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Abstract

The challenge to provide tag recommendations
for collaborative tagging systems has attracted
quite some attention of researchers lately. How-
ever, most research focused on evaluation and
development of appropriate methods rather than
tackling the practical challenges of how to inte-
grate recommendation methods into real tagging
systems, record and evaluate their performance.
In this paper we describe the tag recommen-
dation framework we developed for our social
bookmark and publication sharing system Bib-
Sonomy. With the intention to develop, test, and
evaluate recommendation algorithms and sup-
porting cooperation with researchers, we de-
signed the framework to be easily extensible,
open for a variety of methods, and usable inde-
pendent from BibSonomy. Furthermore, this pa-
per presents an evaluation of two exemplarily de-
ployed recommendation methods, demonstrating
the power of the framework.

1 Introduction
Collaborative tagging systems are web based systems that
allow users to assign keywords – so called tags – to arbi-
trary resources. Tags are used for navigation, finding re-
sources and serendipitous browsing and thus provide an
immediate benefit for users. These systems usually in-
clude tag recommendation mechanisms easing the process
of finding good tags for a resource. Delicious,1 for in-
stance, had a tag recommender in June 2005 at the latest,2
BibSonomy3 since 2006. Typically, such a recommender
suggests tags to the user when she is annotating a resource.
Recommending tags can serve various purposes, such as:
increasing the chances of getting a resource annotated, re-
minding a user what a resource is about and consolidating
the vocabulary across the users. Furthermore, as Sood et
al. [Sood et al., 2007] point out, tag recommendations “fun-
damentally change the tagging process from generation to
recognition” which requires less cognitive effort and time.

Our contributions with this paper are: (i) presenting and
evaluating a tag recommendation framework deployed in

1http://delicious.com/
2http://www.socio-kybernetics.net/

saurierduval/archive/2005_06_01_archive.
html

3http://www.bibsonomy.org/

BibSonomy, an open collaborative tagging system, (ii) pro-
viding researchers a testbed to test and evaluate their meth-
ods in a live system, and (iii) showing first results which
indicate the power of the framework to improve recommen-
dation performance by clever selection strategies.

This paper is structured as follows: In Section 2 we intro-
duce BibSonomy and motivate the task of tag recommen-
dations; in Section 3 we review related work in the field and
continue in Sec. 4 to explain the details of our tag recom-
mendation framework. Then we elaborate on the evalua-
tion methods (cf. Sec. 5) we have used to gather the results
presented in Section 6. The paper closes with a conclusion
and ideas for future work.

2 Application
In this section we briefly introduce BibSonomy, the collab-
orative tagging system used to deploy our framework, de-
fine what a folksonomy is and how we can express some of
its properties, and describe the tag recommendation task.

2.1 BibSonomy
As foundation and testbed for our framework we use the
social bookmark and publication sharing system BibSon-
omy [Hotho et al., 2006a] which is run by us. BibSon-
omy started as a students project in spring 2005 and since
then has evolved into a system with more than 1,500 active
users. The goal was to implement a system for organizing
BIBTEX entries in a way similar to bookmarks in Delicious
– which was at that time becoming more and more popular.
After integrating bookmarks as a second type of resource
into the system and upon the progress made, BibSonomy
was opened for public access at the end of 2005 – first an-
nounced to colleagues only, later in 2006 to the public.

Users of BibSonomy can organize their bookmarks
(URLs, favourites) and publication references by annotat-
ing them with tags. Plenty of features support them in their
work: groups, tag editors, relations, various import and
export options, etc. In particular, a REST-like [Fielding,
2000] API4 eases programmatic interaction with BibSon-
omy and is the cornerstone of external cooperation with
the presented tag recommendation framework. Technically,
BibSonomy is based on several Java modules5 which are
merged in a Java Servlet/ServerPages based web applica-
tion with an SQL database as backend.

4http://www.bibsonomy.org/help/doc/api.
html

5Some of them are freely available at http://dev.
bibsonomy.org/.
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http://delicious.com/
http://www.socio-kybernetics.net/saurierduval/archive/2005_06_01_archive.html
http://www.socio-kybernetics.net/saurierduval/archive/2005_06_01_archive.html
http://www.socio-kybernetics.net/saurierduval/archive/2005_06_01_archive.html
http://www.bibsonomy.org/
http://www.bibsonomy.org/help/doc/api.html
http://www.bibsonomy.org/help/doc/api.html
http://dev.bibsonomy.org/
http://dev.bibsonomy.org/


Figure 1: BibSonomy’s recommendation interface on the
bookmark posting page. The ‘tags’ box contains a text in-
put field where the user can enter the (space separated) tags,
tags suggested for autocompletion, the tags from the rec-
ommender (bold), and the tags from the post the user just
copies.

2.2 Folksonomy
A folksonomy is the datastructure underlying most collabo-
rative tagging systems. It describes the assignment of tags
by users to resources. Formally, a folksonomy is a tuple
F := (U, T,R, Y ) where U , T , andR are finite sets, whose
elements are called users, tags and resources, resp., and Y
is a ternary relation between them, i. e., Y ⊆ U × T × R,
whose elements are called tag assignments (tas for short).6

Users are typically described by their user ID, and tags
may be arbitrary strings. What is considered a resource de-
pends on the type of system. For instance, in Delicious, the
resources are URLs, in BibSonomy URLs or publication
references, and in Last.fm, the resources are artists.

Building upon this model we can easily express cer-
tain properties of folksonomies, e. g., the number of tas
of a given user u: |Y ∩ {u} × T × R|, or the num-
ber of users which have tagged resource r with tag t:
|Y ∩ U × {t} × {r}|. To simplify matters, we define the
set of all tags user u attached to resource r as Tur := {t ∈
T | (u, t, r) ∈ Y }. Then a post is defined as (u, Tur, r).

2.3 Tag Recommendations
Currently, tag recommendations in BibSonomy appear in
two situations: when the user edits a bookmark or publica-
tion post. Since the part of the user interface showing rec-
ommendations is very similar for both the bookmark post-
ing and the publication posting page, we show in Figure 1
the relevant part of the ‘postBookmark’7 page only.

Below the fields for entering URL, title, and a descrip-
tion (which are typically automatically filled), the ‘tags’
box keeps together the tagging information. There, the user
can manually enter the tags to describe the resource. Dur-
ing typing the user is assisted by a JavaScript autocomple-
tion which selects tags among the recommended tags and
all of the user’s previously used tags whose prefix matches
the already entered letters. The suggested tags are shown
directly below the tag input box (in the screenshot recom-
mender, recognition, and recht). Further down there are
in bold letters the five recommended tags ordered by their
score from left to right. Thus, the recommender in action
regarded conference to be the most appropriate tag for this

6In the original definition [Hotho et al., 2006b], we introduced
additionally a subtag/supertag relation, which we omit here.

7Logged in users can access this page at http://www.
bibsonomy.org/postBookmark.

resource and user. To the very right of the recommendation
is a small icon depicting the reload button. It allows the
user to request a new tag recommendation if he is unsat-
isfied with the one shown or wants to request further tags.
We investigate the usage of this button in Sec. 6.2.

Besides triggering autocompletion with the tabulator key
during typing, users can also click on tags with their mouse.
They are then added to the input box. When the user copies
a resource from another user’s post, the tags the other user
used to annotate the resource are shown below the recom-
mended tags (‘tags of copied item’). They are also regarded
for autocompletion.

More formally, the tag recommendation task is: Given a
resource r and a user uwho wants to annotate r, the recom-
mender shall return a set of recommended tags T (u, r) :=
{t1, . . . , tk} together with a scoring function f : T (u, r)→
[0, 1] which assigns to each tag a score.8 The value of k is
fixed to 5 throughout this paper.

3 Related Work
Although having a different recommendation target (re-
sources rather than tags), the REFEREE framework de-
scribed by Cosley et al. [Cosley et al., 2002] is most
closely related to our work. It provided recommendations
for the CiteSeer (formerly ResearchIndex) digital library.
REFEREE recommends scientific articles to users of Re-
searchIndex while they search and browse. An open archi-
tecture allows researchers to integrate their methods into
REFEREE. Besides the different recommendation target,
the focus of the work is more on the evaluation of several
different strategies than on the details of the framework.

A powerful, open, and well documented framework for
recommendations is the Duine Framework9 developed by
Novay. It is based on work by van Setten [van Setten,
2005] and has a focus on explicit user ratings and non re-
occuring items, e. g., like in a movie recommendation sce-
nario where one does not recommend movies the user has
already seen. This is in contrast to tag recommendations,
where re-occuring tags are a crucial requirement of the sys-
tem. Similar to what we present in Section 4.2 the frame-
work implements various hybrid recommenders. They
have been studied extensively – for a survey see [Burke,
2002].

Another recommendation framework is the AURA
project’s ‘TasteKeeper’ [Green and Alexander, ] from Sun
Microsystems. Despite having not been described in the
literature, it has a strong focus on collaborative filtering al-
gorithms.

The topic of tag recommendations in social bookmark-
ing systems has attracted quite a lot of attention in the
last years. Most related work describes recommendation
approaches which could be used within our framework.
The existent approaches usually lay in the collaborative
filtering and information retrieval areas [Mishne, 2006;
Byde et al., 2007; Sood et al., 2007]. Xu et al. [Xu et
al., 2006] identify properties of good tag recommenda-
tions like high coverage of multiple facets, high popular-
ity, or least-effort and introduce a collaborative tag sug-
gestion approach. A goodness measure for tags, derived

8Although, of course, f also depends on u and r, we will omit
those two variables to simplify notation. Since f always appears
together with T (u, r), it should be clear from context, which f is
meant.

9http://duineframework.org/
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from collective user authorities, is iteratively adjusted by a
reward-penalty algorithm. Further examples include Basile
et al. [Basile et al., 2007], suggesting an architecture of
an intelligent tag recommender system, and Vojnovic et
al. [Vojnovic et al., 2007], trying to imitate the learning
of the true popularity ranking of tags for a given resource
during the assignment of tags by users.

Heymann et al. [Heymann et al., 2008] model the tag
prediction task as a binary classification problem for each
tag with the web pages being the objects to classify. Be-
sides the content of web pages, they also incorporate the
anchor texts of links pointing to the page and host names
of in-/outlinks as features for a support vector machine
(SVM). They try to answer questions like “What precision
can we get with low recall?”, “Which page information
is best for predicting tags?”, or “What makes a tag pre-
dictable?”. Additionally, they apply association rules be-
tween tags to expand tag-based queries. Another analysis
of the application of classification methods to the tag rec-
ommendation problem can be found in [Illig et al., 2009 to
appear].

One task of the 2008 ECML PKDD Discovery Chal-
lenge [Hotho et al., 2008] also addressed the problem of
tag recommendations in folksonomies. Tatu et al. [M. Tatu
and D’Silva, 2008] base their suggestions on normalized
tags from posts and normalized concepts from textual con-
tent of resources. This includes user added text like title
or description as well as the document content. Using NLP
tools they extract important concepts from the textual meta-
data and normalize them using Wordnet. Lipczak [Lipczak,
2008] developed a three step approach which utilizes words
from the title expanded by a folksonomy driven lexicon,
personalized by the tags of the posting user. Katakis et
al. [I. Katakis and Vlahavas, 2008] consider the recommen-
dation task as a multilabel text classification problem with
tags as categories.

In [Jäschke et al., 2008] we evaluated several tag rec-
ommendation methods on three large scale folksonomy
datasets. The most successful algorithm, the graph-based
FolkRank [Hotho et al., 2006b], was followed by simpler
approaches based on co-occurence counts and by collabo-
rative filtering.

4 A Recommendation Framework for
BibSonomy

Implementing a tag recommendation framework requires
to tackle several challenges. For example, having enough
data available for recommendation algorithms to produce
helpful recommendations is an important requirement. The
recommender needs access to the systems database and to
what the user is currently posting (which could be accom-
plished, e.g., by (re)-loading recommendations using tech-
niques like AJAX). Further data – like the full text of doc-
uments – could be supplied to tackle the cold-start problem
(e. g., for content-based recommenders). Further aspects
which should be taken into account include implementa-
tion of logging of user events (e. g., clicking, key presses,
etc.) to allow for efficient evaluation of the used recom-
mendation methods in an online setting. Together with a
live evaluation this also allows us to tune the result selec-
tion strategies to dynamically choose the (currently) best
recommendation algorithm for the user or resource at hand.
The multiplexing of several available algorithms together
with the simple inclusion of external recommendation ser-
vices (by providing an open recommendation interface) is

Figure 2: A schematic posting process.

one of the benefits of the proposed framework.
Figure 2 gives an overview on the components of Bib-

Sonomy involved in a recommendation process. The web
application receives the user’s HTTP request and queries
the multiplexer (cf. Sec. 4.4) for a recommendation –
providing it post information like URL, title, user name,
etc.. Besides, click events are logged in a database (see
Sec. 5.3). The multiplexer then requests the active recom-
menders to produce recommendations and selects one of
the results. The suggested tags and the post are then logged
in a database and the selected recommendation returned to
the user.

4.1 Recommender Interface
One central element of the framework is the recommender
interface. It specifies which data is passed from a rec-
ommendation request to one of the implemented recom-
menders and how they shall return their result. Figure 3
shows the UML class diagram of the TagRecommender in-
terface one must implement to deliver recommendations to
BibSonomy.

We decided to keep the interface as simple as possi-
ble by requiring only three methods, building on BibSon-
omy’s existing data model (Post, Tag, etc.) and adding as
few classes as possible (RecommendedTag, Recommend-
edTagComparator).

The getRecommendedTags method returns – given a post
– a sorted set of tags; addRecommendedTags adds to a
given (not necessarily empty) collection of tags further
tags. Since – given a post and an empty collection – ad-
dRecommendedTags should return the same result as ge-
tRecommendedTags, the latter can be implemented by del-
egation to the former. Nonetheless, we decided to require
both methods to cover the simple ‘give me some tags’ case
as well as more sophisticated usage scenarios (think of ‘in-
telligent’ collection implementations, or a recommender
which improves given recommendations).

The post given to both methods contains data like URL,
title, description, date, user name, etc. that will later be
stored in the database and that the recommender can use
to produce good recommendations. It might also contain
tags, i. e., when the user edits an existing post or when he
has already entered some tags and requests new recommen-
dations. Implementations could use those tags to suggest
different tags or to improve their recommendation.

With the setFeedback method the final post as it is stored
in the database is given to the recommender such that it can
measure and potentially improve its performance. Addi-
tionally, the postID introduced in Section 5.3 is contained
in the post (as well as in the post of the first two methods)
such that the recommender can connect the post with the
recommended tags it provided.

Finally, the getInfo method allows the programmer to



<<interface>>
TagRecommender

+ getRecommendedTags(post : Post<? extends Resource>) : SortedSet<RecommendedTag>
+ addRecommendedTags(recommendedTags : Collection<RecommendedTag>, post : Post<? extends Resource>)
+ setFeedback(post : Post<? extends Resource>)
+ getInfo() : String

Figure 3: The UML class diagram of the tag recommender interface.

provide some information describing the recommender.
This can be used to better identify recommenders or be
shown to the user.

Two further classes augment the interface: The Recom-
mendedTag class basically extends the Tag class as used in
the BibSonomy API (cf. Sec. 2.1) by adding floating point
score and confidence attributes. A corresponding Recom-
mendedTagComparator can be used to compare tags, e. g.,
for sorted sets. It first checks textual equality of tags (ig-
noring case) and then sorts them by score and confidence.
Consequently, tags with equal names are regarded as equal.

Our implementation is based on Java and all described
classes are contained in the module bibsonomy-model,
which is available online as JAR file in a Maven2 reposi-
tory.10 However, implementations are not restricted to Java
– using the remote recommender (see Sec. 4.3) one can im-
plement a recommender in any language which is then in-
tegrated using XML over HTTP requests.

4.2 Meta Recommender
Meta or hybrid recommenders [Burke, 2002] do not gen-
erate recommendations on their own but instead call other
recommenders and modify or merge their results. Since
they implement the same interface, they can be used like
any other recommender. More formally, given n recom-
mendations T1(u, r), . . . , Tn(u, r) and corresponding scor-
ing functions f1, . . . , fn, a meta recommender produces a
merged recommendation T (u, r) with scoring function f .
The underlying design pattern known from software archi-
tecture is that of a Composite.

As we will see in Section 4.5, meta recommenders al-
low the building of complex recommenders from simpler
ones and thus simplify implementation and testing of algo-
rithms and even stimulate development of new methods.
Furthermore, they allow for flexible configuration, since
their underlying recommenders can be exchanged at run-
time. This section introduces the meta recommenders that
are currently used in our framework.

First Weighted By Second
As an example of a cascade hybrid, the idea behind this
recommender is to re-order the tags of one recommenda-
tion using scores from another recommendation. More
precisely, given recommendations T1(u, r) and T2(u, r)
and corresponding scoring functions f1 and f2, this rec-
ommender returns a recommendation T (u, r) with scoring
function f , which contains all tags from T1 which appear
in T2 (with f(t) := f2(t)) plus all the remaining tags from
T1 (with lower f but respecting the order induced by f1).
If T1(u, r) does not contain enough recommendations, T is
filled by the not yet used tags from T2(u, r) – again with
f being lower than for the already contained tags and re-
specting the order induced by f2.

10http://dev.bibsonomy.org/maven2/org/
bibsonomy/bibsonomy-model/

Weighted Merging
This weighted hybrid recommender enables merging of
recommendations from different sources and weight-
ing of their scores. Given n recommendations
T1(u, r), . . . , Tn(u, r), corresponding scoring functions
f1, . . . , fn, and (typically fixed) weights ρ1, . . . , ρn (with∑n

i=1 ρi = 1), the weighted merging recommender returns
a recommendation T (u, r) :=

⋃n
i=1 Ti(u, r) and a scor-

ing function f(t) :=
∑n

i=1 ρifi(t) (with fi(t) := 0 for
t 6∈ Ti(u, r)).

4.3 Remote Recommender
The remote recommender retrieves recommendations from
an arbitrary external service using HTTP requests in REST-
based [Fielding, 2000] interaction. Therefore, it uses the
XML schema of the BibSonomy REST-API.11 This recom-
mender has three advantages: it allows us to distribute the
recommendation work over several machines, it opens the
framework to include recommenders from auxilliary part-
ners, and it enables programming language independent in-
teraction with the framework.

To simplify implementation of external recommenders,
we provide an example web application needing al-
most zero configuration to include a custom Java recom-
mender.12 Furthermore, we plan to integrate recommenda-
tions into BibSonomy’s API to allow clients retrieve rec-
ommendations (e. g., such that the Firefox browser add-on
can show recommendations during bookmark posting).

4.4 Multiplexing Tag Recommender
Our framework’s technical core component is the so called
multiplexing tag recommender (see Fig. 2). Implementing
BibSonomy’s tag recommender interface, it provides the
web application with tag recommendations, using one of
the recommenders available. All recommendation requests
and each recommender’s corresponding result are logged
in a database (see Sec. 5.3). For this purpose, every tag
recommender is registered during startup and assigned to
a unique identifier. For technical reasons, we differenti-
ate between locally installed and remote recommenders (cf.
Sec. 4.3).

Whenever the getRecommendedTags method is invoked,
the corresponding recommendation request is delegated to
each recommender, spawning separate threads for each
recommender. After a timeout period of 100 ms, one of
the collected recommendations is selected, applying a pre-
configured selection strategy:

For our evaluation procedure we implemented a ‘sam-
pling without replacement’ strategy which randomly
chooses exactly one recommender and returns all of its
recommended tags. If the user requests recommendations

11http://www.bibsonomy.org/help/doc/
xmlschema.html

12http://dev.bibsonomy.org/maven2/org/
bibsonomy/bibsonomy-recommender-servlet
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more than once during the same posting process (e. g., by
using the ‘reload’ button), the strategy selects recommen-
dations from a recommender the user has not seen during
this process.

4.5 Example Recommender Implementations
Using the proposed framework, we implemented several
recommendation methods, whereas two of them are cur-
rently active in BibSonomy. Both build upon the meta rec-
ommenders described in Section 4.2 and simpler recom-
menders which we describe only briefly because they are
fairly self-explanatory. The short names in parentheses are
for later reference.

Most Popular ρ-Mix (MPρ-mix)
Motivated by the good results of mixing tags which often
have been attached to the resource with tags the user has
often used, we implemented a variant of the most popu-
lar ρ-mix recommender described in [Jäschke et al., 2008].
The recommender has been implemented as a combination
of three recommenders, using a value of ρ = 0.6:

1. the most popular tags by resource recommender
which returns the k tags T1(u, r) which have been
attached to the resource most often (with f1(t) :=
|Y ∩U×{t}×{r}|
|Y ∩U×T×{r}| , i. e., the relative tag frequency),

2. the most popular tags by user recommender which re-
turns the k tags T2(u, r) the user has used most often
(with f2(t) := |Y ∩{u}×{t}×R|

|Y ∩{u}×T×R| , i. e., the relative tag
frequency), and

3. the weighted merging meta recommender described in
Section 4.2 which merges the tags of the two former
recommenders, with weights ρ1 = ρ = 0.6 and ρ2 =
1− ρ = 0.4.

Title Tags Weighted by User Tags (TbyU)
Inspired by the first recommender implemented in Bib-
Sonomy [Illig, 2006] and by similar ideas in [Lipczak,
2008], we implemented a recommender which ranks tags
extracted from the resource’s title using the frequency of
the tags used by the user. Technically, this is again a com-
bination of three recommenders:

1. a simple content based recommender, which extracts
k tags T1(u, r) from the title of a resource, cleans
them and checks against a multilingual stopword list,

2. the most popular tags by user recommender as de-
scribed in the previous section – here returning all tags
T2(u, r) the user has used (by setting k =∞), and

3. the first weighted by second meta recommender de-
scribed in Section 4.2 which weights the tags from
the content based recommender by the frequency of
their usage by the user as given by the second recom-
mender.

Other
Besides the simple recommenders introduced along the
MPρ-mix and TbyU recommender, we have implemented
recommenders for testing purposes (a fixed tags recom-
mender and a random tags recommender), a recommender
which proposes tags from a web page’s HTML meta in-
formation keywords, as well as a recommender using the
FolkRank algorithm [Hotho et al., 2006b].

More complex recommenders can be thought of, e. g.,
a nested first weighted by second recommender, whose

Listing 1: The Java method used to clean tags.
p u b l i c S t r i n g c l e a n T a g ( S t r i n g t a g ) {

re turn N o r m a l i z e r . n o r m a l i z e ( t ag ,
N o r m a l i z e r . Form .NFKC ) .

r e p l a c e A l l ( ” [ˆ0−9\\p{L} ]+ ” , ” ” ) .
toLowerCase ( ) ;

}

first recommender is a weighted merging meta recom-
mender merging the suggestions from a content based rec-
ommender and a most popular tags by resource recom-
mender and then scoring the tags by the scores from the
most popular tags by user recommender.

5 Evaluation
We evaluate the performance of a recommender by com-
paring the tags it suggested with the tags used to annotate
a resource. Then recall (‘Which fraction of the used tags
could be suggested?’) and precision (‘Which fraction of
the suggested tags was used?’) quantify the quality of the
recommendation. Furthermore, the logging of click events
allows us to evaluate the user behavior in more detail.

5.1 Measures
As performance measures we use precision, recall, and f1-
measure (f1m) which are standard in such scenarios [Her-
locker et al., 2004]. For each post (u, Tur, r) we compare
the recommended tags T (u, r) with the tags Tur the user
has finally assigned. Then, precision and recall of a recom-
mendation are defined as follows

recall(T (u, r)) =
|Tur ∩ T (u, r)|

|Tur|
(1)

precision(T (u, r)) =
|Tur ∩ T (u, r)|
|T (u, r)|

. (2)

We then average these values over all posts in the given set
and compute the f1-measure as

f1m =
2 · precision · recall
precision + recall

.

5.2 Data Cleansing
Before intersecting Tur with T (u, r), we clean the tags in
both sets according to the Java method cleanTag shown in
Listing 1. This means, we ignore the case of tags and re-
move all characters which are neither numbers nor letters.13

Since we assume all characters to be UTF-8 encoded, the
method will not remove umlauts and other non-latin char-
acters. We also employ unicode normalization to normal
form KC.14 Finally, we ignore tags which are ‘empty’ af-
ter normalization (i. e., they neither contained a letter nor
number) or which are equal to the strings imported, public,
systemimported, nn, systemunfiled. Thus, in the following
we always regard cleaned tags.

13See also the documentation of
java.util.regex.Pattern at http://java.
sun.com/javase/6/docs/api/java/util/regex/
Pattern.html.

14http://www.unicode.org/unicode/reports/
tr15/tr15-23.html
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5.3 Logging
For evaluating performance of the tag recommenders avail-
able, we store in a database for each recommendation pro-
cess the corresponding bookmark or BIBTEX entry as well
as each recommender’s recommendation, identified by a
unique recommendationID. Furthermore, the applied selec-
tion strategy together with the recommenders and tags se-
lected are stored.

Several recommendation requests may refer to a single
posting process (e. g., when the user pressed the ‘reload’
button). For identifying these correspondences, a random
identifier (postID) is generated whenever a post or editing
process is started and retains valid until the corresponding
post is finally stored in BibSonomy. This postID is mapped
to each corresponding recommendationID. At storage time,
the postID together with the corresponding user name, time
stamp and a hash identifying the resource is stored. This
connects each post of each user with all referring recom-
mendations and vice versa.

Additionally, the user interaction is tracked by logging
mouse click events using JavaScript. Each click on one
of BibSonomy’s web pages is logged using AJAX into a
separate logging table. Information like the shown page,
the DOM path of the clicked element, the underlying text,
etc is stored.15

6 Results
The following analysis is based on data from posting pro-
cesses between May 15th and June 26th 2009; this is ongo-
ing work – this analysis is the first step of a long term study
of the BibSonomy recommendation framework. Only pub-
lic posts from users not flagged as spammer were taken into
account. Since tag recommendations are provided in the
web application only when one resource is posted, posts
originating from automatic import (e. g., Firefox book-
marks, or BIBTEX files) or BibSonomy’s API are not con-
tained in the analysis.

6.1 General
We start with some general numbers: In the analysed pe-
riod, 5,840 posting processes (3,474 for BIBTEX, 2,366
for bookmarks) have been provided with tag recommen-
dations. The MPρ-mix recommender served recommenda-
tions for 2,935 postings, the TbyU recommender for 3,006.
Their precision and recall is depicted in Figure 4. On the
plotted curve, from left to right the number of evaluated
tags increases from one to five. I. e., we first regard only
the tag t with the highest value f(t), then the two tags with
highest f , and so on. Thus, the more recommended tags
are regarded, recall increases while precision decreases. In
general, both precision and recall are rather low with the
MPρ-mix recommender performing better than the TbyU
recommender.

6.2 Influence of the ‘reload’ Button
Since users can request to reload recommendations when
posting a resource, we here investigate the influence of the
‘reload’ button. Is the first recommendation sufficient or do
users request another recommendation? Are recommenda-
tions which got replaced by the user pressing the ‘reload’
button worse than those shown last? Has one recommender
more often been reloaded than the other?

15Note that users can disable logging on the settings page, thus
not all posting processes yield clicklog events.
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Figure 4: Precision and Recall

Table 1: The influence of the ‘reload’ button.
measure #posts f1m@5
recommender r MPρ-mix TbyU MPρ-mix TbyU
Fr \ Lr 337 319 0.258 0.270
Lr \ Fr 331 363 0.380 0.364
Fr ∩ Lr 2,271 2,339 0.277 0.224

In 767 (274 bookmark, 493 BIBTEX) of the 5,840 post-
ing processes the users requested to reload the recommen-
dation. Thus, in around 13 % of all posting processes users
requested another recommendation.

Several recommenders can be involved in one posting
process. There is the recommendation which appears di-
rectly after loading the posting page (first), there are rec-
ommendations which appear after the user has pressed the
‘reload’ button, and there is the recommendation shown be-
fore the user finally saves the post (last). Thus, given a
recommender r, we can define the set Fr to contain those
posts, where the recommender r showed the first tags, and
Lr as the set of posts where recommender r showed the last
tags (i. e., before the post is stored).

For each recommender r we can then look at the sets
Fr \Lr, Lr \Fr, and Fr ∩Lr. Posts where the user did not
press the reload button are contained in both Fr and Lr and
thus in Fr ∩ Lr. Table 1 shows the result of our analysis.

For both of the two deployed recommenders and for all
three sets, the table shows the number of posts in the corre-
sponding set, and the average f1m at the fifth tag.16 As one
can see, the number of posts where the reload button has
not been pressed (Fr ∩ Lr) is quite large for both recom-
menders (around 2, 300). There is also only little difference
in the number of posts for the recommenders over the dif-
ferent sets, except the higher number of posts for the TbyU
recommender in Lr \Fr. It contains those posts, where the
user requested to reload the recommendation and where the
recommender at hand delivered the last recommendation.
Thus, the TbyU recommender more often provided the last
recommendation than the MPρ-mix recommender.

The most noticeable observation is the good perfor-
mance of both recommenders for this set. Both precision
and recall are much higher than for the other two sets. This
suggests that the first suggestion was rather bad and caused
the user to request another recommendation which indeed
better fitted his needs. The worse values for Fr \ Lr also
support this thesis. A noteworthy difference between the
two recommenders is the performance of the TbyU rec-
ommender for Fr \ Lr which is better than its overall per-

16We omit precision and recall, since whenever the f1m for one
set was better/worse than for another set, precision and recall were
better/worse, too.
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Figure 6: The fraction of matching tags which have been
clicked.

formance (i. e., on Fr ∩ Lr). This could be an indicator
that those users which actively used the recommender (by
pressing the ‘reload’ button) took better notice of this rec-
ommender’s tag suggestions.

The usage of the ‘reload’ button is a good indicator for
the interest of the user in the recommendations. However,
the data we gathered during the evaluation period is still
rather sparse and thus no final conclusions can be drawn.

6.3 Logged ‘click’ Events
Next we evaluate data from the log which records when a
user clicked a recommended tag (cf. Sec. 5.3). Clicks are
rather sparse: in only 1,061 (485 bookmark, 576 BIBTEX)
of the 5,840 posting processes users clicked on a tag.

First, we want to answer the questions “How is click-
ing distributed over users?” and “Are there users which
always/never click?”. Figure 5 shows users sorted by the
fraction of posting processes at which they have clicked on
a recommended tag. The size of each circle depicts the log-
arithm of the user’s number of posts. Closer to the left are
users which in almost all posting events clicked on a rec-
ommendation; users closer to the right never clicked a tag
during recommendation. Although only around 150 users
clicked on a recommendation, half of the remaining users
are represented by only one post. This could mean that
only after some time users discover and use the recommen-
dations. However, there are also some active users which
almost never clicked on a recommendation.

In Figure 6 we see for each number of recommended tags
(from one to five), the fraction of matches which stem from
a click on the tag (instead of manual typing). For the TbyU
recommender around 35 % of the matches come from the
user clicking on a tag. Thus, although users infrequently
click on tags, a large fraction of the correctly recommended
tags of that recommender has been clicked instead of typed.
Why there is a difference of around 15 % between the two
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Figure 7: Average f1-measure for each user and recom-
mender

recommenders with a higher click fraction for the TbyU
recommender (in contrast to its worse f1m) is not clear.
One explanation could be the different sources of tags the
two recommenders use: while the MPρ-mix recommender
delivers popular tags the user might have used before and
thus can easily type, the TbyU recommender also suggests
new and probably complicated tags extracted from the title
which are easier to click than to type.

6.4 Average F1-Measure per User
Which properties of a posting process could help a mul-
tiplexer strategy to smartly choose a certain recommender
instead of randomly selecting one? For space reasons we
focus on the user only – other characteristics could be like-
wise interesting (e. g., resource type or the recommended
tags). Figure 7 shows the average f1m of the MPρ-mix
recommender versus the average f1m of the TbyU recom-
mender for each of the 380 users17 in the data. In the plot,
each user is represented by a circle whose size depicts the
logarithm of the user’s number of posts.

The most interesting users are reflected by the circles far-
thest from the diagonal, i. e., those users who have a high
f1m for one but a low f1m for the other recommender. As
one can see, such users exist even at higher post counts.
Once such a user is identified, one could primarily select
recommendations from the user’s preferred recommender.

7 Conclusions and Future Work
In this paper, we presented the tag recommendation frame-
work we developed for BibSonomy. It allows us to not only
integrate and judge recommendations from various sources
but also to develop clever selection strategies. A strength
of the framework is its ability to log all steps of the recom-
mendation process and thereby making it traceable. E. g.,
the diagrams and tables presented in this paper are automat-
ically generated and will be integrated in a web application
for analysing and controlling the framework and its recom-
menders.

As the results show, there is no clear picture which of
the two recommendation methods performs better. There
is a dependency on the number of regarded tags, the user
at hand, and also slightly on the moment of recommenda-
tion. This suggests that we can achieve better performance

17Only users which got recommendations from both recom-
menders were taken into account.



not only by adding improved recommendation methods but
also by implementing adaptive selection strategies. In case
of the user dependency, one could prefer the better per-
forming recommender by increasing its selection probabil-
ity or even couple the probability with the current recom-
mendation quality.

Finally, the framework was the cornerstone of this year’s
ECML PKDD Discovery Challenge,18 where one task re-
quired the participants to deliver live recommendations for
BibSonomy. This also was a larger stress test for external
recommenders and the framework itself which it bravely
passed. After that we opened the framework for interested
researchers which we would like to encourage to contact us
via an e-mail to webmaster@bibsonomy.org.
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