Questions, Answers and the Structuring of Information: II: Polarity Questions and Their Answers

Manfred Krifka

Centre de Lingüística Teòrica Departament de Filologia Catalana Universitat Autònoma de Barcelona

:

Zentrum für Allgemeine Sprachwissenschaft HUMBOLDT-UNIVERSITÄT ZU BERLIN

1/51

II Responses to Assertions and Polarity Questions

Day 2: Polarity questions and answers to polarity questions, e.g. with response particles like *yes / no*. Ways of modeling the answerhood relation, e.g. by elliptical clauses, by conversational moves like rejection, by propositional discourse referents. See in particular Roelofsen & Farkas 2015. Also, theories of high negation in questions.

Slides can be downloaded from:

- http://www.zas.gwz-berlin.de/180.html
- or <u>http://www.zas.gwz-berlin.de/mitarbeiter_krifka.html</u>, go to "Vorträge" or "Talks"

1 Introduction

1.1 A biblical advice about clear communication

(1) But let your communication be, Yea, yea; Nay, nay; for whatsoever is more than these cometh of evil. (Matthew 5:37)

But are yes and no really that clear?

(2)	S1:	You stole the cookie. Did you steal the cookie?	S₂:	Yes. No.			
(3)	S ₁ :	You did not steal the cookie. Did you not steal the cookie?	S₂:	Yes. No.	S₂:	No, I didn't. Yes, I didn't.	-,

yes, no: "polarity particles", "response particles"

Experimental result of Kramer & Rawlins 2012:1

- Bare particles reduced in acceptability in (3), no better than yes.
- Both yes and no both preferably interpreted as 'S2 did not steal the cookie'

Introduction: A biblical advice about clear communication

3 / 51

1.2 Approaches to polarity items

Classics:

- Emily Pope. Questions and Answers in English. Mouton, The Hague, 1976.
- Jones, Bob Morris. 1999. The Welsh answering system. Berlin: Mouton de Gruyter.

Some recent contributions:

- Biezma, María & Kyle Rawlins. 2012. Responding to alternative and polar questions. Linguistics and Philosophy 35: 361-406.
- ◆ Brasoveanu, Adrian, Donka Farkas & Floris Roelofsen. 2013. N-words and sentential negation: Evidence from polarity particles and VP ellipsis. *Semantics & Pragmatics* 6: 1-33.
- Goodhue, Dan and Michael Wagner. 2015. It's not just what you say, it's how you say it: Intonation, yes and no. Deniz Ozyildiz & Thuy Bui (eds.), NELS 45
- ♦ Holmberg, Anders. 2012. On the syntax of yes and no in English. Newcastle Working Papers in Linguistics 18: 52-72.
- Holmberg, Anders. 2016. The syntax of yes and no. Oxford: Oxford University Press.
- Kramer, Ruth & Kyle Rawlins. 2009. Polarity particles: an ellipsis account. NELS 39.
- Krifka, Manfred. 2013. Response particles as propositional anaphors. SALT 23. 1-18.
- Roelofsen, Floris & Donka Farkas. 2015. Polarity particle responses as a window onto the interpretation of questions and assertions. Language 91: 359-414.

¹ Cf. Kramer, Ruth, and Kyle Rawlins. 2012. An ellipsis approach to answer particles in positive and negative contexts. Paper presented at theWorkshop on the Syntax of Answers to Polar Questions, Newcastle University.

2 Syntactic approach: Kramer & Rawlins 2009

Proposal: Yes and *no* are adverbials corresponding to the heads of ellipsis clauses which correspond to contextually salient propositions.

- (4) S_1 : Ede stole the cookie.
 - S₂: $[_{\Sigma P} Yes [_{\Sigma P} \Sigma [_{TP} he did [t_{he} steal the cookie]]]]$

Ellipsis phrase ΣP with head Σ , adverbial yes.

- (5) S_1 : Ede did not steal the cookie.
 - S₂: [ΣP NO_[U NEG] [ΣP Σ_[U NEG] [TP he didn't [I NEG]</sub> [the steal the cookies]]]]

No double negation interpretation: *n't* has an interpretable NEG feature that agrees with an uninterpretable NEG feature provided by *no* (Zeijlstra 2004).

(6) S_1 : Ede did not steal the cookie.

S₂: $[_{\Sigma P} Yes / No_{[u \ NEG} [_{\Sigma P} \Sigma_{[u \ NEG]} [_{TP} he didn't_{[i \ NEG]} [t_{he} steal the cookies]]]]$ Yes is featureless, compatible with [u NEG] head of ellipsis clause.

Syntactic approach: Kramer & Rawlins 2009:

Problems:

- Why is (7) not possible, as yes is featureless, compatible with negation?
- (7) S₁: Ede stole the cookie.
 S₂: #Yes, he didn't steal the cookie.
- Distribution of elliptical clauses and response particles does not always match:
- (8) Did Ede steal the cookies?
 a. If he did, he must pay them back.
 b. *If yes, he did, he must pay them back.
 c. If ??yes / so, he must pay them back.

Syntactic approach: Kramer & Rawlins 2009:

3 Roelofsen & Farkas 2015

3.1 Response particles as anaphora

Response particles pick out contextually salient propositions (couched in communication theory of Farkas & Bruce 2010, neglected here).

(9)	S1:	Ede stole the cookie.	Contextually salient proposition:
			φ = 'Ede stole the cookie'

S ₂ :	Yes.	Confirms φ.
	No.	Rejects q.

With polarity questions, two propositions are introduced, one the negation of the other (cf. propositional set theory of questions, Hamblin 1973; F&R use inquisitive semantics, which is equivalent for our purposes).

(10) S_1 : Did Ede steal the cookie? Interpretation: { ϕ , $\neg \phi$ }

This is not sufficient to explain the usage of yes and no.

F&R assume in addition that the proposition that is "explicitly mentioned" is highlighted, and hence made salient.

(11) S₁: *Did Ede steal the cookie*? $\{\phi, \neg\phi\}$; contextually salient: ϕ , due to highlighting.

S₂: Yes. No

- a. Confirms highlighted proposition, asserts φ.
- b. Reverses highlighted proposition, asserts $\neg \phi$.

Roelofsen & Farkas 2015: Response particles as anaphora

3.2 Yes and *no* in negated questions

For yes and no in negated questions:

- F&R assume that antecedent propositions are marked as non-negated or negated
- refined conditions for yes and no:

(12) S_1 : Did Ede not steal the cookie? { ϕ

{**φ**, **¬φ**},

where $\neg \phi$ identifiable as negated proposition.

S ₂ :	Yes.	[AGREE, +]	a. Confirms highlighted proposition, here ¬φ. a'. Reverses highlighted neg. proposition, i.e. asserts φ .
	No.	[REVERSE, –]	 b. Reverses highlighted proposition, i.e. asserts φ. b'. Confirms highlighted neg. proposition, i.e. asserts ¬φ.

- Highlighting of propositions is an extraneous semantic feature in propositional set theory / Inquisitive Semantics,
- Marking of proposition as negated an extraneous feature in truth-cond. semantics; requires representational theory (e.g. Situation Semantics: Ginzburg & Sag 2000)
- Therefore F&R propose using propositional discourse referents (see below), i.e. representational entities that can express features like negation (cf. gender)
- Ambiguity or replies to neg. antecedents resides in an ambiguity of yes and no
- Combinations of features [+]/[–], [AGREE]/[REVERSE] express particles in several Ig.

3.3 Polarity features and their uses

R&F assume polarity features are hosted in a polarity phrase:

◆ [PoIP Pol Prejacent], where prejacent: clause, IP?

• A PoIP is anaphoric to an antecedent clause.

R&F assume two kinds of "polarity features":

- Absolute polarity features: [+], [–], where [+]/[–] presupposes that prejacent has highlighted positive / negative polarity
- Relative polarity feature: [AGREE], [REVERSE], where [AGREE] / [REVERSE] presupposes antecedent has the same meaning and same polarity / complement meaning and opposite polarity

Realization rules for English:

- ◆ [AGREE] and [+] can be realized by yes
- [REVERSE] and [-] can be realized by no

Consequence:

◆ [AGREE, -] and [REVERSE, +] can be realized by both yes and no – ambiguity!

Markedness contrast, where marked features have a higher need for expression:

- ◆ [+] is less marked than [–]
- ◆ [AGREE] is less marked than [REVERSE]

Roelofsen & Farkas 2015: Polarity features and their uses

3.4 Explanation of English data

Non-negated antecedents:

(1)	S ₁ : Peter called. / Did Peter call?	
	S ₂ : Yes, he did. / *No, he did.	[AGREE, +] cannot be realized by no
	S ₂ : *Yes, he didn't. / No, he didn't.	[REVERSE, -] cannot be realized by yes
(2)	C . Deter didn't cell / Did Deter net cell?	

(2) S₁: Peter didn't call. / Did Peter not call?
 S₂: Yes, he DID. / No, he DID.
 S₂: Yes, he didn't. / No, he didn't.

yes realizes [+], no realizes [REVERSE] yes realizes [AGREE], no realizes [–]

Use of bare particles yes / no with negated antecedent:

- Ambiguous, hence less felicitous
- yes and no more often understood as confirming antecedent ('he didn't'), as marked [REVERSE] feature has a higher need for expression.
- *no* preferred over *yes*, as marked [–] feature has higher need for expression.

Additional phenomena:

· /	S ₁ : Susan failed the exam. / Did Susan fail the exam? S ₂ : Yes, she did not pass. / *No, she did not pass.	true prejacent failed the exam is elided
(4)	0 · Dava luce and L English an English 10	to a second a local de la constante en la const

(4) S₁: Does Igor speak English↑ or French↓? two highlighted S₂: *Yes (he speakes English) / *No (he speaks French). antecedent propositions

4 Response Particles as Anaphora: Krifka 2013

4.1 Propositional discourse referents

Discourse referents: Entities, Events, Propositions, and Acts

- Discourse referents for entities (cf. Karttunen 1969, Kamp 1981, Heim 1982).
- $(13) [_{DP} A man] came in. He stole [_{DP} a cookie]. introduced by DPs$ $<math display="block"> \stackrel{\wedge}{\to} d_{entity} \qquad \uparrow d \qquad \stackrel{\wedge}{\to} d'_{entity}$
- Discourse referents for events, introduced by tenseless vPs: (Hinrichs 1981, Partee 1984).
- DRs for propositions (propDRs), introduced by tensed TPs, e.g. Webber (1978), Asher (1986), Cornish (1992), Frank (1996).
- (15) [TP He stole a cookie]. Bill knows it. $\hookrightarrow d_{prop}$ $\uparrow d$ – introduced by tensed TPs
- Speech act discourse referents (actDRs), introduced by ActPs, e.g. Webber (1978)
- (16) S₁: [ACP ASSERT *He stole a cookie.*] S₂: *That's a lie!* introd. by illocutionary d_{act} $\uparrow d$ phrase, here: ActP

Response Particles as Anaphora: Krifka 2013: Propositional discourse referents 11 / 51

Complete analysis, except for entity DRs:

(17) He stole a cookie.

 $\begin{array}{l} \label{eq:constraint} [{}_{ActP} ASSERT [{}_{TP} he \textit{ steal-PAST } [{}_{VP} t_{he} t_{steal} \textit{ a cookie}]]] \\ & \hookrightarrow d_{speech \, act} \quad \hookrightarrow d'_{prop} \qquad \hookrightarrow d''_{event} \end{array}$

(18) Did he steal a cookie?

 $\begin{bmatrix} ActP & did-QUEST \begin{bmatrix} TP & he \ t_{did}-PAST \begin{bmatrix} VP \ t_{he} \ t_{steal} \ a \ cookie \end{bmatrix} \end{bmatrix} \\ \stackrel{\leftarrow}{\rightarrow} d_{speech \ act} \quad \stackrel{\leftarrow}{\rightarrow} d'_{prop} \quad \stackrel{\leftarrow}{\rightarrow} d''_{event}$

4.2 Propositional discourse referents and negation

Negation also creates a propositional syntactic category (NegP); introduction of **two** propDRs.

(19) [NegP he did-n't [TP the tdid steal the cookie]] $\hookrightarrow d'_{prop} \hookrightarrow d_{prop}$

Evidence for introduction of two propositional discourse referents with negation:

(20) Two plus two isn't five. a. Everyone knows that. $\begin{bmatrix} NegP \\ 2+2 is-n't \\ Tep \\ 4'_{7[2+2=5]} \\ \hline d'_{2+2=5]} \\ \hline d'_{2+2=5} \\ \hline d$

not with negative predicates as in (21):

(21) Two plus two is unequal to five. a. Everyone knows that. [TP 2+2 is unequal 5] b. #That would be a contradiction. ↔d_[2+2≠5]

Response Particles as Anaphora: Krifka 2013:

13 / 51

4.3 The information content of propositional DRs

Previous assumptions for propDRs:

- anchored to propositions (e.g. Heim 1992)
- anchored to world-sequence pairs (Geurts 1996, Frank 1996)
- anchored to DRSes: Asher (1986, 1993)

Assumptions here:

- PropDRs refer to a proposition and a variable assignment (irrelevant here)
- They are marked as negated when introduced by a NegP phrase. (DRs are representational entities, cf. gender marking in gender languages).
- (22) [NegP he did-n't [TP $t_{Ede} t_{did}$ steal a cookie]] $\hookrightarrow d'_{prop}[neg] \hookrightarrow d_{prop}$

4.4 Propositional anaphora

Different syntactic categories for propositional anaphora:

- ♦ it and that: DP
- so, not: TP (pace Cornish 1992, who considers them adverbials)
- yes and no: ActP (pace Ginzburg & Sag 2000, who call them "propositional lexemes" but consider them adverbials)
- (23) Did he steal a cookie? If *it / so / ^{??}yes, he must be punished. [if [_{TP} α]], hence α ≠ [_{DP} it], α ≠ [_{ActP} yes]
- (24) Did he steal a cookie? Bill believes it / so / ^{??}yes. believe [_{DP} α], cf. I believe this, or believe [_{CP} α], cf. I believe (that) he did it; hence α ≠ [_{ActP} yes]

Proposal for yes and no:

(25) a. yes picks up salient propDR d and asserts it: ASSERT(d)
 b. no picks up salient propDR d and asserts its negation: ASSERT(¬d)

Response Particles as Anaphora: Krifka 2013:

4.5 Response particles with elliptical clauses

Response particles with (elliptical) clauses as appositive structures:

4.6 Response particles with adverbials

Adverbial answers, e.g. maybe, probably: Deletion of TP due to givenness.

(27) S₂: [ActP ASSERT [TP maybe [TP he stole the cookie]]]

↑d_{prop}

- (28) S₂: #[_{ActP} yes], [_{ActP} ASSERT [_{TP} maybe [_{TP} he stole the cookie]]] inappropriate, as first part asserts d, second asserts \diamond d
- (29) Maybe yes, maybe no:

Meta speech act,

signals that there are reasons to answer with *yes* and reasons to answer with *no* (cf. for meta speech acts Cohen & Krifka 2011).

Response Particles as Anaphora: Krifka 2013: Response particles with adverbials 17 / 51

4.7 Types of response particles

Difference between response particles in English / German:

- English: yes, no are anaphoric ActP
- German: ja, nein (und doch) are anaphoric TPs
- (30) a. Did he steal a cookie? If *yes / so, he must be punished.b. Hat er einen Keks gestohlen? Wenn ja, muss er bestraft werden.
- (31) a. Did he steal a cookie= I believe so / not / [?]yes / [?]no. b. Hat er einen Keks gestohlen? Ich glaube(,) ja / nein.

Response particles in German are TPs that can be asserted:

(32) S₁: Hat er einen Keks gestohlen?

S₂: [_{ActP} ASSERT [_{TP} *ja*]]

This contrasts with English

- (33) S₁: Does Ede steal cookies?
 - S_2 : yes, sometimes. / *sometimes yes.
- (34) S₁: Stiehlt Ede Kekse?
 - S₂: Ja, manchmal. [ActP ASSERT [TP ja]] [ActP ASSERT [TP manchmal [TP st. er K.]] Manchmal ja. [ActP ASSERT [TP manchmal [TP ja]]]

4.8 Optimal choice of response particles

Recall interpretation of yes and no, cf. (25):

(35) a. [ActP yes] requires salient discourse referent dprop, interpreted as ASSERT(d)

b. [ActP no] requires salient discourse referent dprop, interpreted as ASSERT(¬d)

Recall introduction of discourse referents in negated clauses:

 $(36) \left[{}_{\mathsf{ActP}} \mathsf{ASSERT} \left[{}_{\mathsf{NegP}} he \, did\text{-n't} \left[{}_{\mathsf{TP}} t_{\mathsf{he}} t_{\mathsf{did}} \, steal \, a \, cookie \right] \right] \right] \\ \hookrightarrow d'_{\mathsf{prop}} \hookrightarrow d_{\mathsf{prop}}$

Four possibilities of interpretation in this context.

\	ASSERT(d)	'Yes, he did!'	Requires rejecting accent, with clause.
	ASSERT(d')	'Yes, he didn't.'	Natural answer, but with clause.
c. <i>No.</i>	ASSERT(¬d)	'No (he didn't).'	Natural answ, ellipt. clause not required Requires rejecting accent, with clause.
d. <i>No.</i>	ASSERT(¬d')	'No, he did!'	

These judgements arise due to certain preferences:

Response Particles as Anaphora: Krifka 2013: Optimal choice of response particles 19 / 51

- (38) a. *NEGDR: Penalizes picking up a negatively marked discourse referent; Reason: When a clause contains a negation, the non-negated proposition is typically salient in the preceding context.
 - b. *DISAGR: Penalizes disagreement with other speaker; reason: Agreement as the default case.
- (39) Calculation of optimal forms in an OT tableau, antecedent: assertion (36); we assume that *DISAGR is ranked above *NEGDR

		- piop	piop			
	expression	reference	resulting meaning	*DisAgr	*NEGDR	Favorite
а	yes	d	'He did.'	*		((☜))
b	yes	ď	'He didn't.'		*	(®)
с	no	d	'He didn't.'			-B)
d	no	ď	'He did.'	*	*	

 $[_{ActP} \text{ ASSERT} [_{NegP} \text{ he did-n't} [_{TP} \text{ the } t_{did} \text{ steal a cookie}]]] \\ \hookrightarrow d'_{\text{prop}} \qquad \hookrightarrow d_{\text{prop}}$

Appositive clauses (*he did / he didn't*) required for non-optimal solutions, for clarification.

Notice:

- This computation depends on constraint *NegDR the negated DR is less salient.
- In cases in which the negated propDR is salient, things might change, according to my and a few other people's judgement:

(40) S₂: Which of the mountains on this list did Reinhold Messner NOT climb?

S₁: Well, let's see... He did not climb Mount Cotopaxi in Ecuador.

- S₂: a. Yes. (= He did not climb it.)
 - b. No. (= He did climb it.)

Response Particles as Anaphora: Krifka 2013:

21 / 51

4.9 Response particles to questions with negation

Introduction of discourse referents in negated clauses, here: Question with propositional negation.

(41) $[_{ActP} did QUEST [_{NegP} he not [_{TP} t_{he} steal the cookie]]]?$ $\hookrightarrow d'_{prop} \hookrightarrow d'_{prop}$

Four possibilities of interpretation in this context; judgements (a)/(b) Holmberg (2012).

(42) a. Yes.	ASSERT(d)	'Yes, he did.'	Natural answer, preferably with tag.
b. Yes.	ASSERT(d')	'Yes, he didn't.'	Less natural, possible with tag.
c. <i>No.</i>	ASSERT(¬d)	'No, he didn't.'	Natural answer, tag not necessary.
d. <i>No.</i>	ASSERT(¬d')	'No, he did.'	Quite bad, even with tag.

For non-biased questions, *DISAGR is not operative.

But questions based on a negated proposition are biased; otherwise the simpler variant with a non-negated proposition would have been used (*Did he steal the cookie?*).

Yet it is less biased than an assertion. So we assume that *DISAGR is ranked lower.

Calculation of optimal forms in an OT tableau, antecedent: question (41).

	expression	reference	resulting meaning	*NEGDR	*DISAGR	Favorite
а	yes	d	'He did.'		*	(®)
b	yes	ď	'He didn't.'	*		((☜))
с	no	d	'He didn't.'			-60
d	no	ď	'He did.'	*	*	

Contrast with syntactically high negation (Ladd 1981), cf. Krifka (2015):

(43) S₁: Didn't Ede steal some cookie?

 $[_{ActP} \textit{ did-REQUEST } [_{NegP} \textit{ not } [_{ActP} \textit{ Ede ASSERT } [_{TP} \textit{ t}_{Ede} \textit{ steal some cookie}]]]] \\ \hookrightarrow d_{prop}$

Only **one** propDR is introduced; negation interpreted as speech-act operator; S_1 requests from S_2 to denegate the assertion that Ede stole some cookie. Predicted answer pattern:

(44) S ₂ :	a. Yes (he did).	b. No (he didn't).
	c. *No, he did.	d. * Yes, he didn't.

Response Particles as Anaphora: Krifka 2013: Response particles to questions with negation 23 / 51

4.10 The German particle doch

In German there is in addition to *yes* and *no* a third particle, *doch* (cf. also French *si*), that requires a syntactically negated discourse referent.

(45) S ₁ : Er hat einen Keks gestohlen. S ₂ : Ja. Nein. *Doch.	'He stole a cookie.' 'He did steal a cookie.' 'He did not steal a cookie.'
(46) S ₁ : <i>Er hat keinen Keks gestohlen.</i> S ₂ : Ja. Nein. Doch.	'He did not steal a cookie.' 'He did not steal the cookie.' 'He did not steal the cookie.' 'He did steal the cookie.'
(47) S ₁ : Es fehlt ein Keks. S ₂ : Ja. Nein. *Doch.	'A cookie is missing.' 'A cookie is missing.' 'No cookie is missing.'

Roelofson & Farkas 2015: doch realizes feature combination [REVERSE, +]

Like *ja / nein*, the particle *doch* is of the syntactic category TP:

(48) *Er hat wahrscheinlich keinen Keks gestohlen. Falls <u>doch</u>, muss er bestraft werden. 'He probably did not steal a cookie. But if he did, he must be punished.'*

Assumption for doch:2

- Presupposes two propDRs, one the negation of the other: d, d' = ¬d
- Picks up the non-negated discourse referent, d.
- (49) Er hat möglicherweise keinen Keks gestohlen. Wenn doch, müssen wir ihn finden.
 'Ede may not have stolen a cookie. If DOCH, we have to find it.' Notice that doch makes accessible the DR introduced by a cookie, hence picks up non-negated propDR anchored to Ede hat einen Keks gestohlen

The particle *doch* comes with a specific presupposition, which blocks the uses of other particles in case the presupposition is satisfied.

Response Particles as Anaphora: Krifka 2013: The German particle doch

² The assumption that *doch* presupposes two salient propositional discourse referents, d, ¬d is probably too strict, as ¬d can be accommodated in certain cases.

 S_1 : Hat Ede denn (etwa) einen Keks gestohlen? S_2 : Ja. / Doch. (= he stole a cookie) Nein. (= he didn't steal a cookie)

A's question introduces only one discourse referent, d = 'Ede stole a cookie', yet *doch* is possible. Perhaps the requirement is that a propositional discourse referent d is salient, but the context entails that ¬d might hold; *doch* then picks up the discourse referent d. This allows, but does not require, that a discourse referent ¬d was introduced.

One implementation of blocking, following Beaver (2004):

 Meta-constraint BLOCK that is marked by the presence of an expression for which the indicated interpretation is strongly preferred.

	expression	reference	resulting meaning	*Pres	BLOCK	*NEGDR	Favorite
а	ja	d	'He did.'		*		
b	ja	ď	'He didn't.'			*	(®)
с	nein	d	'He didn't.'				~©)
d	nein	ď	'He did.'			*	(®)
е	doch	d	'He did.'				☜; blocking of a
f	doch	ď	'He didn't.'	*		*	

(50) Calculation of optimal forms in an OT tableau; negated antecedent clause; DISAGR is irrelevant if ordered under BLOCK.

- S₁: Er hat den Keks nicht gestohlen.
- S₂: a. ^{??}Ja, er hat ihn gestohlen.
- b. Ja, er hat ihn nicht gestohlen.
- c. Nein (er hat ihn nicht gestohlen). d. Nein, er hat ihn gestohlen.
- e. Doch (er hat ihn gestohlen). f. *Doch (er hat ihn nicht gestohlen).

The presence of a third particle, *doch*, creates a more expressive system of response particles, obviating the need to add full or elliptical clauses as in English.

Response Particles as Anaphora: Krifka 2013: The German particle doch

27 / 51

4.11 Narrow-scope negation

Holmberg (2012) observes preference for the agreeing answer in cases like (51):

(51) S_1 : John sometimes / purposely did not show up for work. S_2 : Yes, he didn't. / [?] No, he didn't.

Explanation: Negation does not form a NegP under the scope of a quantifier, hence does not introduce a negated propDR.

A case of ambiguous negation in German, disambiguated by doch.

- (52) S₁: Jeder Zahnarzt ist nicht reich.
 - i. 'For every dentist it holds: he or she is not rich.'
 - ii. 'It is not the case that every dentist is rich.'
 - S₂: *Doch.* 'Every dentist IS rich.' (= ¬(ii.)).

Explanation: Only reading (ii) inroduces a negated propDR, hence *doch* is applicable only for this case.

4.12 Focusing on negation

Holmberg (2012) observes that stressing the negation in an antecedent clause influences the interpretation of yes/no answers;

(53) S₁: Did Ede NOT steal a cookie?

S₂: Yes. (likely interpretation: He did not steal it).

Explanation:

- Stress indicates focus, and focus indicates alternatives (cf. Rooth 1992).
- ◆ In the case at hand, the meaning is the proposition ¬'Ede stole a cookie', and the set of alternatives is {'Ede stole a cookie', ¬'Ede stole a cookie'}.
- As for the introduced propDRs, the meaning introduces two propDRs, d for 'Ede stole a cookie', and d' for ¬'Ede stole a cookie'; the only alternative introduces just one, d for 'Ede stole a cookie'
- The highlighting or contrast of the focused expression with the alternatives also affects their anaphoric potential; as the focused expression and the only alternative differ just in d', this makes d' more salient than d.
- As d' is more salient, and the yes answer is semantically less complex, yes can be used to identify d'.

29 / 51

5 Other kinds of response particles

5.1 hai and iie

Agree / disagree systems (cf. Sadock & Zwicky 1985), e.g. hai / iie in Japanese:

(54) a. S ₁ : John wa hashitte imasu ka?	a. S₂: /	Hai (, hashitte imasu). 'Yes (, he is running)'
'Is John running?'	b. S₂: /	lie (, hashitte imasen) 'No (, he is not running)'
b. S ₁ : John wa hashitte imasen ka?	a. S₂:	Hai (, hashitte imasen). 'Yes (, he is not running)'
'Is John not runnina?'	b. S ₂ :	<i>lie (, hashitte imasu</i>), 'No (, he is running)'

Theoretical options:

- hai and iie express agreement / disagreement; questions are always biased.
- Negation in Japanese does not form a NegP, hence does not introduce a negated propDR. cf. Yabushita (1998) for arguments for that option.

5.2 right and wrong

right and *wrong* act as agreement/disagreement markers; un-ambiguous meaning with assertions:

(55) S ₁ : He stole a cookie.	S ₂ :	<i>Right.</i> (= he stole one.) <i>Wrong.</i> (= he didn't steal one.)
(56) S_1 : He didn't steal a cookie.	S ₂ :	<i>Right.</i> (= he didn't steal one.) <i>Wrong.</i> (= he stole one.)
They can also be used with quest	ions,	

which presupposes that the question can be understood as biased.

(57) S_1 : Did he steal a cookie? S_2 : Right. / (?) Wrong.

(58) S_1 : Didn't he steal a cookie? S_2 : Right. / Wrong.

Proposal: *right* and *wrong* do not pick up propositional discourse referents, but speech-act referents:

- (59) S₁: [_{ActP} ASSERT [_{NegP} *He did-n't* [t_{he} t_{steal} *steal a cookie*]]] ↔d_{speechact}
 - S₂: a. [_{ActP} ASSERT [*this is right / wrong*]] ↑d

b. [ActP Right.], making the same speech act as d, performed by B.

Other kinds of response particles: right and wrong

31 / 51

The speech act of an assertion

- is right (= justified), if the proposition that is asserted is true, and relevant for the current exchange.
- and it is wrong if this is not the case.

With biased questions,

- the speech act of uttering a question introduces a bias towards a particular answer as an implicature (cf. Krifka 2015 for negated questions).
- As such, a speech act introducing a bias can also be right or wrong.

Right and *wrong* can be used for non-assertive questions as well, and then express the speaker's opinion whether the question is justified at the current exchange (i.e. if it is an interesting question to ask).

- (60) S₁: Did he steal a cookie, or not?
 - S₂: *Right, that's a good question.*

5.3 uh-huh and uh-uh

(61) S₁: He stole the cookie. S₂: uh-huh.

Notice: *uh-huh* is weaker than yes; does not commit S_2 to the proposition; works as a backchaneling signal (Ward 2006).

But it can also be used like ves:

- (62) S₁: Did he steal the cookie? S₂: uh-huh.
- And uh-uh always is interpreted like no:
- (63) S1: He stole the cookie. / Did he steal the cookie? S₂: Uh-uh.

Other kinds of response particles: uh-huh and uh-uh

33 / 51

Proposal:

- The speech act of assertion is a combination of two separate acts (Krifka 2015):
- (64) S_1 , to S_2 : He stole the cookie.

a. S1 commits himself/herself to the truth of the proposition 'he stole the cookie' b. S_1 wants that the proposition becomes common ground between S_1 and S_2 .

(65)
$$[_{ActP} COMMIT_{S_1} + COMGROUND_{S_1,S_2} [_{TP} he steal-PAST [_{vP} t_{he} t_{steal} a cookie]]]$$

 $\hookrightarrow d_{act} \qquad \hookrightarrow d'_{prop} \qquad \hookrightarrow d''_{prop} \qquad \hookrightarrow d'''_{prop}$

where d^mprop: 'he stole a cookie'

 d'_{prop} : 'S₁ is committed to the proposition d''' d''_{prop}: 'the proposition d''' is part of the common ground of S₁ and S₂'

- d_{act}: S₁ acts to make d' and d" true, relevant for answer right / wrong
- The discourse referent d" typically elicits some sort of reaction from the addressee, as the common ground is common between the interlocutors.
- Reactions uh-huh and ves assert a propositional discourse referent. where *uh-huh* is weaker, and typically will target d": ASSERT(d") and yes is stronger, and will target the more commitmental d": ASSERT(d")
- Reactions uh-uh and no assert the negation of a propositional discourse referent, but here the rejection to accept d" (that d" is part of the common ground) implies that S_2 has reasons to assume that d" is false, hence ASSERT(¬d") and ASSERT(¬d") are pragmatically close.

♦ With a neutral question, Did he steal a cookie, speaker expresses that either d^m or ¬d^m becomes part of the common ground, hence this cannot be targeted by uh-huh or uh-uh; as a result, uh-huh and uh-uh can only target d^m directly, meaning yes and no.

Other kinds of response particles:

35 / 51

5.4 Reaction to commands

(66) S₁: Steal a cookie! S₂: Yes. / No. / Uh-huh. / Uh-uh.

Proposal:

• S₁ imposes a commitment on S₂ for the action to steal a cookie (Barker 2012).

(67) [ActP COMMIT_{S2} [vP steal a cookie]]

 $\hookrightarrow d_{act} \hookrightarrow d'_{prop} \hookrightarrow d''_{event.type}$

where d'_{prop} : 'S₂ is committed to the action of stealing a cookie'.

With answers yes / no (also uh-huh / uh-uh), S₂ asserts this proposition or its negation.

5.5 okay

(68) a. S ₁ : He stole a cookie.	S₂: Okay.
b. S_1 : He did not steal a cookie.	S₂: Okay.
c. S ₁ : Did he steal a cookie?	S ₂ : *Okay. / Okay he did.
d. S ₁ : Steal a cookie!	S ₂ : <i>Okay.</i>

Proposal: okay expresses compliance to a speech act.

 $\begin{array}{l} S_1: \llbracket_{ActP} \mbox{ COMMIT}_{S_1} + \mbox{ COMGROUND}_{S_1,S_2} \llbracket_{TP} \mbox{ he stole a cookie} \rrbracket. S_2: \mbox{ Okay.} \\ & \hookrightarrow \mbox{d}_{act} & \uparrow \mbox{ COMPLY}_{B}(d) \\ & \mbox{ where } \mbox{d}_{act} \mbox{ S}_1 \mbox{ acts to commit to 'he stole the cookie' and to make it part of the CG.} \end{array}$

6 Experimental data on *ja / nein*

Joint work with Sophie Repp, Berry Claus, Marlijn Meier, DFG project on response particles, Priority program XPrag.de³

4 acceptability judgement experiments (here: only for assertion antecedents)

- particle + full-clause responses to positive assertions
- preference patterns for *ja/nein* in affirming / rejecting particle + full clause responses to negative assertions
- particle + full clause responses to rejecting assertions, including doch
- bare particle responses to affirming responses to negative assertions

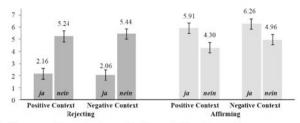
Experimental data on ja / nein: Experimental data on ja / nein


37 / 51

6.1 Experiment 1: positive antecedent

48 experimental items, 16 fillers, 48 subjects, 2x2x2 within subjects, rating 1-7 Context sentence: *Ludwig and Hildegard have their large garden redesigned.*

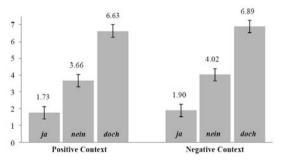
- Positive context: They are talking about what the gardener has done already.
- Negative context: They are talking about what the gardener hasn't done yet.
 Ludwig: The gardener has sown the lawn already.
 Hildegard: Affirming: JA, he has sown the lawn already.


NEIN, he has sown the lawn already. Rejecting: JA, he hasn't sown the lawn already. NEIN, he hasn't sown the lawn already.

³ Meijer, Anna Marlijn; Claus, Berry; Repp, Sophie; Krifka, Manfred. 2015. Particle responses to negated assertions: Preference patterns for German ja und nein. In Brochhagen, Thomas; Roelofsen, Floris; Theiler, Nadine, *Proceedings of the 20th Amsterdam Colloquium*, 286-295. Amsterdam: ILLC / Dept. of Philosphy, University of Amsterdam.

6.2 Experiment 2: negative antecedent

Ludwig: The gardener hasn't sown the lawn yet.

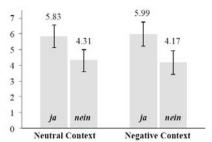

- No influence of context, against prediction by saliency account
- Preference for *nein* for rejecting responses (no *doch* provided) not predicted by feature model, predicted as default by saliency account (*NO*, *he has sown the lawn;* recall that *doch* was not offered as option)
- Slight preference for *ja* for affirming responses against default prediction of saliency and feature model, common knowledge (e.g., Wikipedia) (*JA* > *NEIN*, *he hasn't sown the lawn yet*).

Experimental data on ja / nein: Experiment 2: negative antecedent

39 / 51

6.3 Experiment 3: negative antecedent, with doch

Results for rejecting answers:

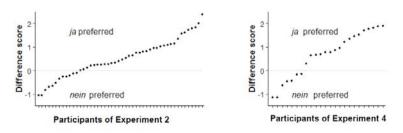

- no influence of context, as before, contra saliency account
- doch clearly the best option, as expected
- nein better than ja, different from expectations of both accounts, as before

6.4 Bare particle responses to negated antecedents

- Setting: Ludwig and Hildegard have their large garden redesigned. This morning, Hildegard talked to the gardener, who told her that because of the weather he would sow the lawn only in a couple of days.
- Context: Neutral: During lunch, Hildegard and Ludwig are talking about the gardener and the redesigning of their garden.
 Negative: During lunch, Hildegard and Ludwig are talking about what the gardener hasn't done yet.
- ◆ Dialogue: Ludwig: *The gardener hasn't sown the lawn yet.* Hildegard: *Ja. / Nein.*

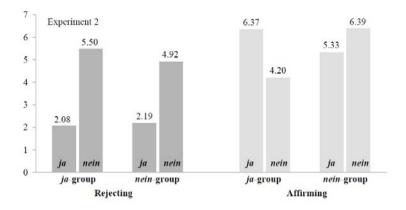
Results, again:

- No influence of context
- Slight preference for ja for confirmation


Experimental data on ja / nein: Bare particle responses to negated antecedents

41 / 51

6.5 Group differences


Evidence for different behavior of participants

- Difference scores for each participant: Mean rating of nein mean rating of ja
- z-value transformation

Two groups:

- *ja*-group (majority) prefers *ja* as affirming particle to negative antecedent
- nein-group (minority) prefers nein as affirming particle to negative antecedent
- But: Not a bimodal distribution subjects are aware of two strategies

Acceptability judgements by groups, here: Experiment 2

Experimental data on ja / nein: Group differences

43 / 51

6.6 Revised saliency account

For negated antecedents:

(69) **[**[*Bill* [**p**_{DR} t_{Bill} *doesn't* [**p**_{DR} t_{Bill} *smoke*]]]**]** = ¬smoke(bill)

*ja-*group:

- The negated DR pDR is more salient
- ◆ Reason: It is introduced by the major constituent vs. a subconstituent cf. Gordon, Hendrick, Ledoux & Yang (1999)⁴ on nominal anaphora: Mary's aunt owns a lake house where she likes to go swimming.
- Result: ja preferred for affirming responses, as it picks out por

nein-group:

- No saliency differences between the two groups
- The use of *ja* is penalized, as the result is ambiguous (creates a tie) between p_{DR} and p_{DR}
- ♦ With nein, picking up p_{DR} would result in a double negation: ¬p_{DR}, to be avoided, hence nein picks up p_{DR} and negates it: ¬p_{DR}
- doch can only pick up a negated DRs and negates it: ¬pDR

⁴ Gordon, Peter C. et al. 1999. Processing of Reference and the Structure of Language: An Analysis of Complex Noun Phrases. *Language and Cognitive Processes* 14: 353-379.

			Ja -group: Salient prop $DR = \overline{p}_{DR}$							
	Particle	Targeted propDR	N	leaning	*TIE	*Non Sal	*BLOCK	*DOUBLE NEG		
Positive antecedent (e.g., Bill smokes)	ja	PDR	p _{DR}	= affirming					Ð	
	nein	PDR	PDR	= rejecting					Ð	
Negative	ja	p _{DR}	p _{DR}	= rejecting						
antecedent (c.g., Bill		\overline{p}_{DR}	$\widetilde{p}_{\mathrm{DR}}$	= affirming					·E	
doesn't smoke)	nein	PDR	PDR	- affirming						
		\overline{p}_{DR}	$\neg \overline{p}_{\text{DR}}$	= rejecting						
	doch	p _{DR}	-p _{DR}	- rejecting				*	-101	

	22			Nein-g	roup: Sa	liency (pDR)= Saliency	(p _D
	Particle	Targeted propDR	Meaning	*TIE	*NON SAL	*BLOCK	*DOUBLE NEG	
Positive antecedent	ja	Por.	p _{DR} – affirming					÷
(c.g., Bill smokes)	nein	PDR	-p _{DR} = rejecting					÷
Negative	ia	Por	p _{DR} = rejecting	•				
(e.g., Bill	ju	$\overline{p}_{\rm DR}$	$\overline{p}_{\text{DR}} = affirming$					
doesn't smoke)	nein	PDR	$\neg p_{DR} = affirming$					÷
	in all	\overline{p}_{DR}	$\neg \overline{p}_{DR} = rejecting$				•	
	doch	p _{DR}	¬p _{DR} = rejecting					-10

Experimental data on ja / nein: Revised saliency account

45 / 51

6.7 No saliency differences

*ja-*group:

- Always picks up the propositional discourse referent that was asserted
- With negative antecedents, this is pDR
- doch expresses negation of negated DR: ¬ppR

nein-group:

- ◆ *ja/nein* always pick up the TP discourse referent of the antecedent
- With negative antecedents, this is pDR
- ♦ nein picks up p_{DR} and negates it: ¬ p_{DR}
- doch is like ja but requires presence of a negated propDR, p picks up por and affirms it: pp

6.8 Question antecedents

Low negation questions:

- Example: Has the gardener not sown the lawn yet?
- Two propositional discourse referents, p_{DR} and p_{DR} High negation question:
- Example: Hasn't the gardener sown the lawn already?
- High negation is not propositional, hence only one propDR: p_{DR} Two experiments:
- Low negation questions similar to negated assertions as antecedents
- High negation questions similar to non-negated assertions as antecedents

Experimental data on ja / nein: Question antecedents

Bibliography

Asher, Nicholas. 1986. Belief in discourse representation theory. *Journal of Philosophical Logic* 15: 127-189. Asher, Nicholas. 1993. *Reference to abstract objects in discourse*. Dordrecht: Kluwer.

- Bartels, Christine. 1999. The intonation of English statements and questions: a compositional interpretation. New York: Garland.
- Barker, Chris. 2012. Imperatives denote actions. Sinn und Bedeutung 16.
- Beaver, David. 2004. The optimization of discourse anaphora. Linguistics and Philosophy 27: 1-53.
- Cohen, Ariel & Manfred Krifka. 2011. Superlative quantifiers as modifiers of meta-speech acts. *The Baltic International Yearbook of Cognition, Logic and Communication* 6: 1-56.

Cornish, Francis. 1992. So be it: the discourse-semantics of so and it. Journal of Semantics 9: 163-178.

- Farkas, Donka F. & Kim B. Bruce. 2010. On reacting to assertions and polar questions. *Journal of Semantics* 27: 81-118.
- Farkas, Donka F. & Floris Roelofsen. 2012. Polar initiatives and polar particle responses in an inquisitive discourse model. Manuscript, University of Amsterdam.

Frank, Annette. 1996. Context dependence in modal constructions. Doctoral dissertation. Universität Stuttgart.

- Goddard, Cliff. 2002. Yes or no? The semantics of a simple question. Proceedings of the 2002 Conference of the Australian Linguistic Society.
- Geurts, Bart. 1998. Presuppositions and anaphors in attitude contexts. *Linguistics and Philosophy* 21: 545-601. Ginzburg, Jonathan & Ivan A. Sag. 2000. *Interrogative investigations*. Stanford, Ca.: CSLI Publications.
- Groenendijk, Jeroen & Martin Stokhof. 1990. Dynamic Montague Grammar. In: Kálmán, László, & László Pólos, (eds), *Papers from the Second Symposium on Logic and Language, Hajduszoboszlo*, Hungary. Budapest: Academiai Kiado, 3-48.

Hinrichs, Erhard. 1981. Temporale Anaphora im Englischen. Thesis, Universität Tübingen.

- Heim, Irene. 1982. The semantics of definite and indefinite noun phrases. University of Massachusetts at Amherst.
- Holmberg, Anders. 2012. On the syntax of yes and no in English. *Newcastle Working Papers in Linguistics* 18: 52-72.
- Jäger, Gerhard. 2002. Some notes on the formal properties of bidirectional Optimality Theory. Journal of Logic, Language and Information 11: 427-451.
- Kamp, Hans. 1981. A theory of truth and semantic representation. In: Groenendijk, J.A.G., T.M.V. Janssen & M.B.J. Stokhof, (eds), *Formal Methods in the Study of Language*. Amsterdam: Mathematical Centre Tracts 135, 277-322.
- Kamp, Hans & Uwe Reyle. 1993. From discourse to logic. Introduction to model theoretic semantics of natural language, formal logic, and Discourse Representation Theory. Dordrecht: Kluwer.
- Karttunen, Lauri. 1969. Discourse referents. Coling 1969. Stockholm. Auch in Karttunen, Lauri. 1976. Discourse referents. In: McCawley, J., (ed), Syntax and Semantics 7: Notes from the Linguistic Underground. New York: Academic Press, 363-385.

Kramer, Ruth & Kyle Rawlins. 2009. Polarity particles: an ellipsis account. NELS 39.

- Krifka, Manfred. 2001. For a structured account of questions and answers. In: Féry, Caroline & Wolfgang Sternefeld, (eds), Audiatur vox sapientiae. A Festschrift for Achim von Stechow. Berlin: Akademie-Verlag, 287-319.
- Krifka, Manfred. (i.E.) Negated polarity questions as denegations of assertions. In Chungmin Lee & Ferenc Kiefer (eds.), Contrastiveness and scalar implicatures. Heidelberg: Springer.
- Ladd, D. Robert. 1981. A first look at the semantics and pragmatics of negative questions and tag questions. Proceedings of the Chicago Linguistic Society 17. Chicago: 164-171.
- Laka, Itziar. 1990. Negation in syntax: On the nature of functional categories and projections. Doctoral dissertation, Cambridge, Massachusetts Institute of Technology.

Bibliography: Bibliography

- Meijer, Anna Marlijn; Claus, Berry; Repp, Sophie; Krifka, Manfred. 2015. Particle responses to negated assertions: Preference patterns for German ja und nein. In Brochhagen, Thomas; Roelofsen, Floris; Theiler, Nadine, Proceedings of the 20th Amsterdam Colloquium, 286-295. Amsterdam: ILLC / Dept. of Philosphy, University of Amsterdam.
- Merin, Arthur. 1994. Algebra of elementary social acts. In: Tsohatzidis, Savas L., (ed), Foundations of speech act theory. Philosophical and linguistic perspectives. London: Routledge, 234-266.
- Partee, Barbara H. 1984. Nominal and temporal anaphora. Linguistics and Philosophy 7: 243-286.
- Penka, Doris. 2007. Negative indefinites. Dissertation. Tübingen: Eberhard Karls Universität Tübingen.
- Prieto, Pilar et al. 2013. Prosody and gesture constrain the interpretation of double negation. *Lingua* 131: 136-150.

Repp, Sophie. 2009. Negation in gapping. Oxford: Oxford University Press.

- Repp, Sophie. 2012. Common ground management: Modal particles, illocutionary negation, and VERUM. In: Gutzmann, Daniel & Hans-Martin G\u00e4rtner, (eds), *Expressives and beyond. Explorations of conventional non-truth-conditional meaning*. Oxford: Oxford University Press,
- Roelofsen, Floris & Sam van Gool. 2010. Disjunctive questions, intonation, and highlighting. In: Aloni, Maria et al., (ed), *Logic, language, and meaning*. Springer, 384-394.
- Sadock, Jerold M. & Arnold M. Zwicky. 1985. Speech act distinction in syntax. In: Shopen, Timothy, (ed), Language typology and syntactic description. Cambridge: Cambridge University Press, 155-196.
- Susagna Tubau, M. Teresa Espinal, Santiago González and Pilar Prieto (to appear), The effects of intonation and gesture in yes-answers to negative yes-no questions
- Vennemann, Theo. 2009. Celtic influences in English? Yes and No. English Language and Linguistics 13: 309-334.
- Ward, Nigel. 2006. Non-lexical conversational sounds in American English. Pragmatics & Cognition 14: 129-182.

- Webber, Bonnie Lynn. 1978. A formal approach to discourse anaphora. Report No. 3761, Bolt Beranek and Newman Inc.
- Yabushita, Katsuhiko. 1998. Why do Japanese *hai* and *iie* not behave like English *yes* and *no* all the way? Consequences of the non-sentential operation of the Japanese non-sentential morpheme *nai*. *Kansas Working Papers in Linguistics* 23: 59-74.

Zeijlstra, Hedde. 2004. Sentential negation and negative concord. Dissertation. Utrecht: University of Utrecht.

Bibliography: