Agriculture and Global Climate Change

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Global Climate Change

Is it happening ?

YES

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Total Area Of Ice On Kilimanjaro (1912, 1953, 1976, 1989, 2000)

1989 to 1912 maps are from Hastenrath and Greischar. The 2000 map was produced at Ohio State Univ.

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

How is it happening ?

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

The Greenhouse Effect

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Agriculture and Global Climate Change Relevance, Consequences & Perspectives

Why do we practice agriculture?

Is agriculture a victim of climate change?

Is agriculture a causal agent of climate change?

AND THE REAL PROPERTY OF THE P

Why do we practice agriculture ?

Food security

Production of renewable resources

Income generation

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Development of total and urban human population

Year	Human Population [billion]	Urban Population [%]
1000 AD	0.5	5
1800 AD	1.0	6
2000 AD	6.8	48

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Numbers and biomass of domestic animals and humans

Species	Numbers (million)	Biomass (million t)	
Cattle & Buffalo	1 480	740	
Sheep	1 065 40		
Goats	780	27	
Equines	118	42	
Camelids	24	8.5	
Pigs	936	122	
Poultry	14 711	14 711 15	
Total		994.5	
Humans	6 800	374	

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Main functions of the environment (nature) for agriculture

Production base

Production reserve

Emission depository

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Agricultural emissions affecting climate originate out of:

- primary production
- secondary production
- cultivation of virgin land
- burning of agricultural biomass
- machine times
- agricultural transports

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Climate affecting emissions from agricultural production

Gaseous emissions

- CO₂, carbon-dioxide
- CH₄, methane
- NH₃, ammonia & other nitrous oxides
- Sulphur compounds
- Noxious odours
- Dust
- Ash
- **Soot particles**

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Carbon Dioxide

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Contribution of various "Greenhouse Gases" to global warming of the atmosphere

Source: Preston & World Resources Institute, 2002

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Projected consequences of global warming for agriculture (doubling atmospheric CO₂-content, temperature increase 1.5 to 5^oC)

- Shift of eco-climatic zones several 100 km towards the poles;
- considerable widening of the tropical/subtropical dry belts;
- substantial loss of agricultural land;
- widespread permanent flooding of coastal areas due to rise in sea levels;
- slow but inevitable breakdown of temperate and boreal forest ecosystems with additional release of CO₂;
- uncertain effects of increased CO₂ on abundance and vitality of pests and weeds;
- resultant catastrophic decrease of agricultural production.

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

The Large Eco-zones* of the Old World

* Defined by length of growing period of natural vegetation [days/year]

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Global climate change has regional winners and regional losers in agriculture

(doubling of CO₂ - concentration, temperature increases of 1,5 - 5,5 °C)

Humid and sub-humid tropics

little change in temperature and precipitation, positive effects of CO₂ - fertilisation and improved water use efficiency (WUE) of plants, increased productivity

Semi-arid and arid tropics and subtropics

little change in mean temperature and precipitation, considerably increased inter-annual variability of precipitation, expansion of the dry-belt towards the poles, in the lowlands increased aridity, in the highlands similar effects as in the humid tropics

Mediterranean areas and temperate zones

sharply increasing temperatures, decreasing precipitation, increased evapotranspiration, increased inter-annual variability of precipitation, reduced productivity not compensated for by CO_2 - fertilisation effects

Sub-arctic latitudes

substantial positive effects by CO_2 - fertilisation, higher temperatures, increased growing period, substantial increase of productivity

Coastal lowlands

widespread flooding due to increasing sea levels

Source: Adams, 1989; Reilly, 1995

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Estimated Net Primary Production (NPP) of all natural vegetation in latitudinal belts of 10° before and after global warming

Source: Pearson, C.J. & Ison, R.L. 1987, modified

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Economic surplus and price and quantity indices for climate change scenarios in US agriculture					
Climate model	Field crops		Livestock commodities		Change in economic surplus
	Quantity	Price*	Quantity	Price*	[US\$ billion]
GISS	0.90	1.18	0.99	1.02	- 6.5
GISS + FE	1.10	0.82	1.06	0.84	+ 9.9
GFDL	0.61	2.09	0.88	1.35	- 35.9
GFDL + FE	0.81	1.28	0.98	1.07	- 10.5

* = relative change of price (base = 1.00) by change of supply; GISS = Goddard Institute of Space Science (NASA); GFDL = Princeton Geophysical Fluid Dynamics Laboratory; FE = Fertilizer effect of increased CO_2 - concentrations

Global warming reduction initiatives Carbon sequestration

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

CH_4

Methane

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Source: Walker, 1994

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Migratory livestock farming

Industrial livestock farming systems

Annual methane losses from a model livestock production system:

dairy farming in S.W. England (102 cows, 110 others, stall feeding of silage and concentrate)

type of loss	total emission kg CH ₄ - C year ⁻¹
losses from ruminants	6775
losses from stored wastes	2285
losses from silage effluent	2596
losses from dirty water	332
total losses	11988

Source: after Jarvis & Pain, 1994

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Biomass Burning

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Relative contribution of biomass burning to various climate affecting emissions [% of all emissions]

Source: Levine et al.; 1995

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Source: Levine et al.; 1995

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Source: Levine et al.; 1995

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Source: Levine et al.; 1995

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Source: Levine et al.; 1995

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Global Transport of Nutrients

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Regional distribution of CATTLE populations and proportion of regional production of meat and milk

Source: FAO Production Yearbook 2004

North America 27.2% Africa 6.3% Oceania 4.5% **Europe 24.7%**

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Black-and-white dairy cattle yielding from 6000 to 10000 litres of milk in a lactation of 9 months

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Annual net trade ['000 t] of feeds and dry milk powder between the major economic regions of the world from 1970 to 2000

Source: FAO Trade Yearbooks 1970-2000

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Transport routes of importance for Western European dairy production

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Adaptation and tools to control climate change

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Necessary adaptations of agricultural production systems to projected climate change

(doubling of CO_2 - concentration, temperature increase of 1.5 to 5.5 °C)

Irrigation agriculture (tropics)	none
Rain fed crop production (humid tropics)	none
Rain fed crop production (dry tropics)	flexible planting times, different cultivars, different cultivation techniques, water harvesting
Perennial crops, plantations (dry tropics)	water harvesting, change of crops, different cultivation techniques
Pasture based livestock production (dry tropics)	possibly change of herbivore species and/or breed, flexible stocking densities, increased mobility
Rain fed crop production (temperate zones)	irrigation, different cultivars, different planting times, different cultivation techniques
Crops under glass	none
Pasture based livestock production (temperate zones)	decreased and highly flexible stocking densities
Intensive livestock production indoors	none

Possible strategies for the control of agricultural emissions

technical measures

biological measures

economic and political controls

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Technical emission control in agricultural production systems

- Storage and transport of stocks and wastes
- Distribution of waste materials on farm land
- Reduction of agricultural transports
- Mechanical processing and decontamination of waste materials
- Minimum tillage

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Biological emission control in livestock production systems

- Feeding and feeding systems
- Biotechnology in feed production and feed processing
- Adjustment of performance targets
- Promotion of nutrient recycling within farms

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Political and economic emission control in livestock production systems

- Taxes or fees on emissions
- Taxes on certain production inputs (fossil fuel, fertiliser)
- Product taxes
- Subsidies for "clean" production
- Emission quotas
- Transferable emission quotas
- Legal control of emissions

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Three strategies to cope with the consequences of projected global warming

Avert further global warming

- II Slow down global warming to give time to develop strategies to cope with the consequences
- III Accept whatever warming occurs and concentrate on development of adaptive strategies

DAAD Nairobi, Round Table "Agriculture and Global Climate change" 14. February 2007

Three intervention levels:

Impact assessment, how, how much, where, what

Adaptation processes, new breeds and varieties, new production techniques

Mitigation, how to reduce CO₂ and CH₄ production in agriculture

