enough for our descendants to enjoy the sort of diet the West eats now, experts say.

The World Water Week in Stockholm will be told the growth in demand for meat and dairy products is unsustainable.



Livestock needs a lot of water

### Importance of water to livestock

- 90 % of all molecules in the body are water
- approximately 70 % of animal body weight is water, it varies by species and body part
- maintaining water balance is critical for survival, it is closely linked to digestion and thermoregulation

#### Importance of water to livestock: Example one zebu steer at slaughter weight

### (1) Drinking water

- Mean body water turnover of a zebu steer is 140 ml \* I<sup>-1</sup>BWP \* d<sup>-1</sup>
- Body water pool is 65 to 70 % of body weight
- Life time drinking water use at 4 years of age weighing 400 kg is 28 000 kg or 2.8 m<sup>3</sup>
- Total drinking water 70 kg per 1 kg live weight

#### Importance of water to livestock: Example one zebu steer at slaughter weight

(2) Water in feed

- 250 kg water evaporated per 1 kg DM grass produced
- 11 kg of grass eaten per 1 kg body weight gain
- 2.75 m<sup>3</sup> feed water per 1 kg of body weight
- Total feed water use at slaughter weight 1128 m<sup>3</sup> or 2.82 m<sup>3</sup> per kg live weight

Importance of water to livestock: Example one zebu steer at slaughter weight

(3) Water for processing

- Dressing percentage 60 %
- Carcass weight 240 kg
- Total water use at slaughtering 0.5 m<sup>3</sup> per carcass
- 6.18 m<sup>3</sup> feed water per 1 kg of clean, dressed carcass

# Comparison of water intake with different grazing patterns of cattle in a tropical environment

| Water intake                              | day  | night | day & night |
|-------------------------------------------|------|-------|-------------|
| I* animal <sup>-1</sup> * d <sup>-1</sup> | 36.0 | 22.7  | 35.5        |
| I∗ kg <sup>-1</sup> forage                | 5.1  | 4.4   | 4.9         |
| ml* kg <sup>-1</sup> BW * d <sup>-1</sup> | 100  | 62    | 105         |

A.A.Ayantunde et al., 1999

#### Comparison of water intake of non-lactating and lactating\* cows (G. Gäbel, 2000)

| Water intake    | non-lactating | lactating |  |
|-----------------|---------------|-----------|--|
| Drinking        | 26 51         |           |  |
| Water in feed   | 1             | 2         |  |
| Metabolic water | 2             | 3         |  |
| Total           | 29            | 56        |  |

\* 12 I milk per cow per day

#### Comparison of water loss in non-lactating and lactating\* cows (G. Gäbel, 2000)

| Water loss  | non-lactating | lactating |  |
|-------------|---------------|-----------|--|
| Urine       | 7             | 11        |  |
| Evaporation | 10            | 14        |  |
| Faeces      | 12            | 19        |  |
| Milk        | 0             | 12        |  |
| Total       | 29            | 56        |  |

\* 12 I milk per cow per day

## Increasing embedded (virtual) water accompanies decreasing water content in food chains



Water Green Plants (Producers) Herbivores Carnivores

## Increasing embedded (virtual) water accompanies decreasing water content in food chains



## Increasing embedded (virtual) water accompanies decreasing water content in food chains



## Estimated water volume [litre/ha/year] at different trophic levels in pastoral beef production

(\* at the end of the growing season)

| Pasture type                                            | mean annual precipitation | water in<br>standing<br>herbaceous<br>biomass* | water in beef<br>produced |
|---------------------------------------------------------|---------------------------|------------------------------------------------|---------------------------|
| Semi-arid tropical<br>native pasture East<br>Africa [1] | ~ 3 x 10 <sup>6</sup>     | ~ 1.5 x 10 <sup>3</sup>                        | ~ 0.4 x 10²               |
| Humid sub-tropical<br>native pasture<br>Argentina [2]   | ~ 11 x 10 <sup>6</sup>    | ~ 4.8 x 10 <sup>3</sup>                        | ~ 0.7 x 10²               |
| Temperate extensive<br>pasture Germany [3]              | ~ 5.5 x 10 <sup>6</sup>   | ~ 3.7 x 10 <sup>3</sup>                        | ~ 1.1 x 10 <sup>2</sup>   |

Data sources: [1] Schwartz and Walsh (1994), [2] Feldkamp (2004) [3] Schwartz, unpubl.



Annual rainfall RUE herb layer Feed required RUE beef

VWC beef

5.7 kg /ha/year/mm 6.4 kg /TLU/day 0.04 kg/ha/year/mm

~ 25 m³/kg

#### Main characteristics of BLUE and GREEN water

| Туре                      | Blue Water                                                            | Green Water                                                                       |
|---------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Descriptor                |                                                                       |                                                                                   |
| Sources                   | Surface water, accessible aquifers                                    | Stored in unsaturated soils                                                       |
| Mobility                  | Highly mobile                                                         | Immobile                                                                          |
| Alternative uses          | Many competing                                                        | None                                                                              |
| Opportunity costs         | High to very high                                                     | Medium to zero                                                                    |
| Major agricultural<br>use | Crop irrigation, livestock<br>drinking, processing,<br>and management | Rain fed crop production,<br>natural and derived<br>pastures, plant transpiration |

### Water demand of beef production

| Demand category                  | Source      | Amount                           | Data quality                  |
|----------------------------------|-------------|----------------------------------|-------------------------------|
| Drinking water                   | Blue water  | 10 - 20 %<br>live wt/day         | measurable, well researched   |
| Water for service and management | Blue water  | negligible                       | measurable                    |
| Water for processing             | Blue water  | negligible                       | measurable                    |
| Water for feed production        | Green water | 10 - 100 m³/ kg<br>boneless beef | assumption based,<br>modelled |

## Regional distribution of arable land, permanent pastures and irrigated land [million ha]\*



## **Other considerations**

### Water for livestock feed: Some issues and questions

- Crops require 200 to 800 g of water to produce 1 g of dry matter
- Potatoes, sugar cane, elephant grass require approximately 500 g/g
- If crop residues are the only feed, is crop water **NOT** part of livestock water use?
- How much water used by animals is essential for enabling crop production?
  - animals needed for ploughing and other cultivation tasks
  - animals needed for transport of crops to market

### Other water uses

- How much water is needed or used to:
  - maintain hygiene, animal health and food safety
  - process animal products (slaughtering, meat packaging, dairying)
- Can waste water safely be used to produce feeds?

# Impact of beef production on water resources

Depletion, degradation, devaluation of water

- Sinking ground water levels through deep wells operation
- Evaporation/seepage from storage facilities
- Non-consumptive contamination, increasing hygienic risks, general health risks

## Impact of beef production on water resources

### Soils, hydrology and habitat

- Beef production affects soil moisture through
  - soil compaction, change of ground cover and run-off
  - change of soil organic matter and water holding capacity
- Contamination of soils, ground and surface water
- Over-grazing and loss of bio-diversity
- Habitat destruction, ground water recharge potential
- Trail and sheet erosion, sedimentation

## Conclusions

Beef production based on pastures, crop residues and crop processing by-products incurs no or very limited feed water costs

Virtual water content calculations of beef need to be re-examined in this light

Grain based beef production systems can reduce water costs by replacing whole grain with higher proportions of crop residues and agricultural byproducts

### Thank you for your attention