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Abstract

Vossian Antonomasia (VA) is a rhetorical de-
vice used to describe an entity (the target) by
transferring certain features and characteristics
of another entity (the source) to it. The phe-
nomenon is closely related to metaphor and
metonymy. Similar to these more familiar de-
vices, the detection of VA expressions is a chal-
lenging task. We propose novel VA detection
models that center on the source to tackle this
problem. The focus lies on the ability of the
models to detect VA independent of the syntac-
tic patterns they appear in. We model the prob-
lem in different scenarios and utilize a state-of-
the-art metonymy resolution model that relies
on word masking, and metaphor detection mod-
els, which are based on linguistic metaphor
theories, and adjust them to our task. All mod-
els leverage pre-trained language models such
as BERT and RoBERTa. As there is limited
annotated data available, we use a data aug-
mentation technique to create a new dataset
consisting of VA with new syntactic patterns
where the generalization ability of the models
can be evaluated.

1 Introduction

Vossian Antonomasia (VA) is a stylistic device
that refers to an entity by naming another famous
named entity that shares certain characteristics or
sets of attributes with the entity. In general, it con-
sists of three chunks (Bergien, 2013): The target is
the entity which is being described. The source is
the famous entity that typically stands for a certain
set of attributes. The modifier is the component that
shifts the characteristics of the source to the target’s
environment. When Angela Merkel is referred to
as “the German Margaret Thatcher” (Trippe, 2005),
“Angela Merkel” is the target entity that inherits one
or more attributes from the source entity, in this
case from the Iron Lady, “Margaret Thatcher”. The
modifier (“German”) projects these attributes tra-
ditionally associated with Margaret Thatcher onto

Angela Merkel. The combination of source and
modifier is called a VA phrase in the following.

To understand VA, one requires a deep cultural
and historical knowledge of the source entity, as the
transferred characteristics are often not explicitly
mentioned, but only indicated by the name of the
source that stands for the attributes. Thus, the read-
ers themselves must infer the author’s intention.
This can be achieved by the context the expres-
sion appears in and knowledge about the source
itself. The context is quite important because, in
most cases, an entity does not only stand for one
property. Arnold Schwarzenegger serves as a good
example of a person who successfully moved be-
tween fields and changed the characteristics and
attributes he stands for. First, he was known as a
successful bodybuilder, but after turning to acting
and politics, the focus of his persona shifted to his
newly achieved accomplishments and his ability to
successfully transition between fields.

The automatic detection of VA is challenging as
their syntax is often ambiguous and hard to distin-
guish from literal expressions. See, for example,
“the German Angela Merkel” vs. “the American
Angela Merkel” (Pohl, 2016). The first phrase is
literal stating that Angela Merkel is a person from
Germany. In contrast, in the second phrase, An-
gela Merkel stands for a set of characteristics and
is used as a source in a VA expression to describe
Hillary Clinton.

Recent years have seen various approaches to
the automatic detection and extraction of VA from
larger text corpora. The first steps were pattern-
based approaches (Jäschke et al., 2017; Fischer
and Jäschke, 2019; Schwab et al., 2019), but re-
cently language models like BERT (Devlin et al.,
2019) were employed (Schwab et al., 2022). They
achieved strong results and are also robust on un-
seen data.

In this paper, we tackle the problem of detecting
VA expressions independent of their syntactic struc-



ture. The syntactic structure of VA phrases consist-
ing of source and modifier can include a wide range
of variations. So far, the only annotated VA dataset
(Schwab et al., 2023b) consists solely of examples
where the modifier follows the source, i.e., “the
SOURCE of MODIFIER”, which is a commonly
used syntactic pattern for VA phrases. This is be-
cause of the variety of naming the modifier. In
comparison to other syntactic patterns, the modifier
in this pattern can have an arbitrary length and com-
plex structure. In contrast, other patterns such as
“the MODIFIER SOURCE” (see Table 1 for more
syntactic patterns) often impose stricter limitations,
typically requiring the modifier to be a single word,
such as an adjective or noun. To our knowledge,
there is no study describing the extraction of VA
where the modifier precedes the source. We ad-
dress the problem of a generalized VA detection
approach by focusing solely on the source during
training to remove the boundaries associated with
the modifier and target. To achieve this, we develop
five different methods. One is a sentence classifi-
cation model that uses special tokens to indicate
the candidates. The next is based on a sentence-
pair classification model. Two rely on linguistic
metaphor theories. We adapt the metaphor theo-
ries to the source of VA expressions, since source
entities in text, like metaphorical words, are not
meant literally. The last method is an adaptation
of a metonymy resolution model, since VA is often
categorized as a specific subtype of metonymy.

Next to getting a deeper understanding of the
phenomenon itself, the detection of VA can support
various NLP tasks. It can provide new and interest-
ing question answering challenges, as Schwab et al.
(2023a) have shown that one can easily transform
the combination of source and modifier (VA phrase)
into questions. Schwab et al. (2023a) also showed
that VA phrases are hard to be captured correctly by
coreference resolution models. The models must
understand that the source is not independent, but
a part of the target’s reference chain. Often, this
did not work and the sources were predicted in
new standalone reference chains. Thus, VA detec-
tion could improve and support coreference res-
olution. By understanding figures of speech like
VA, language models can better understand natural
language in general and especially the nuances of
human language. With that, more human-like text
could also be generated, for instance, spiced-up
headlines for newspaper articles.

This paper is structured as follows: In Section 2,
we discuss related work, while in Section 3, we
present the datasets and explain the dataset genera-
tion process in detail. In Section 4, we describe the
developed models and methodology, followed by
an empirical evaluation of the proposed models in
Section 5. Finally, Section 6 closes the paper with
a conclusion.

Our code and data are freely available.1

2 Related Work

The research on the automatic detection of VA is a
relatively new topic in the NLP area. There exist
multiple approaches on the (semi-)automatic detec-
tion and extraction of the phenomenon that have
been developed recently. Jäschke et al. (2017), Fi-
scher and Jäschke (2019) and Schwab et al. (2019)
used semi-automatic approaches that were based
on syntactic patterns around the source. In par-
ticular, they used regular expressions to extract
candidate sentences from a newspaper corpus and
matched those candidates against entity lists. Fi-
scher and Jäschke (2019) and Schwab et al. (2019)
removed common false positives in a second step
using a manually curated blacklist. While Schwab
et al. (2019) additionally presented a first fully au-
tomatic approach for VA detection employing a
bidirectional long short-term memory (BLSTM)
network, in Schwab et al. (2022) the approaches
using neural networks were more advanced. They
used concatenations of BLSTM and attention lay-
ers with ElMo embeddings (Peters et al., 2018) as
well as a fine-tuned BERT model (Devlin et al.,
2019) for binary sentence classification. Addition-
ally, they presented a VA tagger that tags all parts of
a VA expression in a sentence employing BLSTM
and conditional random fields as well as a fine-
tuned BERT model for sequence tagging. Schwab
et al. (2023a) did not detect VA expressions, but
tackled the task of detecting the target entity inside
the newspaper article in which the VA expression
appeared, which was neglected in the previous ap-
proaches. They showed that by transforming a VA
phrase into a question, a hybrid model that sequen-
tially uses a QA model and a coreference resolution
model could yield high scores without fine-tuning
the models further.

Similar tasks like metaphor detection have been
studied deeply. Most of the research is based on

1https://vossanto.weltliteratur.net/
icnlsp2023/
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the Mozart of Japan

Japan’s (the Japanese) Mozart
Japan’s (the Japanese) answer to Mozart
Japan’s (the Japanese) version of Mozart
Japan’s (the Japanese) equivalent of Mozart

Table 1: An example of the data augmentation versions
with nouns (Japan) and their adjective forms as modi-
fiers in brackets (Japanese). In total, we get eight addi-
tional versions per sentence.

neural networks. While Gao et al. (2018), Dankers
et al. (2019) and Torres Rivera et al. (2020) used
sequence tagging models based on contextual word
embeddings, other models are focusing on single
word classification. In particular, they classify
words according to whether they are meant literally
or metaphorically. Choi et al. (2021) make use of
two linguistic metaphor theories which they imple-
ment by employing a pre-trained language model,
RoBERTa, and extract the embeddings in context
and without context to train a multilayer perceptron
(MLP). Most recently, Wang et al. (2023) follows
the idea of Choi et al. (2021), but additionally fo-
cuses on selecting relevant context for the classi-
fication task employing a dependency parser for
denoising the context around the candidate word
which works especially well on long input sen-
tences.

Metonymy resolution is another similar task that
has been researched, especially recently with the
use of pre-trained language models (Su et al., 2020;
Li et al., 2020; Mathews and Strube, 2021). Often,
the task is limited to location metonymy resolution
(Li et al., 2020; Su et al., 2020). While Li et al.
(2020) models the task as a token-level classifica-
tion task, Mathews and Strube (2021) introduces
a sequence tagging approach. Both models mask
their candidates during training and evaluation.

3 Data

Candidate Generation We use the dataset from
Schwab et al. (2023b) for training. There, we
need to identify phrases that are candidates for VA
sources. As, by definition, the source of any VA
expression has to be a named entity, we utilize a
state-of-the-art named entity tagger, FLAIR (Ak-
bik et al., 2019), to obtain all candidate entities
for each sentence in the dataset. We then collect
tuples for each sentence consisting of an entity in
the sentence and the sentence itself. The tuples

containing a source entity are labeled positive, all
others negative.

We remove candidates where the text sequence
the NER tagger has identified as entity mention
does not exactly match a source phrase, as those
cases are difficult to handle correctly (and only
a small part of the data is affected, cf. Sec. 5).
Consider the sentence “He is the Michael Jordan
of swimming, but he was never as good as Michel
Jordan.”. If the tagger would only tag “Michael”
or “Michael Jordan of swimming” as an entity we
remove those candidates.

The sentence highlights another issue: an entity
that is mentioned more than once in the same sen-
tence can not be distinguished within our set of
tuples. When all mentions are no VA sources, we
keep the tuples. When one of those entity mentions
is indeed a source, we keep that tuple (i.e., the tuple
with the positive label) and remove the others, since
such cases are very rare. We removed 38 negative
tuples in the training data and nine negative tuples
in the test data.

Training Data Compared to other more pop-
ular rhetorical devices, such as metaphor and
metonymy, one challenge of VA detection is the
lack of annotated data. The only annotated English
VA dataset is, to our knowledge, the one by Schwab
et al. (2023b). It was first introduced by Schwab
et al. (2019) and later annotated further (Schwab
et al., 2022, 2023a). The dataset contains sentences
from the New York Times Annotated Corpus (Sand-
haus, 2008). The corpus contains articles from
the New York Times from 1987 to 2007, com-
prising around 60,000,000 sentences. The dataset
was created in a semi-automated way. First, fre-
quently used syntactical patterns around the source
were identified and candidate sentences extracted.
The patterns consist of one of the words before
(the/a/an) and after the source (of/for/among).
Using all possible combinations, the authors of
Schwab et al. (2019) obtained nine different pat-
terns. Then the words between these combinations
were matched against an entity list, and finally
those candidates were checked against a manually
curated black list to remove false positives and man-
ually labeled. In total, the dataset contains 6,095
sentences of which 3,115 include VA expressions.
On this dataset we generate candidates as explained
before, which results in a training dataset of 16,877
sentence-entity tuples with 2,868 positive instances
(17%) and 14,009 negative instances.



Test Data The lack of syntactic variations of VA
expressions is one significant issue for testing VA
detection models on generalization. For example,
in the training data the modifier always appears
directly after the source:

(a|an|the) SOURCE (of|for|among) MODIFIER.

This pattern, however, does not cover all vari-
ants of VA as the syntactic patterns in which source
and modifier appear are more diverse. Annotating
a text corpus to identify new syntactic variations
is prohibitively expensive due to the rarity of the
phenomenon on the sentence level (Schwab et al.,
2019). Another approach is syntactic data aug-
mentation which changes the syntax of a sentence
without affecting its semantics. In our case, it is
especially crucial to ensure that the VA expressions
remain intact and that their meaning is not changed.

To augment data, we identified eight different
VA patterns consisting of source and modifier that
are different from the ones in the training data. In
particular, their source follows after the modifier.
Two of the patterns have no words between the
modifier and source (named “—” in the sequel), the
other six patterns have connecting words between
modifier and source. We refer to these phrases
(“answer to”,“version of”, “equivalent of”) as “con-
nector phrase” (CP). Each of the phrases appears
two times in the patterns.

The first four patterns are represented by the
following regular expression and involve a modifier
that is a noun:

MODIFIER’s (CP)? SOURCE,

where CP is a connector phrase, MODIFIER is the
modifier chunk and SOURCE is the source entity.
The remaining four patterns include a modifier that
is an adjective and are represented by the following
regular expression:

(a|an|the) MODIFIER (CP)? SOURCE,

where the choice of the article at the beginning (“a”,
“an” or “the”) depends on the article in the original
VA phrase.

Six of the eight patterns include a CP between
modifier and source consisting of two words,
whereas the other two patterns do not have any
words between them. This is another distinction
from the pole word succeeding the source in the
annotated data. Furthermore, the grammatical cat-
egory of the modifier changes. While 92% of the

modifiers in the annotated data are noun phrases,2

this is not the case for the last four patterns, where
the modifier is an adjective.

The modifiers in the annotated data can be com-
plex (the longest modifier consists of 25 words)
and not all VA phrases can be easily augmented as
they cannot be changed semantically correct into
a noun or adjective. Thus, we use a subset of the
data for augmentation. Specifically, we extract all
sentences that include a VA expression where the
modifier is a geographical place that possesses an
adjectival form. This ensures that the meaning is
not changed when adapting the modifier and the
syntax. We achieve this using the lists of adjec-
tival and demonymic forms of place names from
Wikipedia.3 This has the advantage that those mod-
ifiers can always be transformed into any of the
eight patterns since place names are always nouns
and have an adjectival form which is suitable for
both, noun and adjective modifiers.

Hence, we match all modifiers against the lists.
In total, we could extract 244 VA expressions
where the modifier matches an entry in one of the
Wikipedia lists. Countries were mentioned most
often (159), followed by cities (51), regions (23),
and continents (11).

By augmenting each sentence, we obtain 1,952
augmented sentences (244 per pattern), which we
call augmented data. Along with the 244 original
instances (original data), this yields a total of 2,196
sentences. Again, we apply the candidate genera-
tion method and compute entity-sentence tuples for
each sentence. In total, we produced 8,480 unique
instances of which 2,196 are positive and 6,284 are
negative. The positive label ratio increases com-
pared to the positive label ratio of the training data
to 26% as each sentence in the test data consists
of a VA source which is not the case in the train-
ing data. Each sentence produced on average 34.5
instances with a standard deviation of 16.1 which
shows that the number of generated instances per
sentence is quite diverse depending on the number
of named entities.

4 Methods

As explained before, the anchor of a Vossian
Antonomasia expression is the source entity which
is being invoked as a point of comparison. Thus, we

2Which we detected with the dependency parser from
spaCy (Honnibal et al., 2020).

3https://en.wikipedia.org/wiki/List_of_
adjectival_and_demonymic_forms_of_place_names
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aim to find source entities of VA expressions using
different approaches. In particular, our goal is to
identify generalized VA expressions across diverse
syntactic structures. As a baseline, we adapt a state-
of-the-art VA extraction model. We then make use
of models that were successfully applied in similar
areas. In particular, we adjust two metaphor detec-
tion models which are based on linguistic metaphor
theories. Similar to metaphorical words, the source
entity of a VA expression is not meant literally, but
stands for a set of characteristics. Additionally,
we adapt a metonymy resolution model that uses
candidate word masking. Finally, we present two
fine-tuned RoBERTa models for sentence(-pair)
classification which are designed to focus on the
entity candidates inside a sentence. Contrary to the
baseline, which is a sequence tagging model, all
subsequent models are binary classification models.
The goal is to determine whether pre-computed
entities serve as a source of a VA expression or
not. As explained in Section 3, we first identify
all entities in a sentence and then classify each
entity-sentence tuple.

BERT_SEQ This baseline is an adaptation of the
sequence tagging model in Schwab et al. (2022),
BERT_SEQ. Each word in a sentence is tagged to
determine whether it is part of a chunk of a VA
expression (i.e., target, source, or modifier) or not.
It is a fine-tuned BERT (base-cased) model which
outperformed a BLSTM-CRF model.

Here, we modify this model by focusing on tag-
ging the source words only, employing the IOB
tagging scheme. In particular, like Schwab et al.
(2022), we add an additional linear layer to the
BERT model to tag all words in a sentence. This
enables a better comparability with our newly de-
veloped models. Additionally, the implicit focus on
the order of chunks will vanish, which potentially
leads to better generalization.

BERT_MASK This model is an adaptation of
a state-of-the-art location metonymy resolution
model (Li et al., 2020). The model is based on
the idea that the context is more important to distin-
guish between metonymic and literal usage than the
potential metonymic candidate itself. We use this
model, since VA is often categorized as a subtype
of metonymy, and apply it to our source candi-
dates. In particular, we follow Li et al. (2020) in
that we mask the source candidates with the single

token X during training and evaluation. Further, we
fine-tune a BERT model for word-level classifica-
tion. Specifically, we extract the embeddings of
the masked token (X) from the last hidden layer of
BERT and feed them into a binary linear classifier
to classify whether the candidate is a VA source. In
cases where the masked token is omitted in the pre-
processing due to truncation, we utilize the [CLS]
token for classification instead.

RoBERTa_MIP This model is inspired by the
Metaphor Identification Procedure (MIP) (Group,
2007). In short, the theory proposes that a word is
used metaphorically when its literal meaning devi-
ates from its contextual meaning. The key is that
the literal meaning of the word would not apply di-
rectly in the used context. We transfer this concept
to the source entity of a VA expression: The source
entity is not meant literally, but is a placeholder for
a set of characteristics the entity stands for. The
entity would normally not be used in the context,
as the target and especially the modifier are nor-
mally not directly related to the source. Thus, we
state that a named entity used as a source in a VA
expression has a different meaning in the context (a
set of characteristics) from its more basic meaning
(the entity itself).

We then roughly follow Choi et al. (2021). As
base, we utilize RoBERTa (Liu et al., 2019), a pre-
trained language model. First, each word of a sen-
tence is tokenized. The special character sequences
<s> and </s> are then added at the beginning and
end of the token sequence, respectively. Next, we
compute the position embedding which represents
the position of each token within the sentence and
the segment embedding which indicates which to-
kens belong to the candidate. The input embed-
dings are finally obtained by the element-wise ad-
dition of token, position embedding, and segment
embedding. In a separate step, we tokenize the
isolated candidate words using the same tokenizer
and also add special characters accordingly.

The embeddings of the candidate tokens in both
steps are averaged independently. This results
in two embeddings: the contextualized embed-
ding and the isolated embedding for the candi-
date. These embeddings are then concatenated and
passed through a linear layer that outputs a binary
label indicating whether the entity is a VA source
or not.



RoBERTa_SPV The model is based on Selec-
tional Preference Violation (SPV) (Wilks, 1975,
1978), which is popular in metaphor detection
methods, see Mao et al. (2019) and Choi et al.
(2021). The idea of SPV in the context of
metaphors is that a word is metaphorical when it
appears unusual in its surrounding context, that is,
it typically does not co-occur with the surround-
ing words. We adapt this theory to VA detection:
An entity serving as a source for VA expressions
appears unusual within its surrounding words, espe-
cially with the modifier which normally represents
an environment unrelated to the source. Instead,
the modifier is connected to the target entity.

As in the MIP model, we compute tokens, po-
sition embedding and segment embedding of the
sentence. Subsequently, we compute the contextu-
alized embedding accordingly and also calculate
the embedding of the special <s> token, which rep-
resents the aggregated representation of the sen-
tence. Both embeddings are concatenated and
passed through a linear layer which returns a binary
label.

RoBERTa_CLF We adapt the binary sentence
classification model from Schwab et al. (2022).
Specifically, we introduce two special tokens,
[START_SRC] and [END_SRC], to denote the start
and end, respectively, of the candidate by encasing
the source entity inside the sentence with both to-
kens. These tokens are added to the tokenizer. The
adapted sentence is then used as input RoBERTa
which we fine-tune for binary sentence classifica-
tion by adding and training a linear layer.

RoBERTa_PAIR For this model, we reformulate
the task as a sentence-pair classification problem.
This task is typically used to assess the relationship
between two sentences, such as next sentence pre-
diction, contradiction of sentence-pairs or semantic
relations. In our case, the first sentence consists of
the candidate entity only, while the second sentence
provides context in form of the corresponding sen-
tence the candidate entity appears in. We want the
model to learn to classify whether the candidate
entity is a source in the corresponding sentence or
not. As in RoBERTa_CLF, we adapt RoBERTa by
appending a linear layer on top of the RoBERTa
model. Subsequently, we fine-tune the model for
binary classification.

5 Evaluation

In this section, we describe the experimental set-
tings before presenting and analyzing the empirical
results of our models. All models rely on the output
of an NER tagger whose output is used to form the
set of source candidates. This is different from the
baseline model, which does not need candidates
but classifies each word individually.

The tagger we used in our study has an F1 of 0.94
on the CoNLL-03 dataset. In our specific case, it
missed identifying 110 (3.8%) out of 2,868 source
entities in the training dataset and 40 (1.8%) out
of 2,196 source entities in the test dataset. For the
sake of comparability, we exclude these instances
from the evaluation process. The idea behind the
exclusion is that we aim to evaluate the individual
performance of our models rather than the whole
performance of the NER tagger combined with our
models. We use precision, recall and F1 score to
assess the performance of the models.

5.1 Experimental Settings
We conduct hyperparameter optimization on
dropout rate, epochs, learning rate, and batch size
based on F1 score.4 For this, we use 25% of the
test data as a validation set for all models including
the baseline. We use a part of the test data for hy-
perparameter optimization on purpose as we want
to determine the best model for the generalized test
data. We assume that if the model works well on
the test data, it should still be able to achieve good
performance on the data we trained it with. We will
evaluate this in the subsequent section.

We use the pre-trained BERT base-cased model5

as in Schwab et al. (2022) for BERT_SEQ as well
as for BERT_MASK, and the pre-trained RoBERTa
base model6 for all other models as basis. Both
models share the same architectural parameters.
Specifically, each model has 12 transformer blocks,
12 attention heads, and the dimensionality of the
hidden states is set to 768. For all models, we use
AdamW optimizer (Loshchilov and Hutter, 2017).
We implemented our models using the Hugging
Face framework and PyTorch. The code is free
available on our website.7

4See Appendix A for details and final choices for each
model.

5https://huggingface.co/bert-base-cased
6https://huggingface.co/roberta-base
7https://vossanto.weltliteratur.net/

icnlsp2023/

https://huggingface.co/bert-base-cased
https://huggingface.co/roberta-base
https://vossanto.weltliteratur.net/icnlsp2023/
https://vossanto.weltliteratur.net/icnlsp2023/


model precision recall F1

BERT_SEQ .88 ±.02 .97 ±.03 .92 ±.02
BERT_MASK .83 ±.03 .88 ±.02 .85 ±.02
RoBERTa_MIP .88 ±.02 .89 ±.04 .88 ±.01
RoBERTa_SPV .93 ±.03 .85 ±.07 .89 ±.03
RoBERTa_CLF .87 ±.03 .87 ±.02 .87 ±.02
RoBERTa_PAIR .76 ±.04 .94 ±.02 .84 ±.01

Table 2: Performance of the models using 5-fold cross
validation on the training dataset.

5.2 Results on Training Data

Table 2 presents the results on the training data
using stratified 5-fold cross validation. All ap-
proaches, even if hyperparameters were not op-
timized for this data, achieve strong results. Surpis-
ingly, the baseline, BERT_SEQ, has the best results,
having an F1 score of 0.92, although the gap to the
other models is not large. RoBERTa_CLF and both
adapted metaphor detection model, RoBERTa_MIP
and RoBERTa_SPV, have similar scores of 0.87,
0.88, and 0.89, respectively. Only BERT_MASK
and RoBERTa_PAIR achieve a little lower score
of 0.85 and 0.84, respectively. The general high
scores are expected as the models were trained on
similar data regarding the syntax of the VA ex-
pressions. Also, the label ratio is the same as we
conducted stratified sampling for the cross valida-
tion.

5.3 Zero-shot Results on Test Data

We conduct a zero-shot transfer with our models
on the test data consisting of the original and aug-
mented data as explained in Section 3. This eval-
uation is conducted to analyze how the models
generalize to new syntactic VA variations which is
the main goal of our work. In this evaluation, we
obtain surprising results. While the performance of
all models except RoBERTa_PAIR decreases dras-
tically in all metrics, RoBERTa_PAIR increases its
performance to an F1 of .86 (cf. Table 3). While
the precision of RoBERTa_PAIR increases substan-
tially, the recall decreases. The other models are
not able to compete against this model. Even the
results of the second best model, RoBERTa_MIP,
decreases to an F1 score of 0.74 which is a gap
of 0.12 points. Still, this is the smallest perfor-
mance gap and shows that the adaptation of the
MIP theory works better for generalized VA de-
tection than the rest of the models. BERT_MASK

attains the lowest F1 score of 0.25. The baseline,
which achieved the best results on the training data,
is also not able to solve this task with the second
lowest F1 of 0.27 as well as RoBERTa_SPV and
RoBERTa_CLF whose scores also dropped to 0.58
and 0.41, respectively.

The performance on the original data in the test
dataset (713 instances, 183 positive) even increases
for all models compared to the results on the train-
ing data. This is not that surprising, as the syntax is
the same as in the training data. Also, the training
data consists of sentences without VA expressions
that are syntactically very similar to those with VA
expressions. In the test data, however, there exist
no such negative examples. Thus, this might be a
reason why the scores are rising. The performance
on the augmented data drops dramatically in al-
most all models compared to the performance on
the training data (cf. Section 5.2).

This shows that only RoBERTa_PAIR is able to
handle new syntactic variations in contrast to all
other models. As the F1 almost did not change
between the evaluation on both datasets, it shows
a robustness to new data. The metaphor detec-
tion models had similar scores on the training data
and could obtain high scores on the original data,
but they diverge on the augmented data. While
RoBERTa_SPV drops to an F1 of 0.53, which is
0.36 points less than on the training data, the per-
formance gap of RoBERTa_MIP is smaller.

In general, it seems that in all models except
RoBERTa_PAIR, the syntax of the VA expression
still has a major influence on the correct classifica-
tion.

Performance vs. Syntax (RoBERTa_PAIR) An
interesting point to investigate further is the influ-
ence of the syntactic variations we used for data
augmentation. In total, we have four syntactic pat-
terns, three that consist of the connector phrases
between modifier and source, “answer to”, “version
of”, “equivalent of”, and the “—” version without
any connector phrase between both chunks. Table 4
shows the results in the ‘total’ block. We can see
that all three metrics are best for the pattern “—”,
with an F1 of 0.92. For the “equivalent of” and
“version of” patterns, the model still achieves high
scores, whereas for the “answer to” patterns, it per-
forms worse with an F1 of 0.72 which is 0.2 lower
than the best score. It is interesting that one pattern
is much harder to detect and shows that even if
patterns seem quite similar for humans, it is much



total original data augmented data

model precision recall F1 precision recall F1 precision recall F1

BERT_SEQ .73 .17 .27 .99 1.00 .99 .42 .07 .12
BERT_MASK .69 .15 .25 .92 .81 .86 .52 .07 .13
RoBERTa_MIP .92 .62 .74 .97 .92 .95 .91 .58 .71
RoBERTa_SPV .97 .42 .58 .99 .87 .93 .97 .36 .53
RoBERTa_CLF .73 .29 .41 .95 .82 .88 .66 .22 .33
RoBERTa_PAIR .89 .83 .86 .91 .97 .94 .89 .81 .85

Table 3: Performance of the models on the test data which include the original and augmented data.

total modifier is a noun modifier is an adjective

syntax precision recall F1 precision recall F1 precision recall F1

— .91 .93 .92 .90 .93 .92 .91 .93 .92
answer to .85 .62 .72 .88 .72 .79 .82 .51 .63
version of .89 .83 .86 .90 .90 .90 .87 .77 .81
equivalent of .89 .87 .88 .90 .91 .91 .87 .82 .85

total .89 .81 .85 .90 .87 .88 .87 .76 .81

Table 4: Performance of RoBERTa_PAIR on the augmented data, split up by pattern and POS type.

harder for the models to detect them correctly.

Performance vs. POS (RoBERTa_PAIR) We
now analyze whether the part of speech (POS)
tag of the modifier influences the model using
the best performing model on the test dataset,
RoBERTa_PAIR. One half of the augmented data
has modifiers that are adjectives whereas the other
half has modifiers that are nouns. In Table 4, we
can clearly see that the model performs better when
the modifier is a noun with an F1 of 0.88 compared
to 0.81 for the adjective examples. One reason is
the high performance gap of 0.11 in recall. A plau-
sible reason is the fact that in the training data, the
modifiers of the VA expressions are almost always
noun phrases (and thus include at least a noun),
which possibly is captured in the fine-tuning pro-
cess, even if the modifier is not marked explicitly.

5.4 Error Analysis (RoBERTa_PAIR)

In total, we got 851 false positive and 159 false
negative errors in the 5-fold cross validation. In
239 cases, an entity candidate was falsely predicted
as source entity in a sentence that included a VA
expression. Still, in the majority (612) of the false
positive errors, the entities appeared in a sentence
without any VA occurrence.

In the test dataset, more false negative errors
(281) than false positives (172) occurred. Group-

ing the false positives by entity and original sen-
tence, we got 25 groups where in 14 of them all
augmentations with the same candidate were pre-
dicted falsely. The false negatives, on the other
hand, grouped into 80 groups, which makes sense
as the syntax around the source entities changed,
whereas the syntax around the entity candidates in
the false positive instances did not and thus, the
model’s prediction should be more similar.

Table 5 shows a sample of false positive and
false negative errors, the RoBERTa_PAIR model
did in the test dataset.

The false positives included candidate entities
that belonged to the VA expression but as a target
chunk (“Manno Charlemagne”) or as a modifier
chunk (“European”). That was expected as they
are somehow connected semantically to the source
and thus, it is harder for the model to differentiate
between them. It also appeared that an entity that
was used as source (“Berlusconi”) was also men-
tioned in another typing elsewhere in the sentence
with a literal meaning (“Silvio Berlusconi”). Those
examples are rare as the source is normally not
mentioned in the context. Still, these are decisions
that are especially hard to predict correctly for the
sentence pair model as the model has no explicit
focus on the position of the entity in the sentence
as the other models had.



Ex. 1: He doesn’t want to be Syria’s version of Gorbachev.
Ex. 2: “He’s the Japanese answer to Cal Ripken, but with more punch,” said Marty Kuehnert, a sports

broadcaster and longtime resident in Japan.
Ex. 3: Buena Vista Home Entertainment, the distribution arm of Disney, recently acquired a library of

Japanimation created by a man often hailed as “the Walt Disney of Japan,” Hiyao Miyazaki.
Ex. 4: One of the anthology’s strongest cuts, “Ayiti Pa Fore” (“Haiti Is Not a Forest’) was recorded in

1988 and features Manno Charlemagne, a singer and songwriter who is regarded as Haiti’s
answer to Bob Marley.

Ex. 5: In the capital, intellectuals refer to Mr. Thaksin as Asia’s Berlusconi, a reference to Prime
Minister Silvio Berlusconi of Italy, a business tycoon who has faced continuing accusations of
conflict of interest.

Ex. 6: Its chairman, Jan Carlzon, is credited with turning the airline around in the early 1980s, earning a
reputation as “the European answer to Lee Iacocca,” one analyst said.

Table 5: Incorrectly classified instances of RoBERTa_PAIR on the test dataset. False negatives (Ex. 1-3) are marked
green, false positives (Ex. 4-6) red.

6 Conclusion

We proposed four novel VA detection models and
analyzed their ability to detect generalized VA ex-
pressions across a range of syntactic patterns. To
achieve this, we use data augmentation techniques
to create a VA dataset including numerous new syn-
tactic patterns. We develop VA detection models
based on adjusted linguistic metaphor theories and
a metonymy resolution model that are applied to
the source. While most models struggle to gener-
alize well to these new patterns, our best model,
RoBERTA_PAIR, achieves good results on both,
the training and test dataset.
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A Appendix

Hyperparameter optimization We conducted
hyperparameter optimization using grid search on
all models using F1 score and a validation dataset
that is 1/4 of the proposed test data, as explained in
Section 3. The hyperparameters were tuned over
the values given in Table 6. The values that we
finally used for our models are given in Table 7.

hyperparameter tested values

number of epochs 2, 3, 4, 5
batch size 8, 16, 32
maximal length 32, 64, 128
learning rate 10−5, 3 · 10−5, 5 · 10−5

dropout rate 0.1, 0.2

Table 6: Values used for hyperparameter optimization.

model ep
oc

hs

ba
tc

h
si

ze

m
ax

le
ng

th

le
ar

ni
ng

ra
te

dr
op

ou
t

BERT_SEQ 2 16 64 10−5 0.2
BERT_MASK 4 16 32 3 · 10−5 0.2
RoBERTa_MIP 4 32 32 10−5 0.2
RoBERTa_SPV 4 32 64 10−5 0.2
RoBERTa_CLF 5 32 32 3 · 10−5 0.2
RoBERTA_PAIR 4 32 32 10−5 0.2

Table 7: Final choice of model parameters.


