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The Task: CNN.com Story Highlights
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Highlight Sources in Various Points in the Text
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The Task: CNN.com Story Highlights

The Story Highlights are written by a human editor.
Encapsulate the most important pieces of knowledge in the article.
Culled from various points in the text.
How can we create these Highlights automatically?
AURUM: Automatic Retrieval of Unique information with Machine
learning.
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Previous Work

Svore et al. (2007)
Enhancing Single-Document Summarization by Combining
RankNet and Third-Party Sources
Encouraging ROUGE results: +6% for unigram recall, +3% for
bigram recall
Neural networks used for ranking
Extract exactly 3 Highlights from every article
2nd experiment: try to match the order as well

External Data
Microsoft Live News search logs
Wikipedia articles
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AURUM

Determine Features
1 Inspect the training set and see what the characteristics are
2 Use additional features already existing in summarization and IR
3 Infer other features statistically
4 Assign a weight to each feature using machine learning

Score Sentences
1 For a given article, score each sentence against the features

σ(s) = wposppos(s) +
n∑

k=1

wk fk +

|s|∑
j=1

m∑
k=1

wkgjk

2 Rank sentences by score
3 Use top n sentences as Highlights
4 Use first n sentences as baseline

Itamar Kastner (QMUL) EACL 2009, Information Extraction 1st April 2009 7 / 17



AURUM

Determine Features
1 Inspect the training set and see what the characteristics are
2 Use additional features already existing in summarization and IR
3 Infer other features statistically
4 Assign a weight to each feature using machine learning

Score Sentences
1 For a given article, score each sentence against the features

σ(s) = wposppos(s) +
n∑

k=1

wk fk +

|s|∑
j=1

m∑
k=1

wkgjk

2 Rank sentences by score
3 Use top n sentences as Highlights
4 Use first n sentences as baseline

Itamar Kastner (QMUL) EACL 2009, Information Extraction 1st April 2009 7 / 17



Sentence Features Evaluated per Sentence

Sentence Position

Sentence position score
pi = 1− (log i/log N)

i – position of the sentence in
the article
N – total number of sentences
in the article

Temporal Adverbs
Simple temporal descriptors, the kind used in previous
summarization work: Thursday
Longer phrases which are typical to the training data: after less
than, for two weeks
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Word Features Evaluated per Word

Proper Nouns
Mention of a person or organisation as an indicator of important or new
information (using Charniak’s parser)

Verb Groups
Types of verbs which appear often in the website’s journalistic
writing
TalkVerbs: report, mention, accuse
ActionVerbs: provoke, spend, use
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n-gram Features

n-gram Frequency in Article and Highlights
Frequency and probability of unigrams, bigrams and trigrams
appearing in both the article body and the highlights of a given story.

Trigger Phrases and Spawned Phrases
Trigger Phrases: cause adjacent words to appear in the Story
Highlights, e.g. the word according triggered neighbouring words
in 1 out of every 4 appearances
Spawned Phrases: appear in the Highlights and next to Trigger
Phrases

Highlight (spawned): 61 PERCENT OF THOSE POLLED NOW SAY IT
WAS NOT WORTH INVADING IRAQ, POLL SAYS
Source (trigger): NOW, 61 PERCENT OF THOSE SURVEYED SAY IT
WAS NOT WORTH INVADING IRAQ, ACCORDING TO THE POLL.

Further augmented with WordNet by using the synsets
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Experimental Setup

Training Set and Development/Test Set
Corpus subset Dev/Test Train

Documents 300 1220
Avg. sentences per article 33.26 31.02
Avg. sentence length 20.62 20.50
Avg. number of highlights 3.71 3.67
Avg. number of highlight sources 4.32 -
Avg. highlight length in words 10.26 10.28

Development/Test set used five-fold cross-validation due to small
number of manually annotated articles.
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Experimental Setup

Machine Learning of Feature Weights
1 YASMET, a maximum entropy classifier, was used to automatically

learn feature importance
2 Highlight Sources were manually annotated in 300 articles (the

development/test set)
3 In each of the five folds, YASMET determined weights for the

different features anew
4 The weights were used for the test set of the relevant fold

Itamar Kastner (QMUL) EACL 2009, Information Extraction 1st April 2009 12 / 17



Results: Recall, Precision, F-Measure

System Recall Precision F-Measure
Baseline-fixed 40.69 44.14 42.35
AURUM-fixed 41.88 (+2.96%∗) 45.40 (+2.85%) 43.57 (+2.88%∗)
Baseline-thresh 42.91 41.82 42.36
AURUM-thresh 44.49 (+3.73%∗) 43.30 (+3.53%) 43.88 (+3.59%∗)

AURUM-fixed: always returns 4 sentences
AURUM-thresh: returns between 3 and 6 sentences according to
a threshold learned automatically from the development data

Anywhere between 1 and 7 sentences as Highlight Sources in an
article – usually between 3 and 6
Therefore, impossible to know in advance how many Highlight
Sources needed
Threshold learned from the development set and then used on the
test set

Baseline: always returns the same number of sentences as
AURUM
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Results: ROUGE-1, ROUGE-2 (Recall Metric)

System ROUGE-1 (unigrams) ROUGE-2 (bigrams)
Baseline-fixed 47.73 15.98
AURUM-fixed 49.20 (+3.09%∗) 16.53 (+3.63%∗)
Baseline-thresh 55.11 19.31
AURUM-thresh 56.73 (+2.96%∗) 19.66 (+1.87%)

ROUGE: Recall-Oriented Understudy for Gisting Evaluation
Current standard evaluation metric for automatic summarization
ROUGE-N = ∑

S∈References

∑
ngramn∈S

Match(ngramn)∑
S∈References

∑
ngramn∈S

Count(ngramn)
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Individual Feature Importance

Feature Weight Feature Weight
Sentence position 10.23 Spawn 2-gram 3.73
Proper noun 5.18 Trigger 3-gram 3.70
Superlative 4.15 1-gram score 2.74
3-gram score 3.75 Temporal adjective 1.75
Trigger 2-gram 3.74 Mention of CNN 1.30
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Conclusions

Combination of features
Structural: sentence position
Word-class: proper nouns, word groups
Lexical frequency

Feature weights learned by machine learning techniques

Limited use of external resources
AURUM outperforms a simple yet robust baseline
Linguistic features are useful and comparable to external data
sources

Annotated data set available soon at the following URL:
http://www.science.uva.nl/~christof/data/hl/
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Thank you!

itk1@dcs.qmul.ac.uk
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