Eco-systems of agricultural landscapes and sustainable land use: Livestock systems

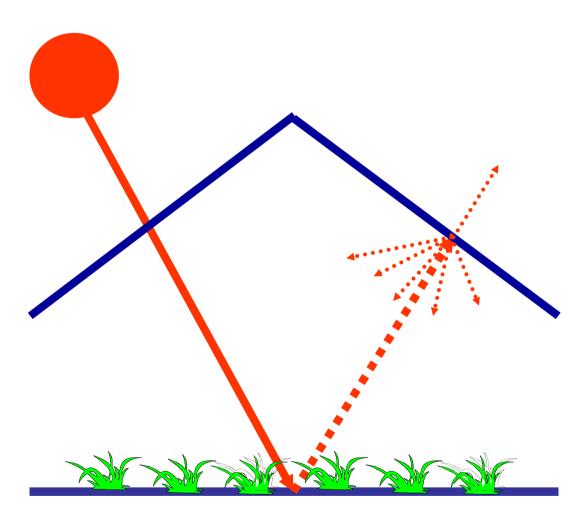
05 - Livestock Environment Interaction - 3 The Carbon Footprint

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Definition of the term "Carbon Footprint"

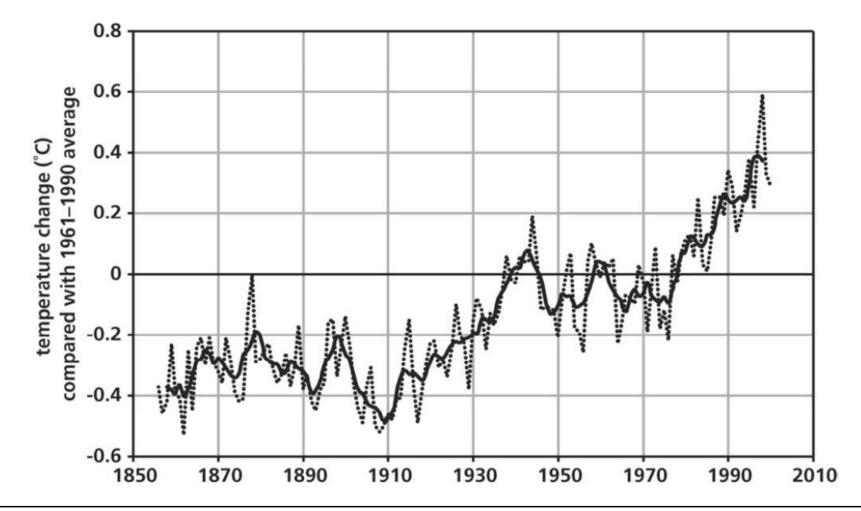
Carbon footprint has historically been defined as:

"The total set of <u>greenhouse gas</u> (GHG) emissions caused by an organization, event, product, process or person."


A more practicable definition has been suggested, which is gaining acceptance within the field:

"A measure of the total amount of <u>carbon dioxide</u> (CO_2) and <u>methane</u> (CH_4) emissions of a defined population, system or activity, considering all relevant sources, sinks and storage within the spatial and temporal boundary of the population, system or activity of interest. Calculated as carbon dioxide equivalent (CO_2e) using the relevant 100-year <u>global</u> <u>warming potential</u> (GWP100)."

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17



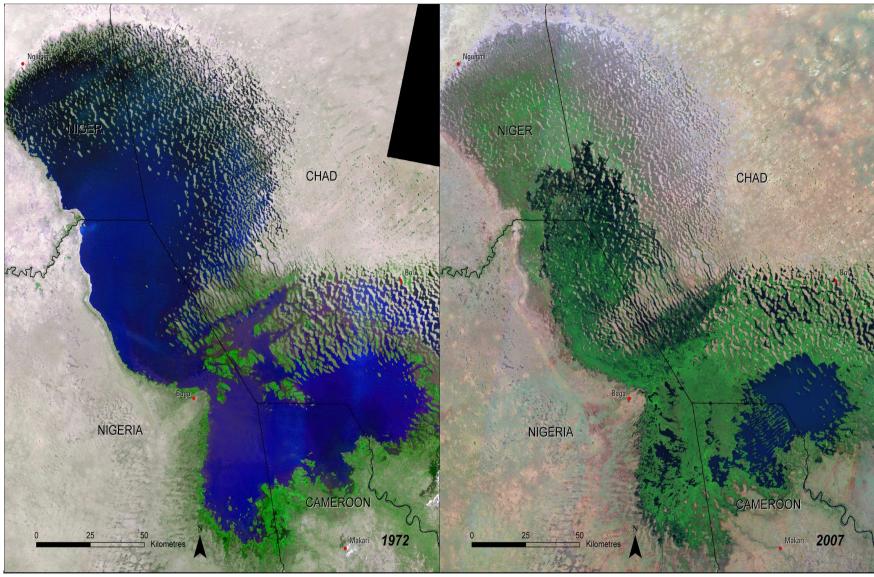
The Greenhouse Effect

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Mt Kilimanjaro, view from Mombasa Road, 1979

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17



Mt Kilimanjaro, view from Mombasa Road, 2014

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17



M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Proportional contribution of various "Greenhouse Gases" to global warming

Source: Preston & World Resources Institute, 1996

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Sources of direct and indirect agricultural greenhouse gases

Sources of agriculture	Million tonnes GHG CO2-eq
Nitrous oxide from soils	2128
Methane from cattle enteric fermentation	1792
Biomass burning	672
Rice production	616
Manure	413
Fertiliser production	410
Irrigation	369
Farm machinery (seeding, tilling, spraying	g, harvest) 158
Pesticide production	72
Land conversion to agriculture	5900

Source: Cool Farming. 2008. www.greenpeace.org

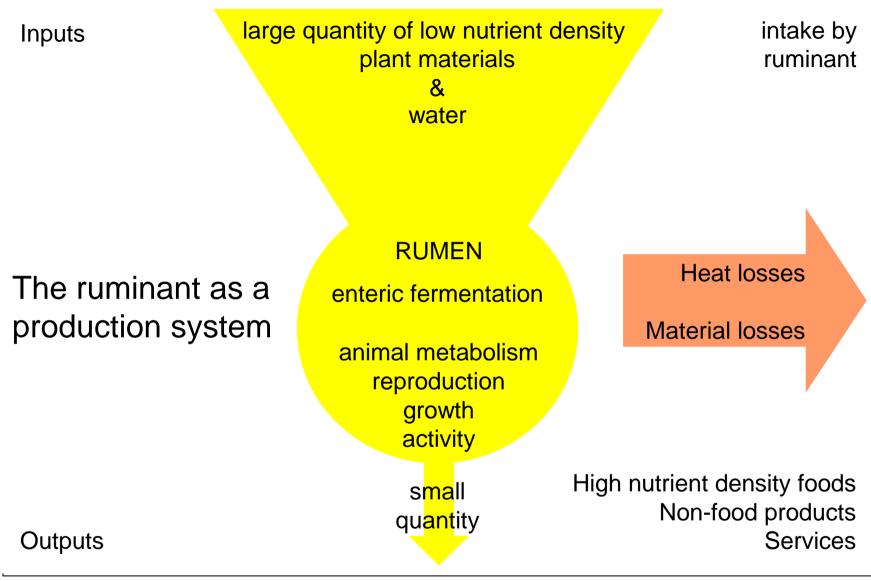
M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Global warming potential of various greenhouses gases in carbon dioxide equivalents

Greenhouse Gas	100 year global warming potential
Carbon dioxide	1
Carbon dioxide as carbon	3.67
Methane	21
Nitrous oxide	310
Sulphur compounds	up to 23 900
Hydro fluorocarbons (HFC)	140 to 6300

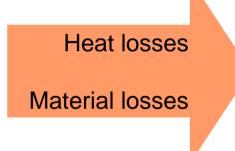
Source: http://www.defra.gov.uk/

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17


Global warming potential of the main meat categories, milk, and selected plant products

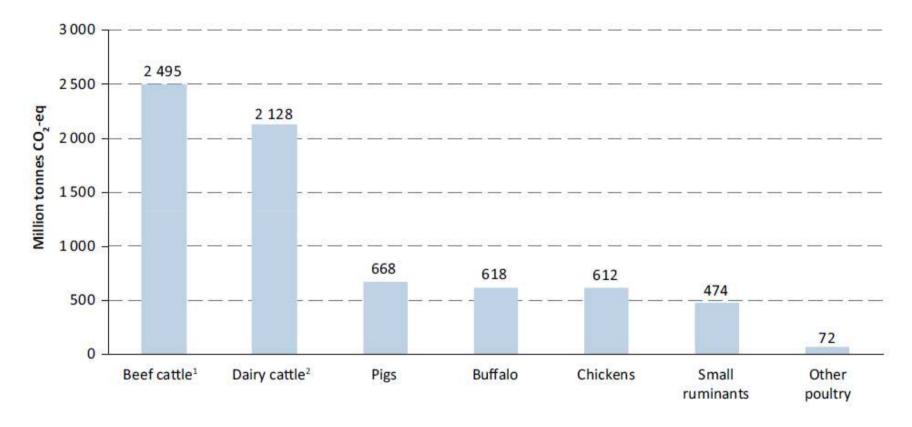
Product	Global warming potential kg CO ₂ eq. / kg product
Mutton	17.40
Beef	12.98
Pork	6.35
Poultry	4.57
Milk	1.32
Wheat (Bread)	0.80
Potato	0.21

Source: Cool Farming. <u>www.greenpeace.org</u>


M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

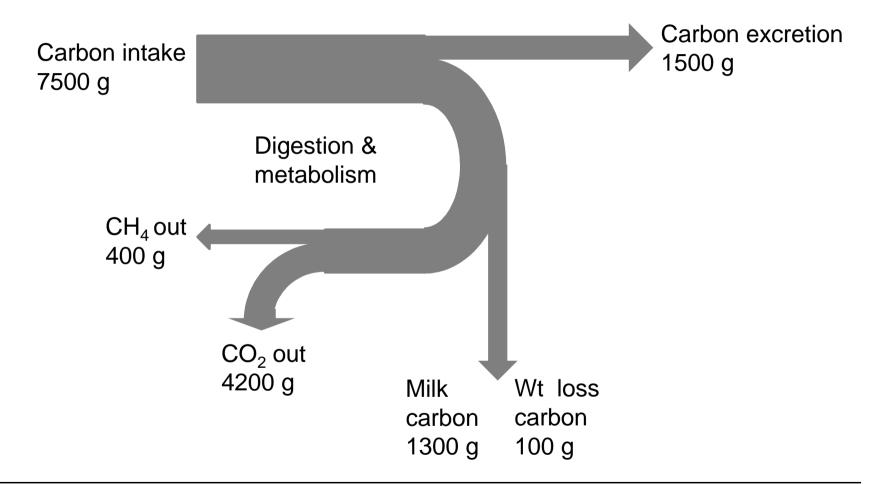
(Radiation) (Convection) (Conduction)


Evaporation (H_2O)

Faeces Urine Gases (CO_2 , CH_4 , NH_3) (Products)

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Global GHG emissions as CO₂-eqs from different livestock species [million tonnes/year by source]


Source: FAO GLEAM 2013

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Daily carbon balance: Example of a dairy cow

feed intake 18 kg DM/day; 20 kg milk/day; 500 g weight loss/day

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Dairy cow performance and CO_2 and CH_4 production

Cow live wt [kg]	Wt gain [g/day]	Milk production [l/day]	CO ₂ production [l/day]	CH ₄ production [l/day]
400	150	20	4156	249-416
400	100	30	5023	304-507
600	300	0	2897	199-331
600	300	20	4905	303-504
600	150	30	5978	363-605
600	0	40	6795	408-680

J. Madsen et al. / Livestock Science 129 (2010) 223–227 http://www.livepro-dc.life.ku.dk/~/media/LiveProDC/docs/pdf/Article%20by%20Madsen%20%20Methode.ashx

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Climate affecting emissions from livestock production originate out of

- primary production
- secondary production
- cultivation of virgin land
- burning of agricultural biomass
- machine times
- agricultural transports
- international agricultural trade

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Secondary Production: Carbon-dioxide, Methane, Ammonia, Sulphur Compounds, Dust

Annual methane losses from a model livestock production system: dairy farming in S.W. England

(102 cows, 110 others, stall feeding of silage and concentrate)

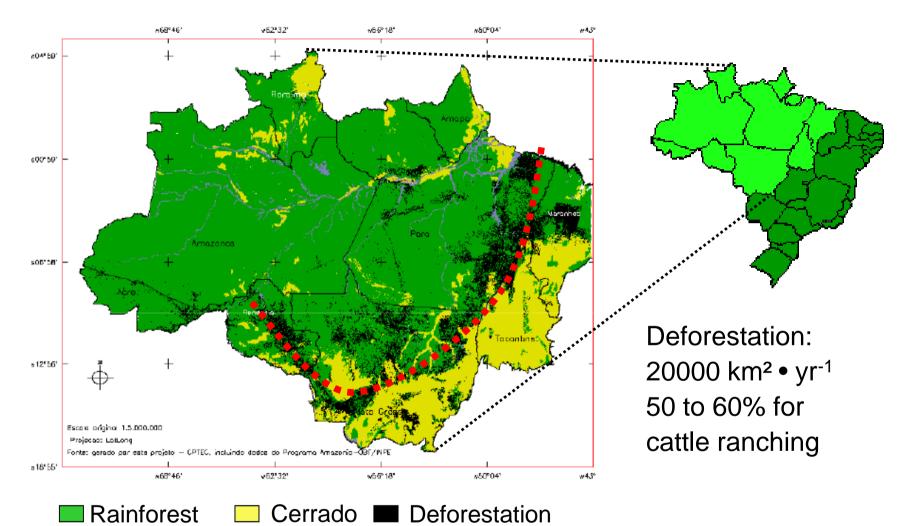
type of loss	total emission kg CH ₄ - C year ⁻¹
losses from ruminants	6775
losses from stored wastes	2285
losses from silage effluent	2596
losses from dirty water	332
total losses	11988

Source: after Jarvis & Pain, 1994

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Cultivation of Virgin Land: Carbon Dioxide, Methane, Nitrous Oxides, Ozone, Ash, Black Soot

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17


Agricultural expansion in Brazil Northern region. Brazi Central region < Dependence on agricultural exports Beef exports are fastest growing commodity

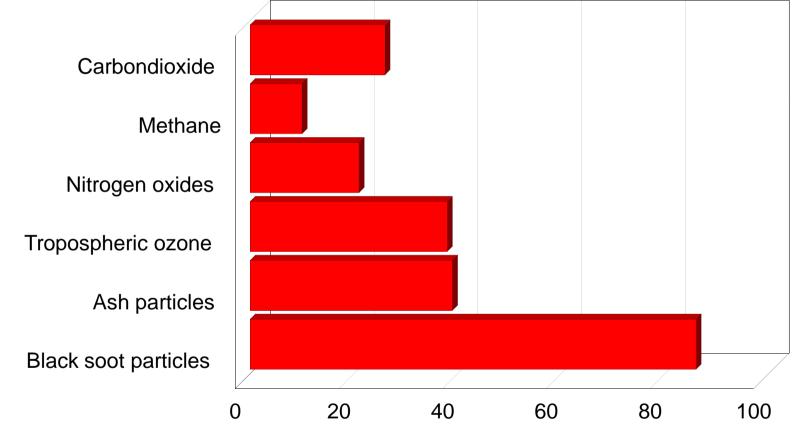
Herd growth concentrated in Central and Northern Brazil

Source: D. Bungenstab, 2004

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

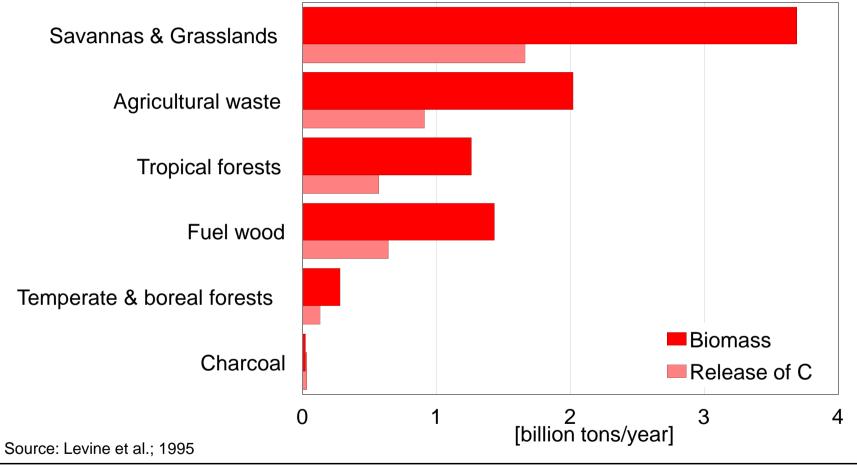
Source: D. Bungenstab, 2004

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17



M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

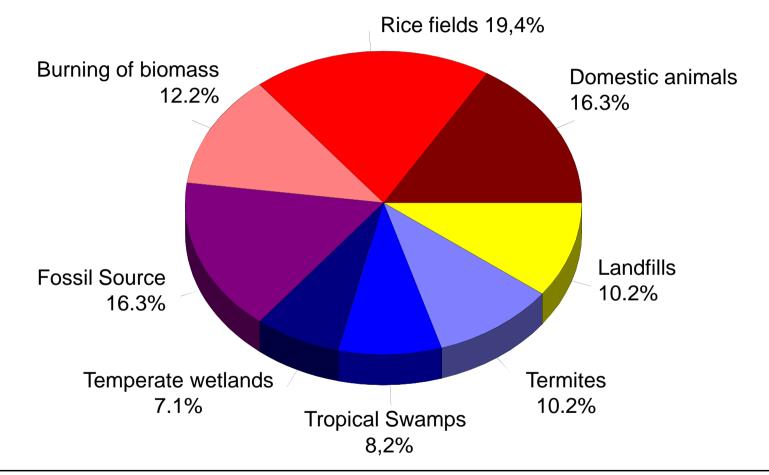
Relative contribution of biomass burning to various climate affecting emissions [% of all emissions]



Source: Levine et al.; 1995

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Contribution of burning various types biomass and the resulting release of carbon into the atmosphere



M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Local machine times and agricultural transports: Carbon Dioxide, Sulphur Compounds, Black Soot

Proportion of various sources in the global methane emission

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Enteric fermentation CH₄ emission levels of ruminants are affected by:

- animal species and genotype
- animal age and nutritional status
- animal performance level
- feed availability and intake level
- feed quality

 nutrient density, digestibility, protein-energy ratio
 seasonal variation
 botanical composition
 pasture and range management

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Enteric fermentation CH₄ emission from dairy cattle in relation to average milk yield per cow

Region	Kg CH ₄ /head/year	Kg Milk/head/year	Kg Milk/Kg CH ₄
North America	118	6700	57
Western Europe	100	4200	42
Eastern Europe	81	2550	32
Oceania	68	1700	25
Latin America	57	800	14
Asia	56	1650	29
Indian Subcontinent	46	900	20
Africa and Middle East	36	475	13

Source: IPCC Guidelines for National Greenhouse Gas Inventories and Authors' Calculations

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Manure management systems affecting loss of CH_4 , N_2O , trace gases

Liquid systems

- with storage lagoons
- with storage pits or silos
- with forced drying and grinding
- with biogas production

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Manure management systems affecting loss of CH_4 , N_2O , trace gases

Solid systems

- with or without bedding, dry stockpiling
- with or without bedding, composting
- with fuel use

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Manure management systems affecting loss of CH_4 , N_2O , trace gases

Pastoral systems

- with partial collection for fuel use
- with complete spreading by grazing stock

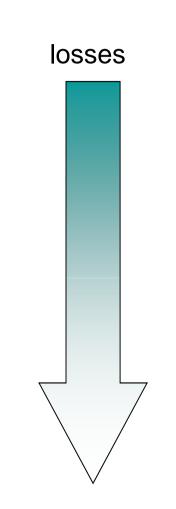
M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Manure management systems affecting loss of CH₄, N₂O, trace gases

Liquid systems

- with storage lagoons
- with storage pits or silos
- with forced drying and grinding
- with biogas production

Solid systems

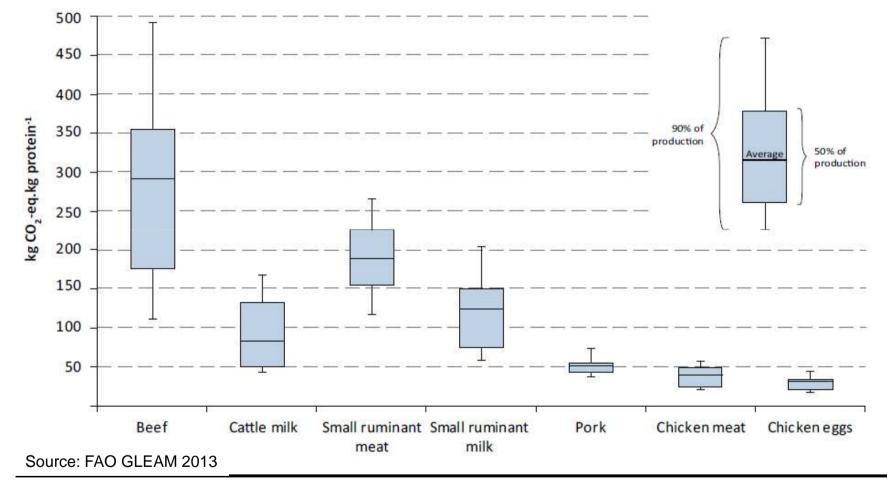

- with or without bedding, dry stockpiling
- with or without bedding, composting
- with fuel use

Pastoral systems

- with partial collection for fuel use
- with complete spreading by grazing stock

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Manure management CH₄ emission factors [kg CH₄/head/year] for dairy cattle in relation to region and climate type


Climate type Region	Cool	Temperate	Warm
North America	36	54	76
Western Europe	14	44	81
Eastern Europe	6	19	33
Oceania	31	32	33
Latin America	0	1	2
Asia	7	16	27
Africa and Middle East	1	1	2
Indian Subcontinent	5	5	6

Source: IPCC Guidelines for National Greenhouse Gas Inventories

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Global GHG emission intensity [kg CO₂-eqs/kg product] for different commodities

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Mitigation options for livestock related GHG emissions

Biological emission controls

- dietary manipulation
- feed utilisation efficiency
- grazing management
- biological treatment of feed
- health programmes
- selection and breeding
- control of ruminal microbes

Land use changes

- reducing land clearances
- ICLF Systems
- carbon sequestration

Technical emission controls

- livestock housing
- ventilation control
- storing and handling of manure
- manure application to land
- biogas production
- reduction of N-leaching
- mechanical treatment of manure

Economic emission controls

- emission taxes
- consumption taxes
- product taxes
- subsidies for clean production
- emission quotas
- transferable emission quotas

Legal emission controls

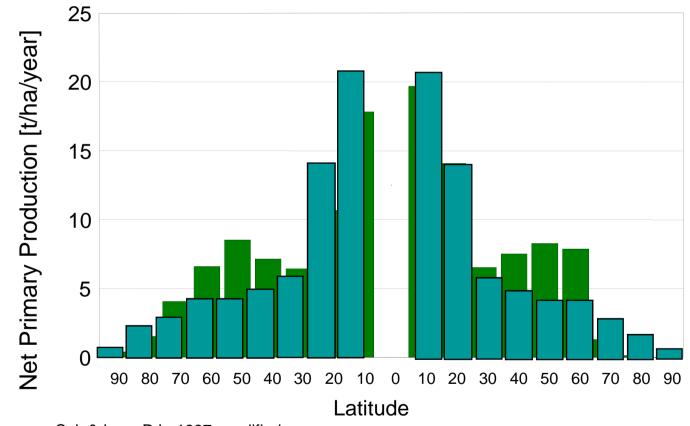
M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Three strategies to cope with the consequences of projected global warming

- Avert further global warming
- II Slow down global warming to give time to develop strategies to cope with the consequences
- III Accept whatever warming occurs and concentrate on development of adaptive strategies

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Projected consequences of global warming for agriculture (doubling atmospheric CO₂-content, temperature increase 1.5 to 5°C)


Shift of eco-climatic zones several 100 km towards the poles;

- considerable widening of the tropical/subtropical dry belts;
- substantial loss of agricultural land;
- widespread permanent flooding of coastal areas due to rise in sea levels;
- slow but inevitable breakdown of temperate and boreal forest ecosystems with additional release of CO₂;
- uncertain effects of increased CO₂ on abundance and vitality of pests and weeds;
- resultant catastrophic decrease of agricultural production.

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Estimated Net Primary Production (NPP) of all natural vegetation in latitudinal belts of 10° before and after global warming

Source: Pearson, C.J. & Ison, R.L. 1987, modified

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Necessary adaptations of agricultural production systems to projected climate change (doubling of CO₂ – concentration)

Irrigation agriculture (tropics)	none
Rainfed crop production (humid tropics)	none
Rainfed crop production (dry tropics)	flexible planting times, different cultivars, different cultivation techniques, water harvesting
Perennial crops, plantations (dry tropics)	water harvesting, change of crops, different cultivation techniques
Pasture based livestock production (dry tropics)	possibly change of herbivore species and/or breed, flexible stocking densities, increased mobility
Rainfed crop production (temperate zones)	irrigation, different cultivars, different planting times, different cultivation techniques
Crops under glass	none
Pasture based livestock production (temperate zones)	decreased and highly flexible stocking densities
Intensive livestock production indoors	none
M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17	Faculty of Life Sciences Albrecht-Daniel-Thaer Institute for Agricultural and Horticultural Sciences Prof. (retired) Dr. agr. H. J. Schwartz

Three strategies in the adaptation of agriculture to climate change

- to determine whether new cultivars, crops, and management practices can be developed that can thrive under the new conditions,
- to see whether farmers will adopt the new cultivars, crops or management practices,
- To experience the response of the market to changes in supply

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

Three types of uncertainty delaying management and policy decisions

- (1) Uncertainty due to lack of information
- (2) Uncertainty due to lack of understanding
- (3) Uncertainty due to lack of determination

M.Sc. Integrated Natural Resource Management Ecology and Sustainable Livestock Systems 05 – Livestock Environment Interaction – 3 Winter Semester 2016/17

