Projecting the Common Ground with Questions: Biases, Tags, and Alternatives

Conference Division of Labor: A View from Syntax, Semantics, Information Structure, and Processing

22 - 23 January 2015

University of Tübingen

Manfred Krifka

krifka@rz.hu-berlin.de

Zentrum für Allgemeine Sprachwissenschaft, Berlin

Humboldt-Universität zu Berlin

1/27

Gefördert durch das BMBF

Gefördert durch die DFG (SFB 632)

To be covered

- A formal model for speech acts, in particular assertions and questions as a level of linguistic meaning (cf. Cohen & Krifka 2014),
- Distinctive features:
 - ▶ Speech acts change common ground (cf. Stalnaker 1974, ...)
 - ▶ Common ground as a **permanent** record of **commitments**.
 - Common grounds have a projective component that determines its possible developments.
- Phenomena to be discussed:
 - Assertions as commitments to a proposition.
 - Questions as projected assertions by the addressee.
 - Monopolar questions, projecting just one assertion, expressing bias.
 - ▶ Alternative and constituent questions as **question disjunctions**.
 - ▶ **High negation** questions and projected refusals of assertions.
 - Question tags as {con/dis}junctions of assertions and questions
 - Focus in polarity questions as indicating underlying broader question.

A Framework for Speech Acts

Basic notions

- Commitment States c
 - commitments publicly shared by the participants
 - modeled as set of propositions
- Update of commitment states c with speech act 3.
 - $\label{eq:commitment} \begin{array}{l} \trianglerighteq \ \ c + \mathfrak{A}_\phi = c \ \cup \ \{\phi\}, \\ \text{where } \phi \hbox{: the commitment introduced by speech act} \quad \mathfrak{A}_\phi \end{array}$

 \triangleright Example: possible updates of c with ϕ , ψ and their negations

3 / 27

+ φ

A Framework for Speech Acts

- Commitment Spaces C
 - captures ways how commitment state can develop ("common ground managing")
 - modeled as setsof consistent commitment states
 - ▶ with a smallest (nonempty) state ∩C
 - $^{\triangleright}$ this is called the root of C, written \sqrt{C}
- Update of a commitment space C: C + A = {c∈C | √C + A ⊆ c}
- See example: C + \mathfrak{A}_{φ} + \mathfrak{A}_{ψ}
- Motivation (cf. Cohen & Krifka 2014): speech act denegation
 - Example: I don't promise to come.
 - $\triangleright C + \sim \mathfrak{A} = C [C + \mathfrak{A}]$

A Framework for Speech Acts

Other operations on speech acts

- Speech act conjunction:
 - $^{\triangleright} C + [\mathfrak{A} \& \mathfrak{B}] = [C + \mathfrak{A}] \cap [C + \mathfrak{B}]$
 - leads to rooted set of commitment states for speech acts and for meta speech acts
- Speech act disjunction:
 - $^{\triangleright} C + [\mathfrak{A} \lor \mathfrak{B}] = [C + \mathfrak{A}] \cup [C + \mathfrak{B}]$
 - leads to rooted set of commitment states only for meta speech acts
 - disjunction not readily defined for speech acts (Krifka 2001)

5 / 27

A Framework for Speech Acts

- Commitment Space Developments (CSDs)
 - A sequence of commitment spaces,⟨C₀, C₁, ... Cո⟩
 - ▷ Update of a CSD with a (meta) speech act: $\langle C_0, C_1, ... C_n \rangle + \mathfrak{A} = \langle C_0, C_1, ... C_n, C_n + \mathfrak{A} \rangle$
 - ▷ Indicating the performer S of a speech act: $\langle ..., [C] \rangle +_s \mathfrak{A} = \langle ..., [C] , [C + \mathfrak{A}]_s \rangle$
- CSDs keep a record of the discourse development so far
- A way of modeling the rejection of a move of S₁ by S₂:
 ⟨..., [C], [C']_{S₂}⟩ +_{S₂} ℜ = ⟨..., [C], [C']_{S₂}, [C]_{S₂}⟩

 $(+\phi+\psi)$

Assertions

The logic of assertion

- ► The basic points of assertion:
 - ► Truth commitment:S declares responsibility for φ: S ⊢ φ
 - Proposition sharing:S attempts to make φ common ground
- Nature of proposition sharing:
 - Conversational implicature of truth commitment
 - Evidence: Can be canceled.Believe it or not, Ed kissed Beth.
 - Based on social standing of speaker:# I don't believe it, but Ed kissed Beth.
- Modeling in terms of CSDs:

7 / 27

Assertions

Derivation of assertions

- Truth commitment by assertion operator "."
 - that applies to a proposition (TP)
 - and creates a function that takes an input CSD, delivers output CSD
- Possible syntactic implementation in an ActP:
 - $$\begin{split} & \hspace{-0.2cm} \mathbb{E} \big[\big[\big[Act' \ [Act' \] \big] \big] \big[TP \ Ed \ met \ Beth \big] \big] \big] S_1 S_2 \\ & \hspace{-0.2cm} = \hspace{-0.2cm} \mathbb{E} \big[\big[\big[TP \ Ed \ met \ Beth \big] \big] S_1 S_2 \big) \\ & \hspace{-0.2cm} = \hspace{-0.2cm} \lambda \rho \lambda \langle ..., \ [C]_{...} \rangle \big[\langle ..., \ [C]_{...}, \ [C + S_1 \vdash p]_{S_1} \rangle \big] \big(\mathbb{E} \big[TP \ Ed \ met \ Beth \big] S_1 S_2 \big]_{S_1} \rangle \big] \\ & \hspace{-0.2cm} = \hspace{-0.2cm} \lambda \langle ..., \ C \rangle \big[\langle ..., \ [C]_{...}, \ [C + S_1 \vdash \mathbb{E} \big[TP \ Ed \ met \ Beth \big] \big] S_1 S_2 \big]_{S_1} \rangle \big] \\ & \hspace{-0.2cm} = \hspace{-0.2cm} +_{S_1} \hspace{-0.2cm} \varphi_b, \text{ for short, when applying to a CSD} \end{split}$$
- Realization of assertion:
 - Syntactically, e.g. V2 in German (Truckenbrodt 2006)
 - ▶ Inflectionally, e.g. assertive mood marking on finite verb in Japanese, Greenlandic (König & Siemund 2007)
 - Prosodically, e.g. H* L% (Bartels 1997)
 - Combination of means, possibly indicating subtypes (Altmann 1993) 8 / 27

Assertions

Reactions to assertions

- The truth commitment + S₁ ⊢ φ: immune to grammaticalized reactions (but: Don't say that!)
- Proposition sharing + φ:
 - Acceptance, recognition of information: Aha. / Okay. / No reaction.
 - Making the same commitment: Yes.
 S₂ picks up propositional discourse referent of assertion, asserts it.
 - Rejecting: No.
 S₂ picks up propositional discourse referent, rejects the last move
 (as φ and S₂ ⊢ ¬φ
 cannot both be in a commitment state), asserts its negation.

Questions

Basic idea:

- Question speech acts as projected assertions by the other speaker,
- to be modeled as meta speech acts, as the root does not change.

Types of questions:

- Constituent question, e.g.
 - ▷ S₁ asking S₂: Who did Ed meet?,

 ϕ_b : 'Ed met Beth',

φ: 'Ed met Carla'

- $\begin{array}{|c|c|c|c|}\hline C' & & & & & & \\ \hline +S_2\vdash\phi_a & & +S_2\vdash\phi_b & & +S_2\vdash\phi_c & & & \\ \hline \end{array}$
- ▷ Congruent reaction: S₂ makes one of the indicated assertions.
- ▶ Non-congruent reaction, e.g. *I don't know* possible after rejection
- Alternative questions: similar meaning
 - Example: Did Ed meet Ann, Beth, or Carla?

- Polar question (bipolar), e.g.
 - S₁ asking S₂: Did Ed meet Beth (or not)?
 - S₁ restricts future moves of S₂
 to assertion of proposition
 and assertion of its negation.
- Congruent reaction:
 - S₂ makes one of the indicated assertions,
 - Answer yes:
 Picking up propositional discourse referent φ_b,
 asserting it.
 - Answer *no*:
 Picking up propositional discourse referent φ, asserting its negation.
- No reject operation required.

11 / 27

Questions

Polar questions with a bias

- ► E.g., declarative question: *Ed met Beth?*
- ► S₁ offers S₂ only one assertion: **monopolar** question
- Expresses biased towards that answer.
 - Reaction yes makes that assertion,
 - simpler than in the bipolar case, as there is only one option.
 - Reaction no requires prior reject operation, not as straightforward as yes.
- Natural representation of question bias:
 - Difference between one or two projected assertions
 - On other accounts,
 e.g. Hamblin or Inquisitive Semantics,
 question bias expressed by extraneous means.

Derivation of question acts, first option:

 Question radical as set of propositions, as used in embedded questions

$$\begin{split} & \mathbb{I}[_{\mathsf{CP}} \, \textit{who} \, [_{\mathsf{TP}} \, \textit{Ed met} \, t_{\mathsf{who}}]]]^{\mathsf{S}_1 \mathsf{S}_2} \\ & = \{\lambda i [\mathsf{Ed met} \, x \, \mathsf{in} \, \mathsf{i}] \mid x \in \mathsf{PERSON}\}, \, = \{\phi_\mathsf{a}, \, \phi_\mathsf{b}, \, \phi_\mathsf{c}\} \end{split}$$

- Monopolar reading as basic
 [[_{CP} whether [_{TP} Ed met Beth]]]
 = {[[_{TP} Ed met Beth]]}, = {φ_b}

 $\overline{\cap} \{ \phi_a, \phi_b, \phi_c \}$

27

Questions

- Derivation of question by operator "?"

 - ▷ S₁ proposes to S₂ to declare responsibility for one of the propositions in the CP meaning.
- With optional exhaustification of CP meaning:
 - Strong reading of constituent question
 - ▷ Bipolar reading of polar question: $\langle ..., [C]_{...} \rangle$ + $\llbracket \textit{Did Ed meet Beth (or not)?} \rrbracket^{S_1S_2}$ = $\langle ..., [C]_{...}, [U{{√C}} + S_2⊢p | p∈{φ_b, φ_b}}]_{S_1} \rangle$

- Weak reading of constituent question
- Monopolar reading of polar question:
 ⟨..., [C] → + [Ed met Beth?]]S₁S₂
 = ⟨..., [C] , [∪{{√C} + S₂⊢p | p∈{φ₀}}]_{S₂}⟩

Syntactic realization in English

- Constituent questions
 - Movement of finite auxiliary verb to head of ActP
 - Movement of wh-constituent from SpecCP to SpecActP
 - $\triangleright [ActP who [Act^o ?-did] [CP t_{who} [TP Ed t_{did} meet t_{who}]]]$
- Polarity questions
 - Declarative questions, e.g. Ed met Beth?
 Rising prosody turns assertion by S₁ to projected assertion by S₂
 - Syntactic questions:Assume deletion of complementizer.
 - ▷ [ActP [Acto ?-did] [CP whether [TP Ed met Beth]]]

15 / 27

Questions

- Alternative questions
 - Disjunct phrase scopes over question act
 - $\quad \quad \ \ \, [\, \textit{Ann or Beth}] \, [_{\text{ActP}} \, [_{\text{ActP}} \, ? \textit{did}] \, [_{\text{CP}} \, \textit{whether} \, [_{\text{TP}} \, \textit{Ed} \, t_{\text{did}} \, \textit{meet} \, t_{\text{Ann or Beth}}]]] \\$
 - Interpreted as disjunction of two monopolar questions

Derivation of question acts, second option

- Question acts are not derived directly from question CPs, but are derived independently, in parallel.
- Explains why polar question acts don't have complementizer whether
- Assume that question operator ? combines with TP (proposition), not a CP (set of propositions)
- ► Polar questions:
 - ▷ [_{ActP} [_{Acto}?-did] [_{TP} Ed t_{did} meet Beth]]
 - Generation of monopolar reading

Generation of bipolar reading with a variant ??:

$$\langle ..., [C]_{...} \rangle + [??]^{S_1S_2}([[_{TP} Ed did meet Beth]]^{S_1S_2})$$

= $\langle ..., [C]_{...}, [\{\sqrt{C}\} \cup C+S_2 \vdash \phi_b \cup C+S_2 \vdash \neg \phi_b]_{S_1} \rangle$

17 / 27

Questions

Second option, continued

- Constituent questions as disjunctions of monopolar questions
 - ▶ Who did Ed meet?
 - ≈ Did Ed meet Ann, or did Ed meet Beth, or did Ed meet Carla?
 - - = V_{XEPERSON} [[[Acto ?] [TP Ed meet t_x]]]] S_1S_2

$$= \lambda \langle ..., [C]_{...} \rangle \langle ..., [C]_{...}, [\{ \sqrt{C} \} + S_2 \vdash \phi_a \cup \{ \sqrt{C} \} + S_2 \vdash \phi_b \} \cup \{ \sqrt{C} \} + S_2 \vdash \phi_c]_{S,l} \rangle$$

- Interrogative quantifiers as existential quantifiers over speech acts, corresponds to ambiguity of wh-words as interrogatives and indefinites observed in many languages
- ▶ In embedded questions: existential quantifiers over question sets.
- In this second construction:
 - Question speech acts not derived from embedded question meanings,
 - but parallel development of embedded questions (set of propositions)
 and question acts (set of assertions).

Question Tags

Two types of question tags

- Matching question tags:
 - \triangleright S₁ to S₂: Ed met Beth, did he?
 - Cattell 1973: S₁ puts forward proposition φ_b
 as a potential assertion of S₂
 - S₁ suggests a *yes* answer,
 and guarantees commitment to the proposition in case S₂ commits to it.
 - Amounts to a question biased towards φ_b
- Reverse question tags:
 - \triangleright S₁ to S₂: Ed met Beth, didn't he?
 - Cattell 1973: S₁ asserts proposition φ_b but leaves an option for S₂ to contradict.
 - $\,\scriptscriptstyle\,\triangleright\,$ Amounts to a weakened assertion of $\phi_{\,\scriptscriptstyle\,b}$ that asks for confirmation.
- Implementation as weakened assertions that

19 / 27

Question Tags

Matching question tags

- ▶ S₁ to S₂: Ed met Beth, did he?
- Represented as a speech-act conjunction of the assertion Ed met Beth and the monopolar question spelled out as Did Ed meet Beth?
- Recall: Speech act conjunction is **intersection** of commitment spaces, C + [x & x] = [C + x] ∩ [C + x]
- Applied to example:
 - $C + [[Ed met Beth.]^{S_1S_2} \& [Did Ed meet Beth.]_{S_1S_2}]$ $= [C + [Ed met Beth.]^{S_1S_2}] \cap [C + [Did Ed meet Beth?]^{S_1S_2}]$
- Suggested move: S₁ and S₂ are responsible for φ₁
- If S₂ does not react, this becomes established fact,
 i.e. S₂ is responsible even without explicit *yes*.
- Reaction no: Rejection of the last move, assertion S₂⊢¬φ₀

Question Tags

Reverse question tags

- S₁ to S₂: Ed didn't meet Beth, did he?
- Represented as speech-act disjunction of assertion Ed didn't meet Beth and monopolar question Did Ed meet Beth?
- Recall: Speech act disjunction is union of commitment spaces,
 C + [X V X] = [C + X] ∪ [C + X]
- Applied to example:
 - $C + [[Ed didn't meet Beth.]]^{S_1S_2} \lor [Did Ed meet Beth?]]^{S_1S_2}$ $= [C + [Ed didn't meet Beth.]]^{S_1S_2}] \lor [C + [Did Ed meet Beth?]]^{S_1S_2}]$
- ▶ If S₂ asserts $\neg φ_b$, e.g. by agreeing *No, he didn't*, assertion S₁ $\vdash \neg φ_b$ is guaranteed.
- ► Reaction *Yes, he did*: Assertion $S_2 \vdash \varphi_h$, no rejection required.

21 / 27

Question Tags

Reverse question tags, negated tag

- \triangleright S₁ to S₂: Ed met Beth, didn't he?
- Spell-out of tag as Did Ed not meet Beth? Then derivation as before.
- Spell out of tag as Didn't Ed meet Beth? High negation in question.

Question Tags

What is high negation in questions?

- Ladd 1982, Büring & Gunlogson 2000, Romero & Han 2004 ... Krifka 2012: speech act denegation
- New proposal:
 - Adding information about non-committal to a proposition to the set of commitment states:
 C +¬S⊢φ "S is not committed to φ"
 - Projective effect:
 Committal S⊢φ is excluded from further development.
- Example:

$$\begin{array}{l} {}^{\triangleright} \langle ..., C_{\underline{..}} \rangle + [\![\textit{Didn't Ed meet Beth?}]\!]^{S_1S_2} \\ {}= \langle ..., C_{\underline{...}}, [\cup \{ \{ \sqrt{C} \} + \neg S_2 \vdash \phi_b]_{S_1} \rangle \end{array}$$

- Suggestive for syntax: Recursive ActP.
 - $\triangleright [A_{CtP} \ [?-did] \ [A_{CtP} \ not \ [A_{CtP} \ [\ . \] \ [TP \ Ed \ t_{did} \ meet \ Beth]]]]$

23 / 27

Question Tags

Reverse question tags, continued

- ▶ S₁ to S₂: Ed met Beth, didn't he?
- Represented as a speech-act disjunction of the assertion Ed met Beth and the high negation question Didn't Ed meet Beth?
- Recall: Speech act disjunction is union of commitment spaces,
 C + [X V B] = [C + X] ∩ [C + B]

- Applied to example:
 - $C + [[Ed met Beth.]^{S_1S_2} \lor [Didn't Ed meet Beth?]]^{S_1S_2}$ $= [C + [Ed met Beth.]^{S_1S_2}] \lor [C + [Didn't Ed meet Beth?]^{S_1S_2}]$
- ► S₁ invites S₂ to one of the following moves:
 - ▷ to assert ¬ ϕ_b by S₂⊢¬ ϕ_b (in which case assertion S₁⊢¬ ϕ_b is guaranteed)
 - ▷ to assert $φ_b$ by $S_s ⊢ φ_b$ (no retraction requred).

Focus in questions

Here: Focus in polarity questions

Example:

S₁: Did Ed meet BETH_F?

 S_2 : Yes. / S_2 : No, he met ANN_F. / S_2 : # No.

- Explanation:
 - Focus, as always, indicates the presence of alternatives.
 - Focus on the monopolar question act *Did Ed meet BETH?* indicates alternative monopolar question acts,
 e.g. *Did Ed meet Ann?*, *Did Ed meet Carla?*
 - Focus indicates an input commitment state that is the disjunction of these alternatives.
 - ▶ This is essentially a commitment state after asking Who did Ed meet?
 - ▶ The answer *no* rejects the last projected move, the assertion of *Ed met Beth*.
 - ▶ This rejection leads back to the background question, Who did Ed meet?
 - ▶ This question is then answered.

25 / 27

Focus in questions

- Explanation in detail:
 - Commitment space after question Who did Ed meet? (accommodated)
 - Alternatives of monopolar question Did Ed meet BETH_F?
 - Observe:
 Union of alternatives include the input commitment space; satisfies congruence criterion.
 - S₂: No.
 Requires reject operation leading back to question,' adding S₂⊢¬φ₀,
 remaining projected moves: answers to question.

Wrapping up...

Developed:

A formal model for speech acts, in particular assertions and questions.

Distinctive features:

- Speech acts change common ground
- ▶ Common ground as a permanent record of commitments..
- Common grounds have a projective component that determines its possible developments.

Phenomena discussed:

- Assertions as commitments to a proposition.
- Questions as projected assertions by the addressee.
- Monopolar questions, projecting just one assertion, expressing bias.
- Alternative and constituent questions as question disjunctions.
- High negation questions and projected refusals of assertions.
- Question tags as {con/dis}junctions of assertions and questions
- ▶ Focus in polarity questions as indicating underlying broader question.

Division of labor?

- Semantic operations can happen on the level of speech acts.
- Syntactic operations can map ordinary semantics to speech acts. ^{27 / 27}