Dealing with Fuzzy Categories by Coercion

Categories and Grammar – Criteria and Limitations Freie Universität Berlin July 2 – 4, 2015

> Manfred Krifka krifka@rz.hu-berlin.de

Zentrum für Allgemeine Sprachwissenschaft, Berlin Humboldt-Universität zu Berlin

Gefördert durch die DFG (SFB 632)

1/23

Gefördert durch das BMBF

Beans, Lentils, Oats, and Rice

Mass / Count as nominal subcategories

Distributional characteristics:

- No number distinction, typically singular: bean / beans vs. rice / *rices (singularetantum) *oat vs. oats (pluraletantum)
- Combination with numerals: one bean, three beans / *one rice, *three rice(s)
- Combination with quantifiers: every bean, all beans / *every rice, all rice
- Specific determiners: *many, few beans / much, little rice*
- ▶ Indefinite and definite determiners: a bean, the bean / *a rice, the rice
- Full DP: *Bean / Rice was spilled all over the floor. Similar to plural nouns: Beans were spilled all over the floor.

Clear evidence for two subcategories of nouns:

- Mass nouns vs. Count nouns (Cf. Jespersen 1924, The Philosophy of Grammar).
- Gerstenhofer 2007: From a randomly selected set of 600 nouns,
 - ▷ 35% are mass in Russian, 29% in German,
 - ▷ Inanimates: 50% are mass in Russian, about 30% are mass in German,
 - ▷ Abstract: 60% are mass in Russian, about 50% are mass in German;
 - In Russian, 50% of mass nouns are feminine;
 - ▷ in German, 40% of mass nouns are neuter.

3 / 23

Mass / Count as nominal subcategories

Some typological aspects (see Doejes 2012)

- In classifier languages distinction measure / count construction, e.g. Mandarin: *liăng bàng (de) ròu liăng pī (*de) luózi sān wūzi *(de) rén* two pound LNK meat two CL LNK mule three room LNK people 'two mules' three roomful of people'
- Interacts with nominal classification,
 e.g. ma-class (Cl. 6), u-class (Cl. 11) in Bantu (Swahili maji 'water', mafuta 'oil'; uji 'porridge', udongo 'soil'
- Plural agreement with number words not essential for mass/count distinction: e.g. Turkish: *çocuk* 'child', *çocuklar* 'children', *yedi çocuk* 'seven children'
- Possible lack of distinction, e.g. Nez Perce (Deal 2013)

a.	k'uyc heesu nine eel nine eels	b.	k'uyc heecu nine wood nine pieces of wood
a.	yi-yos-yi-yos kapoo PL-blue coat blue coats	b.	yi-yos-yi-yos mayx PL-blue sand quantities of blue sand

Mass / Count and cognition

Krumbein Φ scale, Wentworth scale

Cognitive characteristics:

- Substances are mass: *gold, dust, dirt, porridge*
- Fluids are mass: water, milk, glass (!)
- Small objects tend to be mass: silt, sand, gravel – stone(s), rock(s), boulders
- Entities low on the animacy scale tend to lack number distinction (Smith-Stark 1974; e.g. Manchu, 'horse' only animal term with SG/PL
 - But: police, military, e.g.
 There was a lot of police everywhere
- Shape reference: count, e.g. *ring, edge, corner*

Arguably rooted in pre-linguistic categorization:

- Spelke 1985, other, for infants: Cars / drops bumping into each other, resulting in a bigger car (!) / drop
- Cognitive differentiation of substances
 / animals present with primates
 (e.g. Rhesus monkeys, Hauser 1996)
- Bootstrap for linguistic count / mass distinction

Mass / Count: Cognition is not everything

But cognitive characteristics are not sufficient:

- Differences between languages:
 - English leave, leaves, German Laub (next to Blatt, Blätter)
 - Middle English peasen to Modern English pea, peas
- Differences within a language:

change / coins

The face consists of white tiles / tiling.

 Two types of mass nouns (Barner & Snedeker 2005):

Mass / Count distinction motivated by ontological / cognitive considerations, but not fully determined by it – cf. Gender.

	mass nouns			
count nouns	object mass nouns	substanc mass nouns		
(Who has more shoes?)	(Who has more silverware?)	(Who has more toothpaste?)		

Mass / Count as a semantic distinction

Voluminous literature on mass/count in semantics, philosophy,

e.g. F.J. Pelletier, Chierchia; Champollion & Krifka t.a

Basic assumption:

- Sum individuals
- Part relation
- Mass and plural denotation closed under sum operation (cumulative), e.g. *rice, beans*
- Singular denotation, e.g. *bean*: atomic.
- Mass noun denotation: nonatomic? But rice has "atoms", too!

7 / 23

au

Mass / Count as a semantic distinction

Krifka (1989 ff.):

- Mass nouns are predicates: [[rice]] = λx[RICE(x)]
- Measure expressions as restrictores: [kilo(s)] = λPλnλx[P(x) ∧ KG(x)=n] [kilo(s) of rice] = λnλx[RICE(x) ∧ KGx)=n] [three kilos of rice] = λx[RICE(x) ∧ KG(x)=3]
 Classifiers refer to type-specific natural units (NU): [grain(s)] = λPλnλx[P(x) ∧ NU(P)(x)=n], agreement plural
- Count nouns have built-in classifiers:
 [bean] = λx[BEAN(x)], not a lexical entry
 [bean(s)]] = λnλx[BEAN(x) ∧ NU(BEAN)(x)=n]
 [three beans]] = λx[BEAN(x) ∧ NU(BEAN)(x)=3]
- Bare plurals with count nouns: [bean-s]] = [PL]([bean]) = λx∃n[BEAN(x) ∧ NU(x)=n] semantic plural
- NE requires internally connected "figures" that can be traced, move independently
 - ▷ E.g. solid detached objects, organisms,
 - ▶ but also entities with social, functional structure: *legion, cohort*
- Built-in NE is conventionalized, more likely if existence of an NU is particularly evident, or NU reference is frequent

Mass / Count category changes

Truly ambiguous nouns:

- German Brot 'bread'
 - Brote, ein Brot: typical ount noun use
 - etwas Brot, Stück Brot: typical Mass noun use
 - ▷ cf. English *cake, stone*
 - distribution in Google n-gram, 1900-2000

0.000120% -		\sim			
000080% -					
000060% -					Brote (All) Stück Brot
000040%					
000020% -					ein Brot (All)
000000%	1910 1920 19	30 1940 1950	1960 1970	1980 1990	etwas Brot (/

Non-ambiguous noun: German Apfel 'apple

Category changes: Mass to count, Containers

Reference to portions of liquids:

etwas Kaffee vs. ein Kaffee, Kaffees; etwas Tee vs. ein Tee, Tees

How does "packaging" work?

- By container, container is countable, substances are self-connected notice: service portions are self-connected
- ▷ Change from $coffee_{MN}$ to $coffee_{CN} \lambda n \lambda x \exists y [[coffee_{MN}](x) \land CONTAINER(y) = n \land FILL(x,y)]$
- ▷ More specifically: container for coffee appropriate in the reference situation
- Packaging also relevant in He put the coffee on the table.
- Reverse process, from container to content: *He drank a bottle (of beer).*

Category changes: Mass to count, Subkinds

Reference to subkinds (taxonomic readings, cf. Krifka e.a. 1995)

- Viele Tees aus ökologisch fairem Anbau!
- top three teas for weight control
- ▷ Morgenstund hat Gold im Mund. Was für ein Gold haben die Alten damit gemeint?

Reference to subkinds in exclamatives (cf. Gorishneva 2014):

- > Das ist das "Sommerleuchten", Was für ein tolles Gold, liebe Ellen!
- Oh, was für ein wunderbarer Kaffee, danke!
- Implies a ranking of subkinds, expression of astonishment about the subkind.

How does reference to subkinds work?

- The specimens of a subkind share a distinctive property, hence are connected within the superkind
- This allows to form a counting operator SK with similar properties as NE
- which in turn allows for the fomation of a count noun: coffee_{MN} to coffee(s)_{SK},

with $[coffee(s)_{SK}] = \lambda n \lambda x [[coffee_{MN}](x) \land SK([coffee_{MN}])(x)=n]$

Category change: Count to mass, Grinding

The "universal grinder" (D. Lewis, F.J. Pelletier)

- I went to the site of the traffic accident, and there was dog lying all over the road. (From the Wikipedia entry on the Universal Grinder)
- How much chicken should we eat?
- ▷ This table is made of oak.
- Zuviel Ei im Mürbeteig was tun?
- How the universal grinder works:
 - The objects and the stuff they consist of may have different properties: This ring was made in Prague, but I bought the gold it consists of in Brazil.
 - ▷ Link (1983 assumes) a function STUFF: concrete object $x \rightarrow$ stuff x consist of.
 - As belonging to the object is the only identifying criterion for the stuff, the stuff itself arguably has no other NE to rely on.
 - Hence: mass use related to the universal grinder
- Grinding is a rather complex procedure:
 - ▷ *much chicken: requires cumulative predicate λx [...], but $[chicken_{CN}] = \lambda n \lambda x$ [...]
- Not just: Recovery from CN denotation (cf. Rothstein 2010)
 - $[chicken_{CN}]] = \lambda n \lambda x [CHICKEN(x) \land NU(CHICKEN)(x)=n] (plural denotation)$
 - Mandarin does not have this reading (cf. Cheng e.a. 2008), as bare noun can have a regular denotation (referring to one or more chickens) 12 / 23

Category change: Count to Mass, Product

From producer to product

- ▷ John read 700 pages of Tolstoy over the weekend.
- ▷ John hat 700 Seiten Tolstoy übers Wochenende gelesen.
- Klassik-Marathon: 100 Stunden Beethoven
- Das ist Beethoven!
- Die Welt ist voller Degussa.
- ▷ Mary has two original Klees in her living room.

How it works

- Derivation of a mass noun from a name
- λx[PRODUCT(Tolstoy)(x)]
- Application of a measure phrase: [pages of Tolstoy]] = λnλx[PRODUCT(Tolstoy)(x) ∧ PAGE(x)=n]
- Application of NU operator if there is a natural unit, with fine arts: [*Klee(s)*] = λnλx[PRODUCT(Klee)(x) ∧ NU(PRODUCT(Klee))(x)=n]

Category change: Count to mass, Root

Internal structure, natural unit does not matter:

- ▷ A lot of house for the money.
- Viel Schlafsack f
 ür wenig Geld.
- Und das ZDF ist heute ein Routinebetrieb zur Erstellung von Programm
- Noch mehr U-Bahn ab 28. Mai

How it works (cf. Rothstein 2010):

- Distinction between roots and lexical entries
- Mass nouns:
 - ▷ Root: $[\sqrt{water}] = \lambda x [WATER(x)]$, a cumulative predicate
 - ▷ The root is the lexical entry: $\llbracket [N water] \rrbracket = \llbracket \sqrt{water} \rrbracket$
- Count nouns:
 - ▷ Root: $\sqrt{house} = \lambda x[HOUSE(x)]$, a cumulative predicate
 - Lexical entry derived from root by count operator: [[_N house]] = COUNT([[√ house]]) = λnλx[[[√house]](x) ∧ NU([[√house]])=n]
 - ▷ This is a lexical property that has to be learned (but there are recurrent features)
- Special uses: back to the root
 - ▷ a lot of house requires resorting to \sqrt{house} , meaning λx [HOUSE(x)]
 - ▷ hence not derived from the lexical entry meaning, but from its root

Count / Mass as a syntactic distinction

The fundamental representation of sortal nouns:

- Kind individuals
 - ⊳ *rice*: r (oryza)
 - beans: b (fava)
- Mass / Count distinction already with reference to kinds
 - (*The) Rice was first cultivated in Asia.
 - *(The) bean was first cultivated in Africa.
 Beans were first cultivated in Africa.
- No apparent semantic distinction, yet there is a syntactic distinction:

Distinct derivation of non-kind-referring uses:

- ▷ *rice*: $\lambda x[R(r)(x)]$ where R: Carlson's realization relation
- ▷ *bean*: $\lambda n \lambda x [R(b)(x) \land NU(b)(x)=n]$

15 / 23

Coercion

What is coercion?

- Compositional interpretation of meanings: [[α β]] = [α]([β])
- Sometimes there is a type mismatch or a sortal mismatch: *[[α]]([[β]])
- There are coercion operators $C_1, C_2, \dots C_n$ that can be applied to fix things,
 - ▷ for example: $[\alpha](C_i([\beta]))$ is o.k.
 - Coercions appear to affect the argument of the predicate, not the predicate.
- Extended compositionality (cf. Pustejovsky 2011):
 - The meaning of a complex expression can be computed from its immediate parts, their mode of syntactic combination, and possibly the application of one of a fixed set of coercion operators.

Standard examples for coercion:

- Pustejovski 1995: Qualia structure of nouns, e.g. the telic or agentive role,
 - John began a cigarette. / a movie. / a novel. (consuming)
 - ▷ The author began a new novel. (producing)
- Moens & Steedman 1987, aspectual coercion
 - ▷ The light flashed for an hour. (iterative)
 - John was reaching the top. (preparatory phase)
 - Suddenly it was dark. (change)

Coercion and categories

How coercion helps the notion of categories:

- We assume a strict category distinction:
 - mass nouns, e.g. gold, water, rice
 - ▷ count nouns, e.g. *bean, ring, boy*
 - ▷ in rare cases, ambiguous nouns, e.g. *bread, cake*
- Coercion operators can map expressions from one category to another, the semantic effect on the argument satisfies the requirement of the functor.
- In contrast to typical cases of ambiguity, coercion is a rare phenomenon for any given argument; if frequent, it would lead to ambiguity in the lexicon (as e.g. with *bread*).

Hence with coercion as maps between linguistic categories: they become less fuzzy.

- ▶ We do not have to say that *apple* is 15% mass, 85% count
- Or that apple is ambiguous
- Rather: *apple* is a count noun that can be coerced to various mass nouns
 - ▷ Put some apple on the salad. (Quine): Grinder
 - ▷ Two apples, namely Granny Smith, and Pink Lady, were most popular. Subkind
 - *That's a lot of apple!* (Looking at heap of apples): Root
- ▶ apple is polysemous (where polysemy is generally a matter of coercion). 17 / 23

The crisp nature of syntactic categories

If syntactic categories were fuzzy, we would expect

- Non-prototypical items have only some of the formal properties associated with the syntactic category
- E.g., a pinguin as a non-prototypical bird:
 - ▷ does not fly
 - has a different posture
 - has different types of feathers
- Hypothetical examples:
 - Non-prototypical count nouns allows for indefinite article: an apple, but not for number word or quantifier: *every apple
 - Non-prototypical mass nouns allows for indefinite article: a beer but not for number word: *one beer, two beers
- Apparently, this does not hold
 - E.g. Bavarian: All mass nouns allow for indefinite article, e.g. a B'schteck, a Schnaps
- But possible cases: defective plurals,
 - ▷ e.g. sheep, three sheep, *sheeps, *three sheeps

The limits of coercion

Metonymy (cf. Nunberg 1979)

- ▷ The ham sandwich wants to pay his bill. ordered meal → person, more general: possessum → possessed, cf. bahuvrihi noun
- I am parked at parking lot 3.
 person → vehicle
 But: The valet parked ?me / my car in parking lot 3.
- Appears to be more restricted to particular situations.

Denominal verb derivations

- ▷ They housed the refugees (in tents).
- ▷ They watered the flowers (with cold tea).
- Denominal verb derivation is a more restricted process.
 - ▷ *The tented the refugees.
 - ▷ *They teaed the flowers.
- Notice that a coercion analysis would require a change of the functor, not the argument.

Coercion is visible in speech processing: Schumacher 2013, ERPs

- Container for Contained
 - Er hat den Becher hastig getrunken.
 Er hat den Becher wie seinen Augapfel gehütet.
 - Result: Late positivities, reflect discourse updating, similar in eye tracking studies of reading.
- Contained for Container:
 - Er hat den Zaubertrank an seinem Gürten festgeschnallt. Er hat den Zaubertrank vor dem Eintreffen der Römer gebraut.
 - Result: No difference.
- Explanation:
 - ▷ Container for contained: Accesses the qualia structure of container nouns.
 - Contained for container: Reference to liquid object invokes container easily (perhaps especially with *Trank* 'drink').

Schumacher 2014: ham sandwich metonymies

- Thomas / The doctor asked Claudia who had called that early. Claudia responds that the hepathitis / the therapist had called that early.
- ▷ N400 after *Thomas...*, not *The doctor...*
- Hence; distinct brain reactions.

We need more studies for different coercion types!

CPZ Late Positivities

19 / 23

A new case of coercion?

Embedded clauses with main clause features: V2, particles

▷ Hans glaubt, Maria wird <u>wohl</u> zu spät kommen.

Analysis as embedded illocutionary acts (Krifka 2014)

- Hans glaubt [ActP Maria wird wohl zu spät kommen]
- Hans glaubt [_{CP} dass Maria wohl zu spät gekommen ist]

Problem: Particles occur also in prototypical embedded clauses:

- ▶ Hans glaubt, dass Maria <u>wohl</u> zu spät kommen wird.
- ▶ Hans wollte wissen, ob Maria <u>denn</u> zu spät gekommen ist.

Solution: Coercion of CP to ActP, triggered by particle

- ▷ Hans glaubt, C_{ActP} ([_{CP} dass Maria <u>wohl</u> zu spät kommen wird])
- ▷ Hans wollte wissen, C_{ActP} ([_{CP} ob Maria <u>denn</u> zu spät gekommen isf])

Derivation of ActP from proposition in general (Krifka 2014):

▷ [_{ActP} Maria ASSERT-ist [_{TP} t_{Maria} zu spät gekommen t_{ist}]]

References (selected)

- Gerstenhofer, Katerina. 2007. Zur Kategorie des Numerus im Vergleich: Massen- und Zählnomina im Deutschen und im Russischen. Magisterarbeit, HU Berlin
- Gorishneva, Elena. 2014. The Variety of Functions of
- the Numeral and Indefinite Marker "One" in Bulgarian and Russian.
- Cheng, Lisa L.-S., Jenny Doetjes & Rint Sybesma. 2008. How universal is the universal grinder? Linguistics in the Netherlands 50-62.
- Rothstein, Susan. 2010. Counting and the mass-count distinction. Journal of Semantics 27: 343-397
- Pustejovsky, James. 2011. Coercion in a general theory of argument selection. Linguistics 49: 1401-1431.
- Schumacher, Petra B. 2014. Content and context in incremental processing: "the ham sandwich" revisited. Philosophical Studies 168: 151-165.
- Doetjes J.S. (2012), Count/mass distinctions across languages. In: Maienborn C., Heusinger K. von, Portner P. (Eds.) Semantics: an international handbook of natural language meaning, part III. Berlin: De Gruyter. 2559-2580.