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I conduct research on efficient data-intensive systems that translate data into value for de-
cision making. The scope of my research spans across multiple subfields, from scalable rein-
forcement learning (RL) systems to distributed data stream management systems, as well as
compilation-based optimisation techniques. My long-term goal is to explore and understand the
fundamental connections between data management and modern machine learning (ML) systems
to make decision-making more transparent, robust and efficient.

As data is collected at unprecedented rates for timely analysis, the model-centric paradigm of
ML is shifting towards a data-centric and system-centric paradigm. The recent breakthroughs
in large ML models (e.g. GPT 4, PaLM, Gato, Metaformer and ChatGPT) and the remarkable out-
comes of RL in complex real-world settings (e.g. AlphaGo, AlphaStar, AlphaFold and AlphaCode)
have shown that scalable data and knowledge management is critical to obtain state-of-the-art
performance for complex tasks such as information search, image processing, text understanding,
health care and robotics.

My research is based on formulating research problems, building real systems and a strong
analytical mechanism of performance models to attack key bottlenecks in the ML ifecycle. In prin-
ciple, I strive towards high impact research, often in collaboration with other researchers from
leading industry labs and academia. To provide further insights, I will elaborate on my recent
and ongoing research, followed by future plans (detailed future plans are available on request).

1 Recent and Ongoing Research

I have led and contributed to multiple projects of large-scale data-intensive systems at Queen
Mary University of London, Imperial College London, Humboldt-Universität zu Berlin, and Ama-
zon Web Services. My focus is on optimisation of three layers for the ML lifecycle, including
the scalable ML layer [1, 2], the data stream management layer [3, 4, 5] to integrate ML in-
put pipelines and external domain knowledge, and the low-level compilation-based optimisation
layer [6, 7, 8] for resource-aware ML, as well as their applications in real-world settings [9, 10].

1.1 Dataflow-Oriented Scalable and Energy-Efficient Reinforcement Learning Sys-
tems [ATC’23]

Reinforcement learning solves decision-making problems in which an agent continuously learns
to act in an unknown environment. Training a large number of agents is resource-intensive and
must scale to large GPU or TPU clusters while achieving energy efficiency. Yet, current dis-
tributed RL systems hardcode a single strategy to parallelise and distribute an RL algorithm
based on its algorithmic structure and only permit the acceleration of specific parts of the compu-
tation (e.g. policy deep neural network updates) on GPU/TPU workers. Fundamentally, existing
systems lack abstractions to decouple RL algorithms from their execution.

To tackle this challenge, during my postdoc at Imperial College London and my Assistant Pro-
fessorship at Queen Mary University of London I have designed a flexible distributed RL system,
MSRL [1], based on a new abstraction of fragmented dataflow graphs which offer flexibility of
how RL training is parallelised and distributed. MSRL maps an RL algorithm to parallel compu-
tational fragments. Fragments are executed on different devices by translating them to low-level
intermediate dataflow representations such as computational graphs of ML engines (PyTorch,
TensorFlow, MindSpore), CUDA implementations or CPU threads. A distribution policy governs
how fragments are mapped to devices, without changing algorithm implementations. MSRL
subsumes distribution strategies of existing systems, while scaling RL training to many GPU
workers (e.g. 128 V100 GPUs). The distribution strategies provide a spectrum for trade-off be-
tween high performance (e.g. mapping fragments to high-end GPUs, A100) and energy efficiency
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(e.g. mapping fragments to Raspberry Pi devices). My work has been integrated into MindSpore,
a leading industry ML framework, under the name of MindSpore Reinforcement [2].

1.2 Efficient Stateful Data Stream Management and Knowledge Integration for ML
Systems [ICDE’18, PES-GM’19, ICDE’20, SIGMOD’21, Applied Energy’22]

Data stream processing is critical for real-time intelligence. It enables complex analytical
queries and ML lifecycle with low-latency. On the one hand, distributed ML training requires
efficient data stream management that ingests input data into the ML pipeline [11], computes
and communicates updates across different partitions of a large ML model, and detects concept
drifts for continual learning. On the other hand, integrating human knowledge into ML models
significantly reduces the required training data and makes ML training more efficient, robust, ex-
plainable, and trustworthy. To this end, domain experts usually express the high-level knowledge
as complex analytical queries (e.g. rules-based knowledge representation, pattern detection and
mining) over data streams from different sources and applications (e.g. Internet of things). Such
processing is stateful and therefore, the system needs to maintain partially-computed results,
which grow exponentially in the number of processed data items. High input rates of streams
amplify this issue, making low-latency data analysis challenging. To further complicate matters,
stream engines need to fetch data from remote sources (e.g. integrating external domain-specific
knowledge, or data privacy regulations such as GDPR1) which increases the data transmission
latency by orders of magnitude and therefore, deteriorates overall performance.

Throughout my PhD at Humboldt-Universität zu Berlin, I have addressed this challenge for
analytical queries (ML training or inference is incorporated as query operators) using optimised
state management techniques. First, I have designed the AthenaCEP framework [3, 4] for best-
effort query evaluation by hybrid load shedding that discards both input events and partial re-
sults based on a cost model. AthenaCEP carefully selects the candidates to drop in order to satisfy
a latency bound while striving for a minimal loss in result quality. Second, to efficiently integrate
remote data and external knowledge in ML, I have built the EIRES framework [5], which decou-
ples the fetching of remote data from its actual use in query evaluation by caching, prefetching
and lazy evaluation techniques. A cost model is proposed to determine when to fetch which re-
mote data items and how long to retain them in the local cache. These frameworks, together
with RL, have been applied to real-world settings of optimised smart grid management [9, 10],
public transportation monitoring [3], and bushfire detection using satellite images [5]. Since
their publication, several top-tier conference papers have used these frameworks as baselines
(VLDB’21 [12], VLDB’22 [13]), and as the stream engine to detect rumours from massive stream-
ing data (VLDBJ’22 [14]).

1.3 Compilation-Based Optimisation for Resource-Aware ML and Data Management
Systems [FGCS’23, COSMIC’15, ICA3PP’15]

Recently, we have been witnessing ML models and analytical queries being compiled for effi-
cient execution on heterogeneous hardware accelerators (e.g. TPU, GPU and FPGA), or devices
with restricted computing power and limited energy supply (e.g. battery-powered edge devices).
For the ML side, automated compilers (e.g. JAX, XLA and TVM) have been proposed for general
deep learning workloads. Yet, they are not designed for the complex control and data flow of RL
algorithms. For analytical queries, compilation-based query optimisation approaches have been
studied for database systems over static data. However, few of them target dynamic data streams
and efficient knowledge extraction.

I have conducted research on automatic parallel code generation using LLVM. Specifically, I
proposed a framework that integrates data-dependence analysis, parallelism extraction and code
transformation [6, 7, 8]. These techniques have been incorporated in MSRL [1] and EIRES [5]
for efficient parallel execution. The representation of fragments in MSRL [1] are generated from
dataflow analysis and parallelism extraction of the algorithm implementation. The SQL-like
stream queries of EIRES [5] are compiled into intermediate representation to reuse the shared
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subqueries and query predicates, which are generated as C++ code for efficient execution. To tar-
get the system’s performance bottlenecks at runtime, I have designed a light-weight profiler that
monitors resource utilisation of the distributed cloud-based data warehouse, Amazon Redshift 2,
in real time.

2 Future Research

My vision is to build fully automated holistic data-intensive systems that integrate the ML
layer, the data management layer, and the compilation-based optimisation layer. That is to an-
swer the question “how to co-design multiple layers of the software stack to improve scal-
ability, performance, and energy efficiency of machine learning systems”. This requires
end-to-end optimisation from high-level semantics (e.g. data constraints, domain knowledge, data
sketching and approximation) to low-level optimisation techniques (e.g. code generation, memory
management and task scheduling).

I am more than happy to discuss and share my future research plan. Please contact me if you
are interested. Thanks.
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