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Abstract Shifting cultivation is a dominant land-use
system in Laos, and fire is the tool commonly used to clear
fallow vegetation for subsequent cultivation. We assessed
the feasibility of active fire data derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) for moni-
toring fires in Laos. Specifically, we investigated the poten-
tial of the active fire data as input into monitoring, reporting
and verification (MRV) systems to assess the effectiveness
of measures related to Reducing Emissions from
Deforestation and Forest Degradation plus the enhancement
of forest carbon stocks (REDD+). Our qualitative and quan-
titative accuracy assessments of the fire data yielded mixed
results with varying degrees of undetected fires and false
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detections. Hence, at IPCC Tier 3, the uncertainties inherent
in the detection accuracy become too large. Active fire data
can be valuable for supporting national-level MRV at Tier 2
in combination with auxiliary data for characterizing fire-
dependent local land-use systems, such as shifting
cultivation.

Keywords MODIS - Fire monitoring - REDD - MRV - Slash
and burn - Laos

Introduction

Fire plays an important role in land management in continen-
tal Southeast Asia. For example, fire is used to clear forests
and prepare land for agricultural purposes (Baker and
Bunyavejchewin 2009). During recent decades, the higher
frequency and intensity of fires in the mosaics of deciduous
and evergreen forests of the region negatively affected the
forest environment and human welfare (Denman et al. 2007,
Baker and Bunyavejchewin 2009). This problem is of
particular concern in the Lao People’s Democratic Republic
(PDR), hereafter Laos, where most forests are considered fire-
dependent but where increased fire frequency and intensity
threaten and may alter these forest ecosystems and their
sustainability, thereby diminishing forest carbon storage
capabilities and subsequent sequestration ability (Goldammer
2006; Baker and Bunyavejchewin 2009; Siegert et al. 2001).
The global burning of biomass and soil organic matter
is estimated to produce a gross carbon emission of
approximately 2.0 petagrams of carbon (PgC) per year,
including an estimated net emission of 0.5 PgC due to
tropical deforestation and degradation (van der Werf et
al. 2010).

In addition to their ecological, economic, health and
safety impacts, fires release a variety of greenhouse gases
(GHGs) and aerosols, which play a role in radiative forcing
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and thus global climate change (Page et al. 2002). Many of
these GHGs, such as methane (CH,4) and carbon monoxide
(CO), are important for atmospheric chemistry, climate and
terrestrial ecology (Crutzen and Andreae 1990), and fire-
related emissions of the non-CO, GHGs contribute a warm-
ing potential of approximately 10 % in CO, equivalents
(van der Werf et al. 2009). In addition, fire results in the
emission of soot particles that contain black carbon
(elemental C, contained in smoke), which can dramatically
impact on health and local and regional climate parameters
(Ramanathan and Carmichael 2008). In general, large
uncertainties remain about the extent of regional and global
fire emissions because of the difficulties inherent in
estimating the amount and type of biomass burned, which
varies as a function of space, time and type of combustion
(Andreae and Merlet 2001).

The greenhouse gas emissions associated with fire render the
monitoring of vegetation fires important for activities targeted
at reducing GHG emissions from land use and land-use change.
Such monitoring necessitates an assessment of the land-use
changes over longer time spans to capture the long-term effects
of fire. For example, in many farming systems, such as shifting
cultivation, the original amount of biomass may regrow if the
fallow lengths are sufficiently long. Hence, the net carbon
emissions will be near zero (Goldammer 2006; Crutzen and
Andreae 1990). However, a reduction of fallow periods or a
conversion of shifting cultivation plots to permanent annual
cropping systems will most likely result in a loss of above-
ground carbon and soil organic carbon. However, the amount of
loss will tend to vary substantially in response to local geophys-
ical conditions and land-management strategies (Bruun et al.
2009). Hence, the impacts of changes in fire activity are of
increasing concern to the global community and are related to
international efforts to Reduce Emissions from Deforestation
and Forest Degradation plus the enhancement of forest carbon
stocks, sustainable management of forests and conservation of
forest carbon stocks (REDD+) under the United Nations
Framework Convention on Climate Change (UNFCCC).

The most pertinent cause of vegetation fires in Laos is
arguably the use of fire for the clearing of land for agricul-
tural purposes, particularly for shifting cultivation. Shifting
cultivation is still widespread in Laos and typically follows
slash-and-burn practices, where the vegetation of a plot of
land is cut in January or February and is left to dry for
several weeks. The dried vegetation is burned toward the
end of the dry season, primarily during March and April
(Van Gansberghe 2005). Although no unambiguous deter-
mination of the extent of shifting cultivation is available, the
number of households involved in shifting cultivation across
Laos was estimated at approximately 943,000 or 17 % of the
population in 2005, occupying 28 % of the country’s surface
(Messerli et al. 2009). Still, no estimates exist to specify the
amount of change in shifting cultivation practices over time.
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The high density of fire-dependent shifting cultivation
and its importance for changes in forest carbon stocks calls
for the inclusion of fire activity in REDD++-related monitor-
ing systems in Laos. Moreover, fires serve as a proxy for
land-use modifications and conversions. Changes in fire
dynamics may help assess the rapid transformation of land
use in upland Southeast Asia to tree plantations, mainly
rubber, tea and pulp wood. Careful fire monitoring may also
support the estimation of the forest degradation caused by a
shortening of fallow cycles or by an increase in fire density
due to other proximate causes. Finally, the regular monitor-
ing of fire occurrences potentially allows the monitoring of
the permanence (or non-permanence) of changes in fire
activity under REDD+ activities.

Satellite data can facilitate the detection of vegetation fires
(GOFC-GOLD 2009; Justice et al. 2006; Kaufman et al.
1998). Satellites can capture the time and location of actively
burning fires at the time of the satellite overpass and can
therefore provide an indication of the density of fire activity
(Csiszar et al. 2006). Increasing fire return intervals can indi-
cate, for example, shorter fallow periods in shifting cultivation
systems. Decreasing fire activities in one location but increas-
ing fire activity in neighboring locations may imply a local
shift in fire use. More fires over time per unit area may inhibit
tree growth and the regeneration of successional vegetation
into young closed forests, with potentially detrimental effects
on soil fertility and above- and belowground carbon seques-
tration. Therefore, an assessment of both the spatial distribu-
tion and the temporal dynamics of vegetation fires is
important (GOFC-GOLD 2009) and may offer a useful com-
ponent of monitoring activities for REDD+.

This work originated from a REDD+ project of the
Deutsche Gesellschaft fiir Internationale Zusammenarbeit
(GIZ), which is currently being implemented in Laos. The
project strives to monitor, report and verify emission reduc-
tions from REDD+ payments over time and space. Because
fire is a major land management tool in Laos, fire monitor-
ing with remotely sensed data may be both an effective and
an efficient component of a related national monitoring,
reporting and verification (MRV) system. We investigated
the utility of the active fire products derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
sensor. We focus on two different levels of analytical com-
plexity that were categorized by the Intergovernmental
Panel on Climate Change (IPCC) and that are relevant for
countries that practice the emission reduction goals of
REDD+: Tier 2 (country level) and Tier 3 (sub-country
level). At higher Tiers, the accuracy increases, but the ana-
lytical complexity and data requirements increase as well
(Maniatis and Mollicone 2010; Penman et al. 2003). Our
overall objective is to assess the feasibility of the active fire
data derived from MODIS to monitor vegetation fires in
Laos at Tier 2 and Tier 3. We investigated the value of these
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data as an input into national MRV systems by assessing the
suitability of the information on active fires for sub-national
and national-level monitoring.

Data
Fire Monitoring and Mapping with MODIS

A large number of studies have demonstrated the value of
optical and thermal remote sensing for quantifying fire
occurrences and the areas affected by fire (Giglio e al.
2006a; Eva and Lambin 2000; Roy et al. 2002). The
MODIS sensor from NASA is the first sensor to include
fire-monitoring capabilities in its design. To date, MODIS is
one of the most important data sources for the global map-
ping of both fire locations and burned areas. MODIS sensors
are mounted aboard the Terra and Aqua satellites, which
cross the equator daily at approximately 10:30 am and
10:30 pm and 1:30 am and 1:30 pm, respectively. Shortly
thereafter (for the post meridiem [pm] overpasses) and
shortly before (for the ante meridiem [am] overpasses), the
satellites record data for Laos. The Sun-synchronous orbit
allows both satellites to pass over the same area at the same
time in every 24-hour period.

Both satellites make up to two land observations each per
day, which are used to generate a range of products that
capture the location of a fire event, the energy emitted and
the flaming and smoldering ratio, and they allow the area
burned to be estimated (Justice et al. 2006; Davies et al.
2009). Because of the long data record with daily observa-
tions from two satellites since 2002, MODIS-derived fire
products may also permit assessment of the seasonality,
timing and interannual variation of fires (Giglio et al.
2006a) and may thus allow the effectiveness and efficiency
of REDD-related management interventions to be character-
ized (GOFC-GOLD 2009).

MODIS Active Fire Data

The fire detection algorithm from MODIS identifies and
characterizes actively burning fires (e.g., wildfires and agri-
cultural fires) and other thermal anomalies (e.g., volcanoes)
with thermal information. The fire detection algorithm is
fully automated and identifies pixels with one or more
actively burning fires for the entire globe. These pixels are
commonly known as “fire pixels”. Each fire pixel may
contain one or more fires burning within the pixel area.
The actual ground area observed by each pixel varies with
the viewing angle of the satellite, that is, the pixel size
increases further away from the nadir (Giglio 2010).

The size of a fire can be much smaller than the 1 km?
pixel size (Fig. 1) because the actively burning area is

frequently below 1 km? even in large fires. This generaliza-
tion applies particularly to Laos, where small fires predom-
inate because most are related to agricultural activities. The
size of detectable fires depends primarily on the fire tem-
perature, fire area, vegetation cover and sensor viewing
angle. The MODIS sensor can detect flaming fires
(~1,000 Kelvin, K) as small as 100 m? under ideal condi-
tions with a 50 % detection probability, and it can detect a
1,000-2,000 m* smoldering fire (~600 K) (Hawbaker et al.
2008; Giglio et al. 2003; Kaufman et al. 1998). The detec-
tion rates will be higher if the daily peak fire activity coincides
with the time of satellite overpass (Schroeder ef al. 2005).

Detection confidence is estimated in the detection
procedure and ranges from 0 to 100 % (Giglio et al.
2003). The confidence level is used to classify all fire pixels
as low confidence [<30 %], nominal confidence [30-80 %]
or high confidence [>80 %]. Higher confidence levels can
be applied to reduce the number of false alarms (errors of
commission) at the expense of a lower detection rate (Giglio
2010).

Davies et al. (2009) gave an overview of the MODIS
active fire data products and described their delivery via
the Fire Information for Resource Management System
(FIRMS). The data are also accessible through the
Global Fire Information Management System (GFIMS)
of the FAO or the MODIS Fire Information System
(FIS) at the Asian Institute of Technology (AIT). We
proceed by concentrating on the information delivered
by FIRMS (http://earthdata.nasa.gov/data/nrt-data/firms).
Fire pixels are represented in the FIRMS system as
points located at the center of the fire pixel, which
may not correspond to the actual location of the fire.
We used data from the MODIS Data Processing System
(MODAPS), which generates preprocessed, quality-checked
active fires and is recommended by the FIRMS team for
historical analysis. However, one disadvantage of the
MODAPS data is the time delay of approximately 2 months
until the data are available due to the additional processing
requirements. For the accuracy assessment, we used the
MODIS Rapid Response (MRR) data, which include active
fires in near-real time with a lag of approximately 2 to 4 hours
between satellite overpass and data availability.

Caveats About the Active Fire Data

Cloud cover and smoke obstruct fire detection and may lead
to high errors of omission (undetected fires, Roy et al.
2008). It is therefore probable that fire counts are under-
estimated, particularly in tropical regions (Giglio et al.
2006b; Schroeder et al. 2008). However, clouds are also
indicative of rain when the fire probability is lower, which
may reduce this bias somewhat (Aragao and Shimabukuro
2010). The fire season in Laos coincides with the dry
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season, when cloud cover is low (and rainfall negligible).
Therefore, the potential bias in Laos due to cloud cover is
most likely to be small for MODIS fire products. Moreover,
false detections are observed in areas where the canopy
cover exhibits strong differences in surface temperatures.
These differences may occur if gaps in the forest canopy
cover are present. Such gaps can be due to recent clearings
(Schroeder et al. 2008). Another fraction of false detections
may be related to recent burning activities, where homoge-
nous areas of dark char cause errors of commission
(Schroeder et al. 2008).

The size of a particular fire cannot be calculated from the
active fire data. Although a direct relationship may exist
between the number of fires detected in a specific area, the
size of the area affected, the smoke emitted and the biomass
burnt (Aragao and Shimabukuro 2010), the degree of these
linkages is unclear from the active fire data (Balch et al.
2010). Moreover, the active fire data do not distinguish
between one or more fires actively burning within a pixel
at the same overpass (Fig. 1), yet it is often quite likely that
multiple fires occur within a pixel during the burning season
because of the coarse spatial resolution of the fire records
(Giglio 2010). We concentrate our analysis on fire pixels.
This approach makes our estimates more conservative
because it underestimates the actual number of fires in the
case of many sub-pixel fires. In contrast, larger fires or a fire
front may saturate more than one pixel, but it is probable
that such fires are rare in Laos. The number of fire pixels is
therefore expected to be considerably lower than the actual
number of fires because of overpass gaps and frequent sub-
pixel fires in small-scale agriculturally used areas. These
circumstances will cause the actual fire density to be under-
estimated. A related shortcoming is that the exact location of
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a fire within the pixel is unknown. This consideration is
particularly important for the assessment of accuracy be-
cause it is difficult to associate the detected fire with a
specific land-use patch within a pixel.

Existing Accuracy Assessments of the Active Fire Data

We rely on evidence from the literature, our own accuracy
assessment and communications with experts to assess the
accuracy of MODIS fire products to proxy small-scale veg-
etation fires in shifting-cultivation landscapes. In Laos, the
slashed and dried vegetation on agricultural plots provides
high fuel loads because of the biomass accumulated during
the fallow period. These factors produce a longer burning
time, more combustion and thus larger and hotter fires
compared to fires in primary forests, thereby increasing the
likelihood of detection, because hotter fires are more likely
to be detected (Schroeder e al. 2008; Langner and Siegert
2009). However, the affected areas are fairly small in Laos.
Hence, the absolute burning time per fire may be smaller
than that for large fires.

The MODIS fire team frequently detected shifting culti-
vation, for example, in the Congo Basin (C. Justice, pers.
comm.). However, fire detection in Laos may be negatively
affected by the rougher topography, which indirectly influ-
ences fire detection because of overall cooler temperatures.
Extreme care is required, particularly for the examination of
interannual variation, because of incomplete sampling
caused by gaps in the overpass timing and the uneven data
quality returned by the sensor (C. Justice, pers. comm.).

Therefore, stringent accuracy assessments with indepen-
dent reference data are required to obtain an estimate of the
validity of the MODIS active fire data. Most existing



Hum Ecol

assessments validate the accuracy of active fire data with
auxiliary satellite imagery. These assessments include
Schroeder et al. (2008) in Amazonia, Morisette et al.
(2005) in South Africa, Csiszar et al. (2006) in Northern
Eurasia and Hawbaker et al. (2008) in the United States.
Their results suggest that omission errors are relatively
frequent whereas commission errors are comparatively rare,
particularly for smaller fires. Tansey et al. (2008) studied
Indonesian peat fires in Kalimantan and concluded that the
quality of active fire data depends crucially on vegetation
type and function, again with high omission errors. Another
study of Kalimantan peatlands validated the active fires with
20 m SPOT imagery and found 27 % false alarms, mainly
attributed to hot surfaces after fires, and 34 % undetected
fires, particularly in dense vegetation (Liew et al. [2003]
cited in Miettinen ef al. 2007). To the best of our knowledge,
only the accuracy assessment by Tanpipat et al. (2009)
investigates the usefulness of the active fire locations for
assessing the occurrence of small forest fires. For three
study sites in Thailand, the authors validated fire pixels with
field observations within a 500 m radius of the pixel center
(covering 79 % of the pixel area). A fire detected by MODIS
was labeled as an accurate detection if a burned area of at
least 50 by 50 m was present. The detected burned areas
were between 0.16 ha and 192 ha. The mean overall accu-
racy of detection was 92 % for all three sites, and it even
reached 98 % for northern Thailand, which is relatively
similar to northern Laos in land use and ecoregional character-
istics. This study therefore suggests that active fire data may
indeed be useful for monitoring vegetation fires in Laos.

Methods
Processing of Active Fire Data

For our historical analysis of the location, seasonality and
interannual variation of fire records in Laos, we used the
active fire data (MCD14ML, collection 5.1). We selected all
available fire records from 4 July 2002 to 30 June 2010 from
both the Terra and Aqua satellites, because it is probable that
the detection rates are greater if both sensors are used
(Hawbaker et al. 2008). However, the detection rates of
Aqua tend to be greater in the tropics because the overpass
at approximately 1:30 pm occurs at a time close to that of
the peak fire activity (Giglio ez al. 2006a). From these data,
we defined a fire pixel as one that contained one or more
fires per day. Fires in Laos rarely burn longer than 1 day
because the dry vegetation combusts quickly.

Biomass burning in the tropics is concentrated in a burn-
ing season that typically extends from January through
March in the Northern Hemisphere and from July through
September in the Southern Hemisphere (Crutzen and

Andreae 1990; Giglio et al. 2006a). In Laos, fire occurren-
ces are strongly clustered in the dry season, from February
through early April. Hence, we derived fire years and fire
seasons to account for the distinct seasonal patterns of fire
occurrences and to improve interannual comparisons (Koren
et al. 2007; Giglio et al. 2006a; Boschetti and Roy 2008).
This approach also reduced errors of commission in the
data, as the selected fire records are limited to the subset
of fires most likely caused by agricultural practices such as
shifting cultivation and by forest clearing activities.

To define the start of the fire year, we searched for the
day(s) within each calendar year for which the maximum
number of fire events had been recorded. We then defined a
fire year as the period half a year (182 days) before and after
the day with the maximum fire occurrences. Thus, all fire
years last for 365 days, and we ignored leap years for sim-
plicity. For example, we refer to the fire year of 2003 when the
peak fire season (February to April) was in 2003, although this
particular fire year had already commenced in September
2002. In the next step, we defined the fire season as the
shortest period within each fire year that contained 90 % of
all fires. The fire seasons had various lengths for the different
years as well as various start and end points. This approach
avoided overlaps and thus avoided double counting. The
definition of distinct fire seasons better reflects the effect of
short-term weather fluctuations on fire patterns because farm-
ers will immediately respond to changing conditions, for
example, by postponing biomass burning if the vegetation
still contains too much humidity. In years with excessive
rainfall, the period allowed for the slashed vegetation to dry
will be longer than in drier years. Hence, burning will be
postponed. To account for probable variations in the season-
ality of burning among different regions, we calculated fire
years and fire seasons separately for ecoregions because
ecoregional characteristics capture distinct patterns of climate
and vegetation. We used the Global 200 ecoregions from the
World Wide Fund for Nature (WWF) to stratify the fire data
by ecoregion (Fig. 2). The final subset of fire records reduces
commission errors of fires related to agricultural practices in
the study region because the selection better matches the
cyclical pattern of farming systems.

Identification of Fire Density

To visualize the spatial clusters of fire occurrence for Laos,
we used preselected fire records from the previous section to
produce maps of fire density for all fire seasons from 2003
to 2010. The maps describe fire counts per unit area, and
they allow the distinguishing of hotspots (with high fire-
occurrence density) and coldspots (with low fire-occurrence
density). We used nonparametric kernel density estimation
(Diggle 1985) with a fixed bandwidth of 45 km to produce
continuous fire intensity surfaces from the active fire data.
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Fig. 2 Ecoregions and
provincial boundaries in Laos.
Source: Authors, data from
http://www.worldwildlife.org/
wildplaces/about.cfm

Accuracy Assessments

A quantitative accuracy assessment of the active fire data is
a challenge because of the difference in spatial resolution
between the fire data and the size of a typical vegetation fire
in Laos. It is problematic to conclude with certainty whether
a location within a 1 km? pixel was affected by fire because
the sub-pixel location of the fire is unknown. Nevertheless,
we derived qualitative and quantitative inferences about the
validity of the active fire data by comparing them with three
independent data sources. First, we assessed the accuracy of
the active fire data with fire locations that we geolocated in
the field during the 2010 fire season. Second, we compared
the active fire data with digitized shifting cultivation plots
that were preceded by clearing with fire. Third, we used
very-high-resolution satellite imagery available in Google
Earth to visually compare burned areas with the active fire
data.
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Results
Accuracy Assessments
GPS-Supported Field Verification

Field verifications of the MRR active fires were conducted
from March 29 to 31, 2010 by locating the active fires and
recently burned areas in the field using GPS receivers.
However, this approach posed two problems. First, most
of the areas burned are not connected to the road network,
and reaching the detected fire was often difficult because of
the thick vegetation dominated by bamboo. Second, the
spatial resolution of the MODIS fire pixels renders it im-
possible to state with certainty whether a burned area on the
ground was the result of a detected fire. In most cases, the
entire pixel could not be overseen in the field, and a degree
of uncertainty always remained. Nevertheless, 12 fires were
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assessed, and ten of these (83 %) contained a fire on the
ground within the potential area affected. In addition, 17
recent vegetation fires, all larger than 10 ha, were detected
along the road. These fires did not have a corresponding
active fire record, possibly because of a mismatch between
the overpass and the fire activity or because of smoke.
Errors of omission thus seem considerably higher than
errors of commission in this small sample.

We also analyzed 151 GPS points of burned areas in Bokeo
province in northwestern Laos (cf. Fig. 2). All GPS points
were taken during the peak of the fire season between 29
March and 18 April 2010. We evaluated these with
corresponding ground photographs that recorded all burned
areas containing an active fire within 2 weeks before the
acquisition of the GPS data. We therefore selected these
2 weeks from the MODAPS active fire data and labeled a
GPS point as a positive detection if it fell inside a 1 km? fire

Fig. 3 MODIS fire pixels and
successional land cover.
Source: Authors. Note: A//
rectangles indicate fire pixels,
and the yellow arrows point to
probable burn scars. All fires
were recorded within 2 weeks
before image acquisition

pixel. The results showed that 58 % of the GPS records were
captured by the active fire data.

Comparison with Very-High-Resolution Imagery
from Google Earth

We assessed the accuracy of the fire locations with very-high-
resolution imagery (VHRI) available from Google Earth
(mainly true color composites of QuickBird and IKONOS)
by summer 2010. We digitized the extent of the 66 available
tiles of VHRI in Laos, which covered approximately 20 % of
the country. All acquisition dates were between January 2003
and April 2009. We selected all active fire records that were
recorded within 14 days before the image acquisition, and we
placed a 1 km square around each fire location. The resulting
24 fire records that matched the imagery in space and time
allowed a visual comparison between the size of a fire pixel
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Table 1 Number and area of shifting cultivation plots intersected by
fire pixels

Plots (number)

Year Total Inside fire pixel % inside fire pixel
2005 96 47 49 %
2006 89 30 34 %
2007 95 76 80 %
2008 120 22 18 %
Sum 400 175 44 %
Area (hectares)

2005 143.7 83.4 58 %
2006 102.8 399 39 %
2007 103.5 84.6 82 %
2008 135.6 30.3 22 %
Sum 485.5 238.1 49 %

and the burned area visible in the imagery of the subsequent
2 weeks.

In most cases, we were unable to conclude whether a fire
event was correctly recorded by MODIS. The 1 km resolution
of the active fire data complicates a consistent accuracy as-
sessment because the location within a pixel of detected fires
with sub-pixel size is unknown. Moreover, making a definite
decision regarding whether a burned area was present in an
image was often not possible. Therefore, the conclusion that

pixels potentially contained a burned area remained subjec-
tive. Figure 3 gives an example of this spatial mismatch and
shows six fire pixels detected with high confidence. We in-
ferred the probable burn scars in the imagery on the basis of
our own visual interpretation. In examples A) and B), we
indicate the potential burn scars with yellow arrows. Both
examples demonstrate the capability of the detection algo-
rithm to detect fires of sub-pixel size. Examples C) and D)
contain probable burn scars that may have been caused by fire.
In examples E) and F), we were unable to detect burned areas
or burn scars using visual interpretation; these pixels may thus
represent false alarms. In conclusion, the evidence from this
assessment is mixed, and Fig. 3 demonstrates the difficulty of
validating the active fire data using Google Earth.

Validation with Digitized Shifting Cultivation Plots

We analyzed digitized plots of shifting cultivation areas for a
village in the Viengkham District of Luangprabang Province.
The data were recorded yearly during the cropping seasons of
2005 to 2008 and include only cultivated plots. Before the first
year of cultivation, each plot was cleared with fire. We deleted
all plots that were cultivated for the second or third consecu-
tive year because there was no associated clearing with fire.
The remaining data consisted of 400 polygons for the 4 years.
We compared these with all active fires from the fire season of

Fig. 4 Overlay of shifting
cultivation plots and fire pixels.
Source: Authors. Note: Each
map contains shifting cultivation
plots and fire pixels of the EN
respective year. Only plots from
the first year of the cropping
cycle were included along with
all fires from the particular fire
season irrespective of the i
detection confidence
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the same year, irrespective of confidence classes. Of the 400
recorded plots of shifting cultivation, 175 (44 %) fell com-
pletely within or intersected a 1 km? area that was potentially
affected by a fire (Table 1). The performance of the fire
records varies over the years from a meager 18 % in 2008 to
80 % in 2007. The large variation may have been due in part to
the El Nifio years 2006 and 2007, which were associated
with little cloud coverage in Laos. It is probable that this
situation improved the detection accuracy. This period was
followed by a La Nifia year in 2008. The accompanying
clouds and excessive rainfall may have decreased the number
of detections.

Figure 4 visualizes the overlay of the shifting cultivation
plots with the 1 km? pixels of the respective year. The
spatial mismatch between the size of a plot and the size of
the pixel that contains the fire is evident. Fires in shifting
cultivation areas are underestimated by the MODIS active
fires (high omission errors). But Fig. 4 demonstrates that
commission errors are very low and only in 2005 one
MODIS pixel was a false positive detection (commission
error). In conclusion, this assessment does not substantiate
the use of the MODIS active fire data as a component for
MRV with the aim of monitoring changes in shifting culti-
vation systems at the plot and village level (Tier 3).

Spatial and Temporal Patterns of Fire Activity
Overpass Time

The satellite overpass time is crucial for the detection algorithm,
which relies on the size and temperature of fires at the time of
overpass (Giglio et al. 2003; Schroeder ez al. 2005). Overpasses
at peak fire activity are most likely to produce a large number of
successful detections. Fire activity remains undetected if it does
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not coincide with the satellite overpass time. In Laos, the
burning of vegetation typically occurs during the hotter hours
of the day, when the slashed vegetation is dry after the night’s
moisture (Van Gansberghe 2005). A number of experts on Laos
set the timing of the local fire activity from 12:30 pm until after
5 pm. If fields are very close to villages, the clearing fires may
even be lit after sunset to pinpoint flying sparks against a
background of darkness because sparks can set fire to thatched
roofs (O. Ducourtieux, pers. comm.).

The most frequent time at which clearing fires occur in
Laos coincides particularly well with the afternoon overpass
of the Aqua satellite, extending from 12:30 pm to 2:30 pm
(the average overpass time is 1:29 pm). Because fire activity
is high after noon, 87 % of all detected fires in Laos since
May 2002 (the onset of Aqua) were detected by the after-
noon overpass of Aqua (Fig. 5, cf. Giglio et al. 20064, b).
This trend is typical for the tropics, where small fires follow
diurnal variations and the fire activity is highest in the early
afternoon (Giglio ef al. 2006a). The morning overpass from
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Fig. 8 Fire density map for
2003-2010. Source: Authors.
Note: The map was created with
a kernel density estimate from
high-confidence fires using a
bandwidth of 45 km, and it
shows the density of fire
activity in 5 % steps on a 5 km
grid
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Terra between 9:47 am and 11:43 am adds another 9 % of
detected fires (the average overpass time is 10:54 am). Thus,
96 % of all detected fires fall between 9:47 am and 2:30 pm.
Few fires were detected by the night-time overpasses be-
tween 21:33 pm and 23:13 pm for Terra and between
1:01 am and 2:44 am for Aqua. The gap between the
Aqua and Terra overpasses around midday, particularly the
lack of overpasses after 2:30 pm to 5 pm, arguably led to
many errors of omission. We hypothesize that a consider-
able number of vegetation fires did not develop sufficient
radiative power to be detectable during the Aqua afternoon
overpass and that this situation negatively affected the de-
tection rates (Schroeder et al. 2005).

Seasonal and Interannual Variation
Figure 6 illustrates the strong seasonality of the detected

fires and the peak fire activity occurring from February
through April."' On average, the maximum number of fires

! Because of the data gaps, all calculations conservatively approximate
fire patterns and should not be interpreted as comprehensive fire
counts.
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between 2003 and 2010 was detected on April 10, just
before the start of the Lao New Year.

Figure 7 shows the interannual variation of fires by detec-
tion confidence. However, interannual variation should be
interpreted with great care because of the shortcomings men-
tioned in “Caveats about the Active Fire Data”. No clear trend
indicating a change in fire densities is discernible. The fewest
fires were detected in 2003 and 2008, with slightly more than
20,000 fires per year. The low fire incidences in 2008 were
likely caused by the La Nifia anomaly, which brought colder
temperatures and more rainfall to Southeast Asia (cf.
“Validation with Digitized Shifting Cultivation Plots”). Most
fires were recorded in 2010, an El Nifio year, with more than
50,000 fires, followed by 2007 and 2004, both years of El
Nifio anomalies (cf. Hompangna er al. [2000], cited in
Douangboupha et al. (2002), and London (2003) for evidence
about the association of the El Nifio drought in 1998 and the
subsequent increase in fires).? Consistently, few fires were
assigned to the low confidence class, and a similar number
of fires have nominal and high detection confidence.

2 See http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ensoyears.shtml
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Fire Density

Maps of fire density were produced at a 5 km spatial
resolution. We prepared the density maps for each fire
season from 2003 to 2010. Figure 8 shows the mean fire
density for all high-confidence fires from the fire seasons of
2003 to 2010. A low fire density is found in the southern
parts of Laos whereas northeastern Laos appears as the
expected fire hotspot because of the dominance of shifting
cultivation systems. These patterns also compare well with
the results of Hurni et al. (this issue). The fire density map
also captures the shifting cultivation in other areas surround-
ing Laos toward the subtropical forests of northern Indochina,
such as the northern uplands of Vietnam, the Xishuangbanna
prefecture of Yunnan province and southeastern Myanmar.
According to the fire data, the greatest number of fires on
the Southeast Asian mainland occurred in the ecoregion of the
northern Indochina subtropical forests (cf. Fig. 2).

Conclusions

We investigated the suitability of MODIS active fire data as
input into a REDD+ MRV system in Laos to monitor
vegetation fires that were largely caused by shifting cultiva-
tion. Unfortunately, representative data for ground valida-
tion of the extent of shifting cultivation in Laos are lacking.
Moreover, a consistent and independent accuracy assess-
ment of the active fire data was complicated by the spatial
mismatch between burned areas of sub-pixel size and the
size of fire pixels. Our accuracy assessment with GPS ver-
ification, project-level field data and Google Earth at Tier 3
(sub-national) failed to yield convincing quantitative evi-
dence of the validity of the active fires at the local level.
Errors of omission (non-detected fires) were particularly
large whereas we observed relatively fewer errors of com-
mission (false alarms).

We see several reasons for these results. First, active fires
suffer from incomplete data records because of gaps in the
overpass timing and multiple fires within one fire pixel. The
partial mismatch between fire activity and satellite overpass
time leads to a substantial underestimation of fire activity,
and a slight deferral of burning activities may grossly affect
the detection rates. Second, the detection accuracy is affect-
ed by a variety of additional factors, such as the satellite
viewing angle, cloud cover and smoke at the time of over-
pass, and the transient response of the sensor due to data
transmission problems. These problems increase errors of
omission and result in a significant underestimation of the
number of fires in Laos. It is probable that both omission
errors and commission errors are spatially clustered because
the data shortcomings of the sensor are not uniform across
space, thus inducing spatial biases in the detected fires. In

sum, the active fire data are not adequate for site-specific
monitoring at Tier 3. We also advise against using the active
fire data for the detection of the interannual changes in
vegetation fires at the local level.

The active fire data only convey information about fire
events, not the size of burned areas. Unfortunately, the
MODIS-based burned-area products (or any other readily
available burned-area product) fail to capture the predomi-
nantly small vegetation fires because the minimum mapping
unit of burned-area products is considerably larger than the
fire-affected areas of most vegetation fires found in Laos.
Therefore, the majority of detected fires did not translate
into burned areas at the resolution of MODIS (own obser-
vation, map available upon request). The estimation of land-
use emissions at the national, sub-national and local level
requires the mapping of burned areas from sensors with
higher spatial resolution than MODIS (e.g., ALOS,
Landsat, or SPOT). For example, the spatial resolution of
Landsat allows the delineation of burn scars as small as 5 ha
(Ballhorn ef al. 2009), which in turn permit fine-scale com-
parisons of fire locations with burned areas. Burned-area
mapping at a high or very high resolution is particularly
relevant for assessing the emissions associated with shifting
cultivation systems. However, most satellite data are optical
and are consequently subject to cloud cover. In addition, the
data must be acquired soon after the fire event to be credibly
attributed to the fire. Very-high-resolution imagery
(IKONOS, QuickBird) could, for example, be used in a
hierarchical sampling framework with Landsat and
MODIS to obtain accurate estimates at Tier 2. RapidEye,
another very-high-resolution sensor that includes the infra-
red channel necessary for fire detection and can provide up
to two observations per year, may allow the delineation of
burned areas, although at high acquisition and processing
costs. In the long run, it is possible that the satellite remote
sensing of forest biomass changes will move toward the use
of sensors that actively emit radiation, such as the RAdio
Detection And Ranging (RADAR) and the Light Detection
And Ranging (LIDAR) systems. RADAR imagery can pen-
etrate clouds, but its use is complex in landscapes with
rough topography due to shadows (DeFries 2008). LIDAR
allows the calculation of three-dimensional canopy structure
and aboveground biomass, but its acquisition involves high
costs (Asner et al. 2010; Ballhorn et al. 2009; DeFries
2008).

Nevertheless, the active fire data are valuable for under-
standing the spatial and temporal variation of fire activity for
larger areas. The data describe well the expected spatial
patterns of fire regimes in Laos. Preprocessing steps, such
as the definition of a fire season and the selection of high-
confidence fires, help to select active fires with lower false
alarms and to improve the appropriateness of year-to-year
comparisons. The identification of fire season and peak fire
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activity from the active fire data can also support the acqui-
sition of additional data such as, for example, auxiliary
imagery to detect burn scars and fire affected areas. In
addition, the calibration of active fires with weather data,
cloud masks and the location of fires in the satellite orbit
track will enhance detection rates and improve intertemporal
comparisons of fire density. Moreover, the evaluation of
active fires will benefit from a consideration of their relation-
ship with burned areas if the necessary information is avail-
able (Tansey et al. 2008). We hypothesize that such
contextualization allows the use of active fire data as valuable
input into the monitoring of vegetation fires at the national
level (Tier 2) and possibly at the provincial or even district
level; however, we are unable to prove this hypothesis because
of'a lack of validation data. Moreover, it will not be possible to
attach the uncertainty estimates to active fire data that are
requested by United Nations Framework Convention on
Climate Change (UNFCCC) for country-level MRV at any
Tier level because of a lack of validation data.

The use of active fire data requires considerable training,
application experience and local knowledge to understand
the possibilities and challenges inherent in the data. It is
important that users of the data have ample experience with
interpreting the quality of active fire data in combination
with contextual information. For example, the combination
of fire records with daily MODIS image subsets can provide
valuable insights that are necessary to assess gaps in the
coverage of active fires and in the quality of the coverage.
Near-real-time access to MODIS image subsets for the areas
of interest will facilitate the interpretation of fire locations in
relation to contextual land-cover data. The transmission of
such large quantities of data may be achieved with resources
that are available in the region, specifically at the Geo-
Informatics and Space Technology Development Agency
(GISTDA), the national space agency of Thailand. In
the future, data transmission will be enhanced by
GEONETCast,” a near-real-time global network of satellite-
based data dissemination systems that transmit satellite and in
situ data, products and services from Earth observation
satellites to users.

Analyses of year-to-year variations from MODIS fire
products must be evaluated very cautiously and carefully.
The lack of historical medium-resolution data, such as data
on climatic variations and land cover, compromises a retro-
spective analysis of fire dynamics. Thus, the establishment
of credible and verifiable historical baselines from active
fire data will be challenging. However, fire records can
provide an important covariate in estimation efforts and
models to assess the causes and determinants of historical
land-use changes at Tiers 2 and 3. Another promising
application of the active fire data toward MRV is in

3 hitp://www.earthobservations.org/geonetcast.shtml
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contributing to the identification of leakage and perma-
nence. Questions to be addressed in this context are whether
fires occur in areas where they should not or if a reduction of
fires in one place is accompanied by increasing fire activity
in neighboring places. The analysis of permanence can be
supported by examining the reduction of vegetation fires in
a country over time, again in combination with auxiliary
data. Another current line of research in estimating fire
emissions is the derivation of the radiative energy of fires
from satellite imagery, including MODIS (Vermote et al.
2009). Methodological advances along these lines may con-
tribute to Tier 2 assessments of emission reductions.

Slight improvements in the detection of active fires are
expected from the planned MODIS successor, the Visible
Imaging Infrared Radiometer Suite (VIIRS) aboard the
National Polar-orbiting Operational Environmental Satellite
System (NPOESS). VIIRS was launched in fall 2011, and it
records thermal data at a higher spatial resolution of 750 m. It
is probable that this higher spatial resolution will increase the
detection capability. The overpass timing of VIIRS will be
similar to Aqua; thus, the afternoon overpass will most likely
be crucial for fire detection. Finally, VIIRS has a larger swath
of 3,000 km compared with 2,330 km for MODIS (Lee et al.
2006). It therefore offers modest improvements in spectral,
radiometric and spatial resolution but no momentous break-
through for the detection of small-scale vegetation fires. It is
more important that the continuation of satellite-based fire
detection at medium resolution appears to be secure.
Research on more effective uses of these data for the MRV
of REDD+ activities is therefore needed to improve our ability
to estimating fire-related GHGs. This capability is particularly
important for areas that are dominated by the use of fire, such
as the shifting-cultivation landscapes of Laos.
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