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ABSTRACT

Multicore architectures are becoming more common today.
Many software products implemented sequentially have failed
to exploit the potential parallelism of multicore architec-
tures. Significant re-engineering and refactoring of exist-
ing software is needed to support the use of new hardware
features. Due to the high cost of manual transformation,
an automated approach to transforming existing software
and taking advantage of multicore architectures would be
highly beneficial. We propose a novel auto-parallelization
approach, which integrates data-dependence profiling, task
parallelism extraction and source-to-source transformation.
Coarse-grained task parallelism is detected based on a con-
cept called Computational Unit(CU). We use dynamic pro-
filing information to gather control- and data-dependences
among tasks and generate a task graph. In addition, we de-
velop a source-to-source transformation tool based on LLVM,
which can perform high-level code restructuring. It trans-
forms the generated task graph with loop parallelism and
task parallelism of sequential code into parallel code using
Intel Threading Building Blocks (TBB). We have evaluated
NAS Parallel Benchmark applications, three applications
from PARSEC benchmark suite, and real world applica-
tions. The obtained results confirm that our approach is
able to achieve promising performance with minor user in-
terference. The average speedups of loop parallelization and
task parallelization are 3.12x and 9.92x respectively.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—Compil-
ers; D.1.3 [Programming Techniques|: Concurrent Pro-
gramming— Parallel programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

COSMIC 15, February 08 2015, San Francisco Bay Area, CA, USA
Copyright 2015 ACM 978-1-4503-3316-0/15/02 ...$15.00.
http://dx.doi.org/10.1145/2723772.2723777

General Terms

Languages, Performance

Keywords

Code transformation, source-to-source, data dependence anal-
ysis, TBB, coarse-grained parallelism

1. INTRODUCTION

Multicore and manycore architectures have become popu-
lar as a result of the stagnating single core performance. In
order to take advantage of this trend, applications must be
well parallelized. However, many existing software products
are mostly written sequentially, so that they fail to exploit
the parallelism of multicore architectures. Manually rewrit-
ing these legacy programs is time consuming and is a big
economic challenge. Hence, effective tools and methodolo-
gies to parallelize existing software with minimum manual
programming effort and user intervention are in great de-
mand.

There are three main obstacles in the parallelization pro-
cess of existing software: The first obstacle is to gain a
thorough understanding of the code to identify control and
data dependences. In order to guarantee correctness, the
parallelized program must have proper synchronizations to
preserve data dependences. The second obstacle is how to
extract coarse-grained parallelism. Because multi-core pro-
cessors are powerful in executing multiple code sections si-
multaneously, coarse-grained parallelism such as task paral-
lelism is expected. The third obstacle is to generate parallel
code which can express this coarse-grained parallelism effec-
tively.

Previous works [7, 18] extract parallelism from DOALL
and DOACROSS loops. Parallelizing research compilers
such as SUIF [11], Polaris [21] and Open64 [1] have been put
forward to generate parallel code. These approaches heav-
ily rely on static analysis for identifying data dependences.
Static approaches are conservative in finding parallelism due
to the lack of runtime information. Thus they mainly focus
on loop-level parallelism. Although these approaches do not
target on coarse-grained parallelism such as task parallelism,
the insight they provide is highly valuable to the paralleliza-
tion effort.

In this paper, we propose a novel auto-parallelization ap-
proach that integrates data-dependence profiling, task paral-



1 #include <cmath>

2 #include <cstdlib >

3 using namespace std;

4

5 int main ()

6 {

7 double x,y,z;

8 int a = rand() % 100;
9 int b = rand() % 100;
10

11 x = sin(a);

12 y = cos(b);

13 z = sqrt(xxx) + sqrt(y*y);
14

15 return O;

16 }

(a) Source code
cul cu2
‘s inta = rand() % 100; ‘ ‘9 int b= rand( ) % 100; ‘

11 x =sin(a) ; 12 y = cos(b);

13z = sqrt(x*x) + sqrt(y*y);

Cu3

(b) CU graph

Figure 1: a sample CU example

lelism extraction and source-to-source transformation. Com-
bining static analysis and dynamic analysis, we extract both
DOALL loops and parallel tasks based on a graph, whose
nodes are Computational Units (CU) [16] and edges are
data dependences. After having the DOALL loops and par-
allel tasks, we developed a source-to-source transformation
tool to generate parallel source code using Intel Threading
Building Blocks(TBB) [2], which offers rich and complete
libraries to express parallelism and does not need special
compiler support. To evaluate our approach, we transformed
NAS Parallel Benchmarks(NPB) [5], three applications from
PARSEC benchmark suite [6] and real-world applications:
Mandlebrot and FaceDetection. The average speedups of
DOALL loop transformation and parallel task transforma-
tion are 3.12x and 9.92x respectively.

The rest of this paper is organized as follows. In the next
section, we introduce necessary backgrounds, including Dis-
coPoP [16, 17], the program analysis tool we used to ex-
tract DOALL loops and parallel tasks, the concept of Com-
putational Unit, and TBB. Our approach is explained in
section 3, and evaluation results are presented in section 4.
Section 5 summarizes related work and finally section 6 con-
cludes this paper.

2. BACKGROUND

We use a LLVM [13]-based program analysis tool called
DiscoPoP (=Discovery of Potential Parallelism) to help us
find potential parallelism. It profiles programs and detects
their control and data dependences. DiscoPoP is able to de-
tect write-after-read (WAR), write-after-write (WAW) and
read-after-write (RAW) dependences among variable accesses.
Runtime control information such as entry and exit points
of functions and number of iterations of loops are obtained
dynamically. Based on the data dependence information,
DOALL loops can be easily targeted.

2.1 Computational Unit

DiscoPoP also identifies code sections called Computa-
tional Unit (CU). Our transformation relies on these CUs.
A CU is used as a building block for forming parallel tasks.
It follows the read-compute-write pattern: a program state

is first read from memory, the new state is computed and
finally written back. We perform use-def analysis to deter-
mine CUs for every region [12]. A region is a subgraph of the
control-flow graph that is connected to the remaining graph
by only two edges, an entry edge and an exit edge. CUs are
used for forming coarse-grained tasks. Dependences among
CUs can be easily deducted from profiled dependences.

Figure 1 shows a simple example of CUs. Source line 8
performs initialization of the variable a with a random value.
Line 11 reads a, performs some computation and writes the
result to variable x. These lines together form CU;. CUs;
is created using the same rules, consisting of lines 9 and 12.
Line 13 writes the final computation to variable z using x
and y, thus it forms CUs. CU; and CUs; can be executed
independently, but CUj3 depends on CU; and CUa,, as is
shown in Figure 1(b).

2.2 Program Execution Tree

DiscoPoP generates a Program Execution Tree (PET) which
represents the executed code among a program in tree style.
The root of the tree is the whole program. Internal nodes
represent control structures and leaves are basic blocks—
sections of code with only one entry point and only one exit
point. As shown in Figure 2, CUs and their dependences
are mapped to PET and thus form a CU graph. CUs are at-
tached to leaf nodes, and dependences can exist both inside
and between leaf nodes. Coarse-grained tasks are extracted
from the CU graph.

Program
1-377

Basic Block
11-19

Basic Block
22-27

(:) Tree node
D cu

Data
Dependency

Figure 2: Example of CU graph

2.3 Threading Building Blocks

Intel Threading Building Blocks (TBB) is an open source
C++ template library that targets shared memory parallel
programming. It offers a range of high-level parallel primi-
tives such as parallel_for, pipeline and flow graph to par-
allelize applications through the use of tasks rather than
threads. Tasks are of short span and more lightweight than
threads. The underlying runtime library is responsible for
mapping tasks to threads in an efficient manner. TBB uses
task stealing to balance the parallel workload across avail-
able processing cores in order to increase core utilization and
scalability. In this paper, we mainly use parallel_for to
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Figure 3: Workflow

generate parallel code for DOALL loops and flow graph to
parallelize tasks.

The flow graph allows users to easily create both depen-
dence graphs and reactive, messaging passing graphs that
execute on top of Intel TBB tasks to expresses the control-
flow in an application. It consists of three primary compo-
nents: a graph object, nodes and edges. The graph object is
the owner of the tasks created on behalf of the flow graph.
Nodes are created to express the computations performed
by the application. Edges can express the dependences be-
tween these computations. The Intel TBB library is able to
exploit the parallelism that is implicit in the graph structure
and the resources available on the target machine.

3. APPROACH

In this section, we present our transformation tool to
transform serial C/C++ code into Intel TBB parallel code
using parallel_for and flow graph. Figure 3 shows the
workflow divided into two phases.

In the first phase, the program is analyzed by DiscoPoP.
After the program is instrumented and executed, DOALL
loops, CU graph, control flow information and all depen-
dences through the whole program are obtained. At the
same time, LLVM front end Clang [3] is used to parse the
input source code into an abstract syntax tree (AST). This
information is then sent to the code transformation module.

In the second phase, the transformation module merges
CUs in the CU graph and generates a more coarse-grained
task graph. Transformation is performed at AST level using
Clang libraries. The transformation module traverses the
Clang AST of the source code in order to locate DOALL
loops and the code sections targeted by the task graph. Then
the Source Code Rewriting module rewrites the targeted
source code strings in the Clang AST context using TBB
parallel_for and flow graph templates. The rest of this
section explains these two phases in detail.

3.1 DOALL Loops

A DOALL loop can be parallelized because there are no
loop-carried (inter-iteration) dependences. Figure 4(a) shows
a simple DOALL loop. In this paper, we focus on for-loops,
because the lower and upper bound of a for-loop can be eas-
ily extracted via AST. However, our approach can be easily
extended to support while-loops and do-while-loops with the
help of former techniques [14, 19, 9] to extract exit points of
such loops.

3.1.1 Finding DOALL Loops

As the control flow within a loop iteration moves forward,
a backward dependence is always loop-carried. After finish-

ing profiling data dependence in phase 1, DiscoPoP performs
a post-analysis to determine parallelizable loops. If there is
no backward or self-dependence within a loop, the loop is
definitely a DOALL loop. The simple example shown in
Figure 4(a) is detected by DiscoPoP as a DOALL loop.

Algorithm 1: parallel_for loop transformations

Input: parallelizable loop list, AST

Output: transformed loops using tbb::parallel_for
1 get AST node astNode;

2 while astNode is not at the end of the AST do

3 if astNode is a for statement then
4
5

if astNode is in the parallelizable loop list then

get loop variable’s name loopVarName and type
loopV arType;

6 get loop upper bound U B;

7 get loop upper bound vriable’s name UBName and
type UBType;

8 get loop lower bound L B;

9 get loop lower bound vriable’s name LBName and

type LBType;

if loopVarName = UBName = LBName and

loop VarType, UBType, LBType are compatible then
rewrite this for loop using tbb: :parallel_for
template;

10

11

12 end
13
14
15

16

end

end
astNode = astNode’s child;

end

3.1.2  Transforming DOALL Loops

In phase 2, a for-loop is transformed using the procedure
described in Algorithm 1. The target loops must follow
the form of for(initialization; condition; increase)
loop_body. The condition subexpression must be a binary
operator. The loop boundaries and increament must not be
changed during iterations. Clang libraries provide methods
to extract the initialization subexpression, condition
subexpression, increase subexpression, and the loop_body.
Because the iteration space of parallel_for is a half-open
interval [begin,end), we need to consider loop boundaries
when performing transformation and map the for-loop itera-
tion space to a half-open interval form. The source-to-source
translator traverses the AST in a recursive descent fashion,
using AST node iterators to traverse each node’s children.
If the targeted loop is traversed, the Source Code Rewrit-
ing module is invoked. The transformation is divided into
four steps. We use the for-loop shown in Figure 4(a) as a
walk-through example to illustrate these four steps in detail.

Step 1: Determining loop variable and loop upper
bound. Clang library method getCond () is used to



get the condition subexpression: i < size. It is a bi-
nary operator "<", therefore we get the right operand
size and the left operand i; i is the loop variable.
Because of the binary operator "<", the element size
is excluded from the iteration space, which means that
the iteration space is a half-open interval. Therefore,
size is set to be the loop upper bound. It is then
interpreted as the value ”200,000” in compile time. If
the binary operator is "<=" or ">="(the increment step
is negative), that means the right operand size is in-
cluded in the iteration space. In order to transform it
to a half-open interval, the loop upper bound is set to
be size+1 or size-1.

Step 2: Determining loop lower bound. getInit () meth-

od is used to get the initialization subexpression:
int i=0. It is an initialization statement. When we
traverse the variable i whose type and name is identi-
cal to the loop variable found in step 1, we can make
sure that i is the loop variable. Hence, the initialized
value 0 is set to be the loop lower bound. The ini-
tialization subexpression could also be an assign-
ment statement such as i = 0. In that case, the value
in the right side of assignment operator is the loop
lower bound. Because initialization and assignment
are different types of nodes in Clang AST, they need
to be checked separately.

Step 3: Determine the step of parallel_for. getInc()
method is used to get the increase subexpression. In
our example, it is a unary operator "++". The step is
accordingly set to be 1. If it is a unary operator "--",
the step is set to be —1. If it is a compound assignment
operator such as "i += step" or "i -= step", the step
is set to be step or —step. The more complicated sit-
uation is the assignment statement such as "i = i +
step" or "i = i - step". The transformation module
first checks whether "i" is the loop variable and then
sets the step to step or —step.

Step 4: Generating parallel_for code. getBody() is
used to get loop_body and it is saved as a string.
Because of implicit type conversion in C+4, we need
to check whether the loop variable types in initial-
ization, condition and increase subexpressions are
compatible. Then the Source Code Rewriting module
deletes the original for-loop and inserts transformed
code in the original for-loop’s location using the par-
allel_for template and lambda functions in C++11.
The transformed code is shown in Figure 4(b).

3.2 Task Graph

In order to achieve coarse-grained task parallelism, the
transformation module extracts coarse-grained tasks from
CU graph generated in phase 1 by DiscoPoP and generates
the corresponding task graph. In phase 2, task graph is
mapped to TBB flow graph templates. We use the code
shown in Figure 1(a) as a walk-through example to illustrate
our task graph transformation approach.

3.2.1 Building Task Graph

The problem with directly mapping CUs to TBB flow
graph nodes is that a CU could be a subset of another CU or

#include <cmath>
#include <cstdlib >
using namespace std;

int main ()
const int size = 200000;
for (int i=0; i<s it++)
output[i] =
[

Tsart (sin(ali])*sin(a[i]) + cos(a[i])x*
1))

(a) Before transformation

#include "tbb/parallel_for . h
#include <cmath>

#include <cstdlib>

using namespace std;

int main ()

const int size = 200000;
tbb:: parallel_for (0,200000,1,[&](int i) {
output[i] = sqrt(sin(al[i])xsin(al[i]) + cos(a[i])*cos

(alil));
)

return 0;

(b) After transformation

Figure 4: Example of for-loop transformation

two CUs could have instructions in common. The reason is
that more than one variable can use the same computation
code blocks or more than one task can be performed by using
the same partial code in the program. The XML file shown
in Figure 5 is the result of CU analysis of our example shown
in Figure 1(a). Each CU has a set of attributes including
ID, source lines, instruction numbers and so on. Five CUs
are extracted after CU analysis in phase 1 of our approach.
They are CUp:{9}, CU:{9,12}, CU,:{11,12,13}, CU3:{8}
and CU4:{8,11}. CUp and CUs are respectively subsets of
CU; and CUy. CU; and CUs have a common intersection
at line 12. CU4 and CUj; have a common intersection at line
11.

To solve this problem, we merge CUs to more coarse-
grained tasks according to the following rules:

Rule 1: If one CU is the subset of another CU, only the
larger CU is considered to be a task.

Rule 2: If two CUs overlap with each other, the informa-
tion about unique and common instructions between
them is examined. Both the number of shared instruc-
tions and the number of unique instructions of each
CU are calculated. If and only if the ratios of the
number of common instructions to the number of each
CU’s unique instructions are both greater than a given
threshold 6 , these two CUs are merged into a coarse-
grained task and mapped to a flow graph node. Based
on empirical experiments, we found that 0.5 is the best
threshold for the evaluation programs.

Using the above two rules for our example, CUg is merged
to CU;. CUs is merged to CUs. The number of instruc-
tions in the intersection of CU; and CUs is one, thus the
ratios of number of instructions at line 12 to the number of
instructions of CU; and CUs are both less than 0.5. CU;
and CUz are not merged. Because the ratio of number of
instructions at line 12 to the number of instructions of CU;
is greater than the ratio of number of instructions at line
12 to the number of instructions of CUs, line 12 is excluded
from CUs,. The same applies for CUs and CU,. Finally,



<CU id="1:3"
<lines count="1">1:8</lines>
<variableDefined count_uses_itself =
variableDefined>
<computelnstructions>0x31d2db8,0x31d3f48 ,0x31d4050,0
x31d4100 ,</computelnstructions>
<usedVariables>rand, call ,rem,a,</usedVariables>

instr_count = 747>

1 ">a</

</CcU>

<CU id="1:0" instr_count = 747>
<lines count="1">1:9</lines>

</CU>

<CU id="1:1" instr_count = "5">
<lines count="2">1:8,1:11</lines>

</CU>

<CU id="1:1" instr_count = "5">
<lines count="2">1:9,1:12</lines>

</CU>

<CU id="1:2"7 instr_count = 127>
<lines count="3">1:11,1:12,1:13</lines>

</CU>

Figure 5: The sample CU analysis result

we get three merged CUs : CU} {8,11}, CU5 {9,12} and
CUj {13}, as shown in Figure 1(b). Merged CUs’ IDs are
reordered according to the line numbers. Each merged CU
is a task.

When detecting dependences between tasks, we reorganize
the dependence results from DiscoPoP as tuples of source
line numbers and variable names in form of <linej,lines,
varj,vars,...,var,> where line; depends on linez on
variables var;,vars,..., and var,. For our example of
Figure 1(a), we get four dependence tuples:

Tuplel:<line
Tuple2:<line
Tuple3:<line
Tuple4:<line

11,
12,
13,
13,

line 8, a>
line 9, b>
line 11, x>
line 12, y>

For Tuplel, line 11 and line 8 are in the same task: CUj.
This dependence within one task is not an edge in the task
graph. The same applies for Tuple2. For Tuple3, line 13
is contained in CU% and line 11 is contained in CU}. This
means tasks depends on task; on variable x. Tuple3 is set
to be the incoming edge of tasks and the outgoing edge of
taski. According to the same rule, Tuple4 is added to the
task graph as an edge from taskz to tasks.

After all the tasks and edges of the task graph have been
identified, the transformation module inserts a special vir-
tual task: tasko. Tasko is the start point and initiates the
flow graph.

3.2.2  Transforming Flow Graph

The flow graph transformation is processed using the pro-
cedure described in Algorithm 2. It is divided into three
steps:

Step 1: Identifying code sections corresponding to
each task. For each task (including tasko) in the task
graph, the transformation module gets all its source
code lines via the AST context and save them to CU.co-
deBody in the corresponding coarse-grained CU.

Step 2: Generating source code of the flow graph
node. The Source Code Rewriting module generates
the flow graph node based on the following three cases:

e The current task has single or none incoming edge and
multiple outgoing edges. If all the successors receive
the same data, the Source Code Rewriting module in-
serts a TBB broadcast_node. If the successors receive

Algorithm 2: Flow graph transformations

© 0 NOOAWN R

10

11
12
13
14
15
16

Input: Task Graph, AST
Output: transformed code using TBB flow graph
foreach task; in task graph do
foreach astNode in AST do
line = line number of astNode;
if line is in task; then
add this line as a string to codeBody of task;;
if line is not the last line of task; then
‘ remove this line via AST context;
else
location = location of this line;
if incoming edge<=1 and outgoing edges> 1
then
if successors receive same data then
| insert a broadcast_node;
else
‘ insert a split_node
end
else if incoming edge= 1 and outgoing
edge<= 1 then
‘ insert a function_node;
else if incoming edge> 1 and outgoing
edge= 1 then
add a join_node in task graph;
choose a buffering policy;
insert this join_node in location;
insert a function_node after join_node;
else
insert a join_node;
insert a function_node;
insert a split_node;
end

end

end
end

end

foreach edge in task graph do
‘ insert make_edge

end

different data, a TBB split_node is inserted. For ex-
ample of Figure 1(a), the code section shown in Fig-
ure 6(a) is inserted in the source code. Because there
is no input data in tasko in our example, a broad-
cast_node template is inserted using the type con-
tinue_msg in TBB. If input data exists, the Identifying
Code Sections module gets the corresponding type via
AST and the broadcast_node or split_node template
uses that type.

e The current task has single incoming edge and single or
none outgoing edge. The Source Code Rewriting mod-
ule directly transforms it to flow graph function_node
using a lambda function. For example of Figure 1(a),
task; is in this case. The output variable name x can
be gathered from the outgoing edge. Then the Iden-
tifying Code Sections module gets the corresponding
type double. The incoming edge is from the broad-
cast_node, therefore, its corresponding type is con-
tinue_msg. Finally, the function_node code shown in
Figure 6(b) is inserted in original source code.

e The current task has multiple incoming edges and sin-
gle out going edge, which means at least two variables
need synchronization before they are passed to the cur-
rent task. Hence, we must first add a join_node to
synchronize these variables and then insert the func-
tion_node. A join_node has multiple input ports and
generates a single output tuple that contains a value



received at each port.

tbb:: flow :: broadcast_node<tbb:: flow :: continue_msg> NodeO;

(a) Code of broadcast_node

tbb:: flow :: function_node <tbb:: flow :: continue_msg ,double>

Nodel (g, unlimited ,[&] (tbb:: flow :: continue_msg _msg) {
int a = rand () % 100;
x = sin(a);
return x;

)

(b) Code of function_node for task 1

tbb:: flow :: function_node<tbb:: flow:: tuple< double,double

>,double> Node3(g,tbb:: flow::serial ,[&](tbb:: flow ::
tuple <double, double> nodeTuple) {
z = sqrt (tbb:: flow:: get <0>(nodeTuple) * tbb:: flow
:: get <O>(nodeTuple)) + sqrt (tbb::flow:: get
<1>(nodeTuple) * tbb::flow:: get <1>(nodeTuple)
)i

return z;

(c¢) Code of function_node for task 3

tbb:: flow :: join_node <tbb:: flow :: tuple <double ,double>, tbb

::flow :: queueing> joinNodel (g);

(d) Code of join_node with queueing policy

which step needs the join_node and its corresponding
dependences. The user must specify the buffering pol-
icy as parameters for the tool. For our example for
tasks, we choose the queueing buffering policy. For
each input variable of tasks <x,y>, the Source Code
Rewriting module gets the corresponding type infor-
mation in the AST context: <double,double>. Then
the code block shown in Figure 6(d) is inserted in the
source code. Code blocks related to other two buffer-
ing policies are shown in Figure 6(e) and Figure 6(f).
At the same time, the join_node is inserted in the
task graph, it becomes the predecessor of the current
task(tasks). Next, the function_node is inserted. In
order to get the output tuple from the join_node,
the function_node must replace input variables x,
y with get<0>, get<1> in CU.codeBody. The func-
tion_node shown in Figure6(c) is inserted in the source
code.

For the task that has multiple incoming and outgoing
edges, we first add a join_node, then a function_node
and finally a split_node.

#include “tbb/flow_ graph . h

#include <cmath>
#include <cstdlib >
using namespace std ;

int main ()

tbb:: flow :: join_node<tbb:: flow :: tuple<type_l ,type-2 ,...,
type_n >, tbb::flow:: reserving> joinNodeID (g) ;
(e) Code of join_node with reserving policy
tbb:: flow :: join_node <tbb:: flow :: tuple<type_l ,type-2 ,...,

(

type-n >, tbb::flow:: tag matching> joinNodeID

g,
[](const pair<type_-l,tag_ type> &p) —> size_t
{

return (size_t)p.first; },
[](const pair<type.-2 ,tag_ type> &p) —> size_t
{return (size_t)p.first; },

[](const pair<type.3 ,tag_ type> &p) —> size_t
{return (size_t)p.first; }

)

(f) Code of join_node with tag_matching policy

Figure 6: Source code of TBB flow graph nodes for different

cases

The class join_node supports three buffering policies:

1. queueing: The incoming message is added to an
unbounded first-in first-out queue in each input
port. The join_node greedily consumes all mes-
sages as they arrive and generates an output when-
ever it has at least one item at each input queue.

2. reserving: The join_node only attempts to gen-
erate a tuple when it can successfully reserve an
item at each input port. If it cannot successfully
reserve all inputs, it releases all of its reservations
and will only try again when it receives a message
from the port or ports it was previously unable to
reserve.

3. tag_matching: The join_node uses hash tables
to buffer messages in its input ports. When it has
received messages at each port that have match-
ing keys, it creates an output tuple with these
messages.

The buffering policy should be determined by users,
because it is a semantics problem that can not be
solved by our tool. The transformation tool will report

tbb:: flow :: graph g;

double x,y,z;

tbb:: flow :: broadcast_node<tbb:: flow:: continue_msg>
NodeO(g) ;

tbb:: flow :: function_node <tbb:: flow :: continue_msg ,
double> Nodel(g,tbb:: flow:: unlimited ,[&](tbb::

flow :: continue msg _msg) {
int a = rand () % 100;

x = sin(a);

return x;

b

tbb:: flow :: function_node<tbb:: flow :: continue_msg ,
double> Node2(g,tbb:: flow:: unlimited ,[&](tbb::
flow :: continue_msg _msg) {

int b = rand() % 100;
y = cos(b);
return y;

1)

tbb:: flow :: join_node <tbb:: flow :: tuple <double,double >,
tbb:: flow :: queueing> joinNodel (g);

tbb:: flow :: function_node<tbb:: flow:: tuple< double,
double >,double> Node3(g,tbb:: flow::serial ,[&](
tbb:: flow :: tuple<double, double> nodeTuple) {

z = sqrt (tbb:: flow:: get <O>(nodeTuple) * tbb::flow
::get <0>(nodeTuple)) + sqrt(tbb::flow:: get
<1>(nodeTuple) * tbb::flow:: get <l>(nodeTuple)
)

return z;

3
tbb:: flow :: make_edge (NodeO , Nodel) ;
tbb:: flow :: make_edge (Node0 ,Node2) ;

tbb:: flow :: make_edge (Nodel, get <0>(joinNodel .
input_ports ()));

tbb:: flow :: make_edge (Node2, get <1>(joinNodel .
input_ports ()));

tbb:: flow :: make_edge (joinNodel ,Node3) ;

NodeO.try_put (tbb:: flow :: continue_msg ()) ;
g.wait_for_all ();

return O0;

Figure 7: The transformed flow graph source code

Step 3: Generating source code of flow graph edges.

After all of the flow graph nodes have been defined
in the source code, the corresponding code for edges
must be added according to the task graph. In our
example, there is one edge from tasko to taski and




one edge from tasko to tasks. The following code is
inserted:

tbb::flow::make_edge (NodeO,Nodel);
tbb::flow::make_edge (NodeO,bNode2);

The edges from function_node to join_node are de-
fined in different forms. There are two separate egdes
from task; and tasks to the join_node of tasks. For
each input variable <x,y> in join_node, we add an
edge:
tbb::flow::make_edge (Nodel,tbb::flow::get
<0>(joinNodel.input_ports ()));}
tbb::flow::make_edge (Node2,tbb::flow::get
<1>(joinNodel.input_ports()));}

When all the nodes and edges have been defined, the trans-
formation terminates and the parallel code is completed.
The transformed flow graph code of the example in Fig-
ure 1(a) is shown in Figure 7.

4. EVALUATION

To evaluate our approach, we conduct a range of exper-
iments transforming programs from NAS Parallel Bench-
marks (NPB) [5] 3.3, three applications from PARSEC [6]
3.0 and two applications from Intel Concurrent Collections
(CnC) [4]: Mandelbrot and FaceDetection. For all of the
test cases, both a sequential version and an open source
equivalent parallel version are available. This allows us to
compare the performance of the parallel code generated by
our tool against open source parallel implementations from
expert programmers.

All the results are obtained on a server with 2x8-core Intel
Xeon E5-2650 2 GHz processors and 32GB memory, running
Ubuntu 12.04 (64-bit server edition). Both sequential and
transformed parallel code were compiled using GCC 4.8.1
at optimization level -03. TBB 4.3 was used during the
transformation. Performance results are average values of
ten individual runs.

Three programs from NAS Benchmarks, FT, MU and
LU are excluded from our experiments because their trans-
formed parallel code can not be compiled using compiling
flag g++ -std=c++11. A brief overview of programs is given
in Table 1. Each program has been executed using two dif-
ferent input data sets. However, in order to compensate
for the input sensitivity of dynamic analysis, we tried more
inputs whenever possible.

DOALL loop transformation and flow graph transforma-
tion are performed in different level, therefore, they are able
to coexist and nest with each other, which means a node
of a flow graph may contain multiple parallel_for loops.
Users can configure different transformations through com-
mand line. The default configuration is to apply both trans-
formations. In our evaluation, we separate the two transfor-
mations to better clarify their own speedups.

4.1 DOALL Loop Transformation

DiscoPoP gives a ranked parallelizable loop list. We tar-
geted the top 30% of the ranked loop list. Table 2 shows
the number of loops our approach transformed and their
coverage of the original sequential execution time.

Figure 8 shows the speedups of the evaluated programs
generated based on our for-loop automatic transformation.
They are evaluated with 16 threads.

Table 1: Applications and data sets

Program Suite Data Sets
BT NPB3.3-OMP-C AB
CG NPB3.3-OMP-C AB
EP NPB3.3-OMP-C AB
IS NPB3.3-OMP-C AB
SP NPB3.3-OMP-C AB
Mandelbrot | Intel CnC samples | (2,000, 2000, 10,000)

FaceDetection | Intel CnC samples 20,000 images

Blackscholes PARSEC 3.0 65,536 options
Fluidanimate PARSEC 3.0 5 frames
300,000 particles
Canneal PARSEC 3.0 400,000 elements

128 temperature steps

Table 2: Number of transformed loops and their respective
coverage of sequential execution time

Auto Manual
Program #loops(%cov) | #loops(%cov)
BT 34 (83.3%) 30 (99.9%)
cG 9 (79.9%) 16 (93.1%)
EP 8 (99.9%) 1(99.9%)
IS 8 (33.5%) 3 (61.8%)
SP 69 (72.3%) 31 (61.8%)
Blackscholes 3 (99.9%) 1 (99.9%)
Mandelbrot 2 (99.9%) 2 (99.9%)

Official Manual Parallelization Auto Parallelization
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Figure 8: Speedups of official parallelized code and auto-
matically parallelized code

For NAS benchmarks, our automatic parallelizatioin approa-
ch achieved an average speedup of 2.2 across the applica-
tions and data sizes. The average speedup of open source
manually parallelized OpenMP programs is 9.41. The rea-
son that the performance of our generated parallel code is
lower than the official manually parallelized code can be at-
tributed to three important factors: Firstly, the manually
parallelized versions include not only parallelized loops but
also other kinds of parallelization such as task parallelism



( #pragma omp parallel sections). In contrast, our ap-
proach only focused on parallelizing loops in NAS bench-
marks. Secondly, our approach may parallelize each level of
nested loops, which may bring additional overhead. Some
NPB applications do not parallelize nested loops. Finally,
our approach covers code sections which take less than 80%
of the original sequential execution time while the official
parallel versions usually cover code sections which take more
than 90% of the original sequential execution time.

For Blackscholes, the speedups of auto-transformed code
and the official parallel version are 3.19 and 7.12, respec-
tively. The official parallel version manually divides the
data sets according to the number of threads while the auto-
transformed code does not. However, dividing data sets is
heavily semantic related and doing it automatically is far
beyond the state of the art.

For Mandelbrot, the speedup of auto-transformed version
is 12.95. It outperforms the manually parallelized version,
whose speedup is 4.30. The auto-transformed code performs
better because the 2D perfectly nested loop which takes
99.9% of the sequential execution time is transformed into
a recursively divisible two-dimensional iteration space tem-
plate tbb: :blocked_range2d, which has very low overhead
comparing to the CnC parallelization method implemented
in the manual version.

4.2 Flow Grah Transformation

To evaluate the flow graph transformation, we transformed
one Intel CnC sample application: FaceDetection and two
applications in PARSEC benchmark suite: Fluidanimate
and Canneal. We transformed subgraphs of the task graphs
which have been mapped to Program Execution Trees (PET).
Flow graph is equivalent to task graph with additional join_-
nodes.
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Figure 9: FaceDetection logic and flow graph

FaceDetection is an abstraction of a cascade face detec-
tor used in the computer vision community. The face de-
tector consists of different filters. As shown in Figure 9(a),
each filter rejects non-face images and lets face images pass
to the next layer of cascade. An image will be considered a
face if and only if all layers of the cascade classify it as a face.
Our approach detected each filter as a task. When images
stream into the face detector, each filter can be executed
in parallel and returns a bool value of the classified result.
Then a join node is inserted to buffer all the bool values.
In order to decide whether an image is a face, every bool
value corresponding to that specific image is needed. Thus
we configure the transformation tool to use tag_matching
buffering policy in the join node. After performing logical

conjunction of these bool values, weather the image is a face
can be decided. The flow graph of FaceDetection is shown
in Figure 9(b).

There are three filters in the application, which take 99.9%
of sequential execution time. We use 20,000 images as input.
As shown in Figure 10, the speedup of our transformed flow
graph parallel version is 9.92 using 32 threads. There is a
large data set streaming into the flow graph and the object
of graph is created once but executed 20,000 times. The
overhead of creating and initializing flow graph objects is
relatively low. This transformation of flow graph is semi-
automatic and users only need to specify buffering policy in
join_node.

—- Official Manual CnC Parallelization
—A— Semi-automatic TBB Parallelization
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Figure 10: FaceDetection speedups with different threads

In order to illustrate the scalability of the transformed
code, we compare the speedups achieved by official CnC
parallel version and our transformed TBB flow graph ver-
sion using different number of threads. The result is shown
in Figure 10. The performance is comparable using two and
four threads. When more than eight threads are used, the
official CnC parallel version outperforms ours. The reason
is that the official CnC parallel code has been heavily op-
timized and restructed. For example, some data structures
have been altered from vector to CnC item_collection. Be-
sides, it uses not only task parallelism but also data paral-
lelism. These changes are obviously beyond the capability
of an auto-parallelization approach. In fact, as shown in
Figure 10, when using just one thread, the speedup of of-
ficial CnC parallel version is already 2.00, because of the
optimizations.

Note that a parallel code with flow graph can result in
high speedup only when the program actually has the flow
graph pattern. If the flow graph transformation is applied
for the program without a heavily executed flow graph, the
speedup is relatively low. To demonstrate this problem, we
evaluated two applications in the PARSEC benchmark suite.

Fluidanimate uses an extension of the Smoothed Par-
ticle Hydrodynamic (SPH) method to simulate an incom-
pressible fluid for interactive animation purposes. Task par-
allelism with flow graph have been detected in two functions
of fluidanimate: RebuildGride and ProcessCollisions.

In RebuildGrid, a code section performing the Courant-



bool cfl_cond_satisfied=
false ;

for (int di = —1; di <= 1;
++di) {

if (lcfl_cond_satisfied) —
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Figure 11: Tasks and their code sections in RebuildGrid of
fluidanimate

Friedrichs-Lewy (CFL) condition check can be executed in
parallel with the remaining part of the function. Figure 11
shows the tasks detected by our approach and their corre-
sponding code sections. Task 1 performs the CFL condition
check. The flow graph is shown in Figure 11(c), which is
defined within a deeply nested loop. At each iteration, the
object of the flow graph is firstly created and then executed,
therefore, the overhead is very high. The local speedup of
the auto-transformed code is 1.63.

Another flow graph is identified in the function Process-
Collisions. It contains six loop nests checking whether a
particle hits any of the six surfaces of the 3D cube space.
DiscoPoP finds that these six loop nests do not have any
data or control dependence with each other, so that they
can run in parallel. Each loop nests is identified as a task
in our approach. Figure 12 shows the six tasks and their
corresponding code sections. Figure 12(g) shows the flow
graph. Whenever ProcessCollisions is called, the objects
of the flow graph are created and initialized, but they are
executed only once. Such overhead is also very high. The
local speedup of the auto-transformed code is 1.81.

Canneal is a kernel that uses cache-aware simulated an-
nealing (SA) to minimize the routing cost of chip design. A
flow graph is detected in function netlist_elem: :routing
_coast_given_loc. As shown in Figure 13, there are three
tasks: taski and tasks calculate fanin_cost and fanout_cost
respectively. T'asks adds those two values and writes the fi-
nal result to total_cost. Figure 13(d) shows the correspond-
ing flow graph. The situation is the same with Process-
Collisions in Fluidanimate. After creating and initializ-
ing the object, the flow graph is executed only once, which
brings overhead. The speedup is 1.32.

S. RELATED WORK

Static automatic parallelization methods have been suc-
cessfully applied to achieve loop parallelism [11, 21]. Un-
fortunately, many parallelization opportunities are missed
due to the lack of runtime information. Speculative paral-
lelization techniques [25, 8] exploit parallelism in a way that
instructions can be scheduled at a time when it has not been
determined that the instructions will need to be executed.
However, to perform these approaches, hardware support is
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Figure 12: Tasks and their code sections in ProcessColli-
sions of fluidanimate
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Figure 13: Tasks and their code sections in
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usually needed.

Ottoni et al. [20] propose an automatic approach called
Decoupled Software Pipelining (DSWP). DSWP exploits the
fine-grained pipeline parallelism and generates the parallel
code. It requires fine-grain communication primitives to
communicate register values. Li et al. [15] automatically
parallelize imperative C programs at thread level, but their



approach is limited to producer-consumer relations from ar-
ray and pointer code.

The approach presented by Tournavitis et al. [24] uses
both static analysis and dynamic profiling to detect po-
tential parallelism. A machine-learning based prediction
mechanism is used to map the parallelism to different ar-
chitectures. They generate parallel code using OpenMP
annotations and target on parallel for-loops. However, the
code transformation is relatively simple. They do not per-
form high-level code restructuring, which can exploit coarse-
grained task parallelism. In their recent work [23], they ex-
ploit pipeline parallelism.

OpenRefactory/C [10] is a tool providing many refactor-
ing methods in C programs, but it does not automatically
transform sequential code to parallel code. The approach
presented in [22] transforms serial C++ code to parallel code
using OpenMP directives. However, it requires users to de-
fine semantics of high-level abstractions in advance.

6. CONCLUSION AND FUTURE WORK

We proposed a novel auto-parallelization method integrat-
ing data-dependence profiling, task parallelism extraction
and source-to-source transformation. We have made the fol-
lowing contributions:

e Based on the program analysis tool DiscoPoP, our par-
allelization approach automatically generates parallel
code without requiring users to annotate parallel code
sections in advance.

e We extract coarse-grained task parallelism from CU
graph mapped to Program Execution Tree (PET).

e To the best of our knowledge, our approach is the first
tool to transform sequential C/C++ source code to
TBB parallel code, which exploits both loop paral-
lelism and task parallelism without special compiler
support.

Future works will focus on finding more parallel patterns
in the task graph, since flow graph is general enough to be
adapted to support other patterns such as pipeline. We also
intend to use other techniques like automatic generation of
unit testing to validate the correctness of the transformed
code.
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