6. Quantifiersin Natural Language

6.1. Introduction

In the previous chapter we were concerned with two kinds of noun phrases (or “determiner
phrases’, in newer terminology:

(1) a Namesliketvolly,
b. definite¢NPs like the girl

But there are many other types of/noun phrases. Here are afew examples:
(2) a everygirl b. agirl

c. someqirl d. manygirls

e. most girls f. fewqirls

g. threegirls h. thethreegirls

In this section we will turn to the semantics of such expressions. In general, they are called
quantifiers, and the theory that investigated the properties of such quantifiersiscaled General-
ized Quantifier Theory. We will leave our toy grammar for a while and investigate the semantic
properties of such quantifiers.

6.2. Generalized Quantifiers

6.2.1. The General Format of Generalized Quantifiers

The notion of Generalized Quantifiers (GQ) hasitsrootsin Frege and arguably even farther back,
in Aristotle; it has been developed more recently for mathematics by Mostowski (1957), and applied
to linguistic phenomenafirst by Barwise & Cooper (1981).

What is the type of aquantifier? It is a noun phrase, and we have seen that one kind of noun
phrases, names, are of the semantic type e, that is, they denote entities. But quantifierslike every girl
and no girl cannot be of thistype. For example, no girl cannot stand for any particular girl. One of
the oldest recorded jokes makes precisely this point: When Odysseus (Ulysses) and his associates
blinded the one-eyed giant (cyclop) Polyphemus, he asked for Odysseus’ name. Odysseus said
that his name is “Nobody”. Polyphemus then asked his fellow cyclops to kill nobody, but of
course they just laughed at him.

If averb phraseis of type et, and the combination of a quantified NP with a verb phraseis of
typet, but the quantified NP cannot of type e, then the only remaining option, if semantic combina-
tionis by functional application, isthat the quantified NP is of type (et)t:

(3) [s[neNobody] [y.laughed]]
[Nobody] ( [laughed] )
(et)t et

t

If the quantificational nhoun phrase consists of a determiner and a noun, and the noun is of type €,
then the determiner must be of type (et)(eb)t:
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(4) [slneloaNol  [@irl]] [yplaughed]]
[Noj (- [girl] ) ([laughed])
(et)(et)t et

(et)t et
t

Inthisview, determiners are functions from D to functions from D, to D,. Alternatively, we can
consider determiners as relations between anoun meaning and averb meaning:

(5) [no]([girl], [laughed])
Inthis view, determiners are two-placer elations between D, and D,.
A note on terminology:
Y ou will sometimes find the term “quantifier” used for what we call here “determiner”.

The first argument (here, the noun meaning) is called restrictor, and the second argument (here,
the verb meaning) is called matrix or nuclear scope. For example, in every girl smiled, the
noun girl isthe restrictor, and the VP smiled is the matrix or nuclear scope.

Thelogical properties of quantifiersin natural language have been studied extensively (Bar-
wise & Cooper, van Benthem, Keenan). This was done typically by assuming that determiners are
two-place relations, with the general format: D(X,Y), or D,(X)(Y), where A stands for the universe.
We will switch back and forth between those two views whenever convenient.

6.2.2. Examples of Generalized Quantifiers

Let us discuss a few natural-language examples of generalized quantifiers. In the functional
format, a sentence like every man walkswill be analyzed asfollows.

(6) a every manwalks: [every]([man])([wak])

b. =1 Pl Dl P& D [P¢l P]([man])([walK])
O I P{[man] I Pl([walk])
U [man] | [walkK]
That is, every man walksistrue iff the set of men isasubset of the set of walkers.

Let usnow look at awider range of quantifiers, given in the same format as every above. | will
generaly assumethat P, P¢are variables for elementsin D, and leave that unexpressed.

(7) a all/every N: | P[[N]CP=[N]l,orl P[[N]i P
b. some N: | P[[N]C P! g]
C. noN: | P[ [N] C P=0]
d. notall N: | PL[N] C Pt [N]],orl P[[N] E P]
e. at least two N: | PIA([N] C P)3 2]
f. exactly two N: | P[#([N] C P) = 2]
g. betweentwo andfiveN: | P[2 £ #([N] C P) £ 5]
h. an odd number of N: | P[#([N] € P) isodd]
k. more male than female N: | P[#([N] C [male] C P) >#([N] C [femalg] C P)]
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83 Quantifiersin Natural Language

6.2.3. Names, Definites and Indefinites

The categories of noun phrases that we dealt with in the previous chapter can be rendered as Gener-
alized Quantifiersaswell. First of all, names can be seen as quantifiers, along the following lines:

(8) Leopold: | P[P(LB)]
We can anayze a sentence like Leopold smiled as follows:
(9) a [Leopold]([smiled]))

b. =1 P[P(LB)]([smiled])
c. = [smiled](LB)

Thisanalysis of names may seem abit perverse at first. But there is one advantage: It allows usto
treat names and true quantifiers as belonging to the same semantic type, (et)t.

We have anadyzed definite NPs asinvolving a particular presupposition, a presupposition of
existence and unigqueness. We can express definite NPs as follows:

(10)a. [[ye [oa thef [y woman]]]([smiled])

b. = [the] (Jwoman] ([smiled])

c. =1 Pl {P|#P) =1} PP Pq([woman])([smiled])

d. =[[woman] [ [smiled]], provided that #[woman]) = 1
e. =1, if every woman smiled and there is exactly one woman,

=0, if not every woman smiled and there is exactly one woman,
undefined else.

As before, we express the existence and uniqueness condition by a requirement for the domain of a
function.

Indefinite NPs, like a woman, can be treated similarly to some woman:

(112 [[yp [ox al [y woman]]]([smiled])
b. = [a]([woman] ([smiled])
c. =1 Pl P¢P C P¢t A ([woman])([smiled])
d. =[[woman] C [smiled] * A

6.2.4. Types of Quantifiers

Many of the quantifiers listed above just impose a condition for the intersection [N] C P, that is,
the intersection of the noun meaning and the verb phrase meaning. For example, at least two N says
that the number of elementsin this set must be greater or equal than two. Such quantifiers are called
cardinal or intersective quantifiers, as it depends solely on the cardinality of the intersection
whether they hold or not.

But there are other quantifiersthat are abit more complex, like the following ones:

(12)a. most N: | P #([N] € P)/#([N]) > 1/2],
b. between 10 and 20 percent of the N | PL0.1£#([N] C P)/#(N]) £ 0.2]

In this case, the number of elementsin [N] isimportant as well. More specifically, whether the
quantifier obtains or doesn’t obtain depends on the proportion of #[[N] C P) and #([N]). Such
quantifiers are called proportional quantifiers.
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Quantifiersthat come with a particular condition on their restrictor can be called presupposi-
tional. Definite NPs like the girl are one type of example (see (10)), but there are others:

(13)a. theN: | Pl {P|#(N])=2[[N] I P]
b. both N: | Pl {P|#(N])=2}[[N] T P]
c. neither N: | Pl {P|#([N])=2}[ [N] CP=0]
d. the seven N: | Pl {P|#([N])=7}[N] T P

Another interesting class of quantifiersis the one based on the determiners several, a |ot of,
many or few. They are similar to cardinal quantifiers, as the intersection of [N] and P isall that
matters, but we cannot give precise conditions for when a quantifier relation actually obtains. Such
quantifiers are called vague quantifiers. The best we can do at the moment is to assume some
threshold value n, a parameter that heavily depends on the context:

(14)a. many N: I P[#([N] C P) > n], n: some context-dependent standard
b. fewN: | PI#([N] C P) <n]

Vague quantifiers are of course only the tip of the iceberg when it comesto vagueness in natu-
ral language. For example, many adjectives are vague as well. When are you willing to say that
someone is atall person, or a small person? We have talked about such context-dependent adjec-
tivesin the preceding chapter.

Quantifierslike many N and few N are not only vague, they are in addition ambiguous. They
also have aproportional reading. with avaguely specified proportion:

(15)a. many N: | PL#([N] C P)/ #(N]) > n]
b. few N: | PL#([N] C P)/ #([N]) <n]

Thisreading is obvious in examples like the following:

(16)a. Many stars are red.
b. Few mosguitoes carry malaria.

It is not the absolute number of stars that are red or the number of mosquitoes that carry malaria
that is of interest, but the proportion. (Below we will discuss yet another possible interpretation of
many and few, cf. (24)).

6.2.5. Representation of Quantifiers by Venn Diagrams

Quantifiers can be represented by Venn diagrams. For example, the quantifier every girl is the set
of subsets of the universe D, such that the set [girl] is subset of them. We can illustrate this as
follows:
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6.3. Universal Restrictionsfor Generalized Quantifiers

One important question in GQ research of the 1980’s was: Which of the logically possible deter-
miners and quantifiers are actualy realized in natural language?

6.3.1. How Many Quantifiers (Determiners)?

First, let us think about how many theoretically possible determiners there are— that is, how many
determiners a universe of a given size can “support”. We expect that natural languages actually
have only a small fraction of the theoretically possible determiners. Thisis similar as with other
expressions. For example, if we have auniverse D, then every subset of D, represents the meaning
of apotential one-place predicate. If the universe has n elements, we have 2"-many possible predi-
cate meanings. But certainly, many of these possible predicate meanings cannot be expressed by
any simple predicate in a given language. For example, there is no predicate that appliesto this chair
over here, that fly over there, the number 27, and nothing el se.

It is convenient to analyze adeterminer D as a two-place relation between subsets of D..
Let usassumethat D, has n elements. Then the calculation isasimple exercise:

» First, the number of subsets of D, #(pow(D,)), is 2"
»  Second, the number of pairs of subsets of D, #(pow(D,) ~ pow(D,)), is2'+ 2", which is4"

» A specific determiner, like every, isaparticular relation between subsets of D,, hence aparticu-
lar subset of this set. And every subset of this set is the meaning of apossible determiner. The
set of al possible determiners then is the power set of this set. We have:

+  The number of sets of pairs of subsets of D,, #(pow(pow(D,) ~ pow(D,))), is 2+

That’s alot of determiners! For example, when the universe D, consists of two elements only, that
is, n = 2, then there are already 2'° = 65536 possible determiners.

Y ou may wonder how we arrive at this huge number. Consider one example of a determiner
meaning in this universe. | give as an example the meaning of the determiner everyin auniverse that
consists only of the elements aand b:

(17)pair of sets truth value pair of sets truth value
&FE, AN ® 1 &, {b}n ® 1
§a, A ® 0 ia,{bjn ® 0
g b}, A ® 0 &b}, {b}fd ® 1
a b}, A ® 0 &a b}, {b}Ai ® 0
de{agh ©® 1 ak{ab}i® 1
dat,{a§f ® 1 ga,{abli ® 1
gb}, {gfi® 0 gb},{abjn ® 1
da b}, {aqh ® 0 ga b}, {a b}i® 1

Notice that this characterizes just one determiner. Every distribution of truth values over these 16
pairs constitutes a distinct determiner meaning — which gives us 2'® determiner meanings allto-
gether.
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87 Quantifiersin Natural Language

6.3.2. Another Way of Expressing Determiners

There is another perspective that allows us to express the meaning of determiners. We have seen
that a determiner denotes arelation between two sets, [N] and [V P]. We can depict thisin the fol-
lowing generalized Venn diagram:

(18)

N

_— [VF]

(4)

There arefour “cells’ that are relevant for aparticular instance of aset [N] and [VP]:

(19) (1):theset[N] % [VP]
(2):theset [N] C [VP]
(3):theset [VP] % [N]

(4): theset (D, % [N]) ¥% [VP].

We can characterize every determiner in terms of the four cells. For example:

(20)a. everyN VPistrueiff (1) = A&,
b. some N VPistrueiff (2)* A
c. noN VPistrueiff (2) = A
d. an odd number of N VP istrueiff #(2) is odd.

We can compute the number of possible determiners under this perspective in the following
way. A particular pair of two sets [N] and [V P], together with a particular universe D,, can be de-
scribed by determining, for each individua x in D, whether x belongs to (1), (2), (3), or (4). If the
universe D, has n elements, we get matrices like the following:

(21)Elementsof D, Q) 2 ©)] 4)

X, O Ya Ya Ya
X, £ £ 0] 3{4
X, Y Y £ O
X £ £ O £

Each particular pair [N], [\VP] corresponds to a particular matrix. We can cal culate the number of
all pairs of sets [N], [VP] according to this scheme, as follows: Each element x might be in one of
four sections, (1) to (4). As each element isindependent of any other, we haved e 4e.. 4 (n times)
= 4" many possible matrices. As each matrix correspondsto apair of [N] and [VP], we have 4
many possible pairs.

Now, aparticular determiner isa particular subset of the set of al pairsof [N] and [VP]. For
example, the determiner every can be identified with the set of all matrices for which (1) is empty.
We know that if a set has m elements, then there are 2™ subsets. A set with 4" elements hence has
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24" subsets. Hence there are 24-many possible determiners in a universe with n elements. We see
that thisway of counting quantifiers gives us the same result as the one we used before.

An interesting question at this point is: Do we need, for every element x, the information
whether x isin (1), (2), (3) or (4)? This depends on the specific determiner we are considering. A
“worst-case” determiner for which we would indeed need information about all sets (1), (2), (3),
(4) isD*, defined asfollows:

(22)D*([N],[VP]) istruein auniverse D, iff #(1) = #(2) and #(3) < #(4).

For example, D* boys smiled would be true if the number of boys that smiled is equal to the
number of boys that did not smile, and there are fewer smiling non-boys than entities that neither
smile nor are boys. Such weird determiners do not occur in natural language. The quantifiers we
have considered so far all can be expressed by using information present in the cells (1) and (2). It
turns out that the cells (1) and (2) are by far the most important for quantifiersin general. Let us
have alook at anumber of constraints that have been discussed in quantifier research.

6.3.3. Extensionality

One constraint that seems to be obvious for natural-language determinersisthat cell (4) (the ele-
mentsin the rest of the universe) does not matter. For example, to assess whether most girls smiled
istrue, we are not concerned at all about rocks, or cars, or whatever the universe contains besides the
girls and the deepers.

Determinersthat have this property are called extensional. We can define extensionality as
follows:

(23)A determiner D is extensional iff for all P,P¢with P, P¢i D_and all D withD_i D the
following holds:
D(P, P9 istruein D, iff D(P, P§ istruein D*.

The only possible exception to extensionality that has been discussed (by Dag Westerstahl,
1985, Linguistics & Philosophy) is acertain use of many and few. Assume that we are talking about
human beings, hence the universe D, isthe set of all people. A sentence like

(24)Many Scandinavians are blond

may be paraphrased as. The incidence of blondness among Scandinavians is greater than the inci-
dence of blondness among people (= the universe) in general. Hence:

#[N] C [VP]) #([VP])

many N VPistruein D, iff >
#([N]) #D,)
Or, interms of cdlls:
#(2) #(2) + #(3)
- >
#(1) + #(2) #(1) + #(2) + #(3) + #(4)

Obvioudly, for thisinterpretation of many the cell (4) counts — adding more entities to the universe
might make the sentence false. Hence many is not an extensional quantifier in thisinterpretation. It
is, however, an open issue whether this is an appropriate semantic analysis of many.
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6.3.4. Conservativity

One particularly important restriction for natural-language determinersisthat they have the property
of being conservative, in the following sense:

(25)D isconservativeiff for al P, P¢ D(P, P9 iff D(P, P C P9 (that is, the extension of P¢counts
only insofar asit overlaps with P).

Examples:
(26)a. EveryNVP: [N]i [VP] iff [N] I [N]CI[VP]

b. NoN VP: IN]C VP =@ iff [N] C [N]C[VP =0

Test for conservativity: A determiner D is conservative iff it supports the following logical
equivaence, for al N and VP:

DNVPU DN areN that VP.

Examples:
(27)a. All girlssmiled.

b. Some girls smiled.

c. Most girls smiled.
d. No girl smiled

All girlsare girlsthat smiled.
Some girlsare girlsthat smiled.
Most girls are girls that smiled.
No girl isa girl that smiled.

coCoo

If dl natural language determiners are conservative, then the question is: How many conserva-
tive determiners are there? We can find out about this by simply looking at the relevant cellsin the
representation of quantifier meaningsin (17). For conservative determiners we don’t care for cell
(3) (the elements of the VP meaning that are not also elements of the N meaning), and we can com-
bine cell (3) and (4). Hence we have only three sections that are relevant. The number of determin-
ers drops to 23", for a universe with n elements. In a universe with only two el ements, we will only
have 2°, that is, 512 conservative determiners.

Why isit that natural-language determiners are conservative and extensional? One answer
might be in the way how we process statements with quantifiers. It turns out that conservative and
extensional quantifiers are conceptualy ssmpler than other quantifiers. To check whether a statement
of the form D(P,Q) is true or false, we can concentrate on the set P (the extension of the noun);
other entities are irrelevant. This means, effectively, that we can shrink the universe to the set P, for
the purpose of evaluating the statement.

Thereisapotential counterexample to the claim that all natural language quantifiers are con-
servativity, namely only, analyzed as a determiner, asin Only girls sleep: This sentence is true iff
there isno slegper that isnot agirl. Hence only imposes arestriction on cell (3): (3) must be empty.

(28) Only N: | P[P [NTJ]

But only is quite different from other determiners: It can be used with names, asin (a), or as an ad-
verbial, asin (b) and (c). Also, in order to interpret sentences containing only we must identify the
congtituent that is stressed (the constituent in focus).

(29)a. Only JOHN kissed Mary.
b. John only kissed MARY .
c. John only KISSED Mary.
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The position of the focus has crucia influence on the interpretation. For example, (b) means ‘the
only person John kissed was Mary’, and (c) means ‘the only thing that John did to Mary was that
he kissed her’. Hence it seemsthat it is focus that determines the readings of sentences with only.
Very roughly, we have:

(30)[...only...F...] means: Theonly Psuchthat[...P...] isF.
(or: For al Psuch that [...P...] it holds that F = P)

But thisisaradically different case from nominal determiners. Hence we can assume that only isn’t
adeterminer after all.

Notethat even if wetreat only as a determiner, it has one property that is related to conserva
tivity. It holdsfor D = only that

(31)For al P, P¢ D(P, Pg U D(P C P¢ PY).

This property is sometimes called anti-conservativity. For example, we have that Only girls
smiledislogically equivalent to Only girls that smiled smiled. In terms of cells, only (2) and (3)
meatter for anti-conservative determiners.

6.3.5. Intersectivity

Intersective determiners are those for which the truth conditions of a sentence of the form D(P, P9
can be stated solely in terms of the intersection of P and P¢ For example, some, more than two, less
than seven, an odd number of, or no are intersective determiners. Clearly, determinerslike every, the
or most are not intersective. Of course, all intersective determiners are also extensional and conser-
vative. But intersective determiners are even more restricted, as only the content of cell (2) matters.

How many intersective determiners are there, in auniverse with n elements? For intersective
guantifiersit is sufficient to know whether an individual isin cell (2) or not. Following the reason-
ing above, we will have only 22" intersective determiners. This means, for example, that a universe
with 2 elementswill have just 16 intersective determiners.

Intersective determiners are alinguistically interesting class, because it is precisely these determin-
ersthat occur easily in existential constructions (cf. Keenan 1987).

(32)(i)  Therewasastudent at the party.
There were more than seven students at the party.
There were more male than female students at the party.
There were few students at the party.
There was no student at the party.

(i)  *Therewas every student at the party.
*There were most students at the party.
*There was the student at the party.
*There were both students at the party.
*There was John at the party.

The following explanation has been proposed why intersectivity may lead to this distribution
in grammaticality. Existential sentences express the existence of entitiesin the universe. For exam-
ple, the first sentencein (i) saysthat the universe of discourse (which isrestricted to the people at
the party, by the phrase at the party) contains a student. The second sentence says that it contains
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more than seven students, and the last sentence says that it contains no student. Notice that these are
all informative sentences— they could be false.

Contrast this with the sentencesin (ii). If we interpret these sentences in the same way, asa
statement about the universe restricted to people at the party, then the first sentence says that the
universe contains every student. But thisistrivialy true, atautology. The second sentence says that
the universe contains most students — again a tautology. The third sentence has a presuppositional
determiner, and can be evaluated only in case the universe contains exactly one student. But in all
universes that satisfy this requirement, the sentence again expresses atriviality. Similar with the
other sentences. In particular, the last sentence can be interpreted only if the name John refers to
someindividual. If it can be evaluated, it saysthat thisindividual isin the universe, again something
that istrivially true. Hence the explanation for the distribution that we find with (i) and (ii) isthat the
sentences (ii) express tautologies and hence cannot be used to communicate anything meaningful.

Notice that they contrast with the following non-existential sentences that do express some-
thing meaningful:

(i)  Every student was at the party.
Most students were at the party.
The student was at the party.
Both students were at the party.
John was at the party.

But in this case, at the party does not specify the domain of discourse, but is rather the VP argu-
ment of the determiner.

This explanation is perhaps not the final one, because we sometimes indeed find that sen-
tences of type (ii) can be quite good:

(33)a. Thereisevery reason to believe that Bill isthethief.
b. | turned the corner, and what do | see? There was John standing at alamppost.

But in these cases we don’t seem to talk about existing, pre-specified universes and their members.
Example (a) expresses something like: Every potential reason to believe that Bill isthe thief exists
in the universe under consideration, that is, can be regarded as a good reason. And (b) says John,
whose existence in alarger universe of discourseis given, actualy existed in the smaller universe
that appeared when the speaker turned around the corner.

6.3.6. Quantitativity

Another universal restriction for natural-language determinersis the following: In order to deter-
mine whether D(P, Q) istrue, it is sufficient to check the cardinality of the setsPand P C Q. That
is, we don’t have to know the identity of those elements; it sufficesto know how many elements
there are. Examples:

(34)a. [every](P, PY: #(P) =#(P C P9
b. [no](P, PY: #PCP§=0
c. [some](P,P): #HPC P§ 3 1
d. [most](P, PY: #(P C PY/#(P) > 1/2.
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An obvious counterexample are genitive NPs, like John’sin John’ s books. If we paraphrase John's
by “the objects that belong to John”, we get the following interpretation, which cannot be re-
phrased as a simple statement about cardinalities.

(35) [John's|(P, P9: [P C {y|y belongstoJohn}] i P¢

Quantitative determiners are particularly simple, asal that countsis the number of elementsin
the cells (1), (2), (3), (4) of thediagram in (17). If we have a universe with n elements, then a quan-
titative determiner can be characterized by four numbersn , n,, n, and n, (one number for each cell);
the numbers add up to n, the number of elements in the universe. For conservative and/or extensive
determiners it may be sufficient to know one or two of these numbers. For example:

(36)a. no: n,=0
b. every: n =0
C. Some: n23 1
d. most: n,> 1/2 n,

6.4. Monotonicity

So far we were interested in genera properties of all natural-language quantifiers. Now, there are
interesting logical differences between quantifiers that allow usto classify them in semanticaly
interesting subclasses.

6.4.1. Monotonicity of Quantifiers

First let us have alook at some inference patterns that relate to the VP-element of a quantifier (we
use the symbol P to expressthat if the right-hand sentence is true, then the left-hand sentenceis
true).

(37)a. All men walked rapidly. P All menwalked.
b. Agirl smoked a cigar. P Agirl smoked.
C. Most students slept and snored. P Most students slept.
d. Both tourists ate spaghetti. P Both tourists ate.

In (37) we replaced the VP of the first sentence by a VP with a more gener al meaning; note that
the opposite pattern (U ) does not hold.

(38)a. No man walked. P No man walked rapidly.
b. Few girls smoked. P Few girlssmoked a cigar.
C. Lessthan 10% of the studentsslept. P Less than 10% of the students slept and snored.
d. Neither tourist ate. P Neither tourist ate spaghetti.

In (38) we replaced the VP of the first sentence by a VP with a mor e specific meaning; note that
the opposite pattern (U ) does not hold.

The quantifiersin (37) are called upward monotone or increasing, a property that is de-
fined in the following way:

(39)a. Qisupward monotoneiff it holds for all interpretations:
IfPl QandPIl P¢thenP¢l Q.
(that is, upward monotone quantifiers are closed under extension.)
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Quantifiersin (38) are called downward monotone or decreasing:

(39)b. Qisdownward monotoneiff it holdsfor all interpretations:
If Pl QandP¢l P, thenP¢l Q.
Downward monotone quantifiers are closed under contraction.

Other formulations of monotonicity that are equivalent with the ones given above:

(39)c. Qisupward monotoneiff forall P,P¢ If PC P¢I Q,thenPT Qand P¢l Q.
d. Qisdownward monotoneiff foral P, P¢ If PE P¢l Q, thenPl QandP¢l Q.

Consider the following examples that make use of the schematasin (39.c,d):

(40)a. All girlswere smoking and drinking. P All girlswere smoking.
P All girlswere drinking.
b. Few boys were singing and dancing. P Few boyswere singing.
P Few boys were dancing.
c. All girlswere smoking or drinking. B All girlswere smoking.
B All girlsweredrinking.
d. Few boyswere singing or dancing. P Few boys were singing.

P Few boyswere dancing.

There are quantifiers that are neither upward monotone nor downward monotone. Examples
are exactly three boys and between three and five boys.

(41) Exactly three boys were smoking and drinking. B Exactly three boys were smoking.
P Exactly three boyswere drinking.

Exactly three boyswere smoking or drinking. B Exactly three boys were smoking.
P Exactly three boys were drinking.

6.4.2. Monotonicity and Count Complexity

Montonic quantifiers are particularly simple to evaluate when compared to non-monotone ones.
Imagine the following task:

Check whether aquantified statement D(N)(VP) istrue or false,
where N appliesto n elements!

(Note that the number of elementsin VP or the universe doesn’t matter, as we assume conservativ-
ity and extensionality)

Let us now compute the minimal number of elementsin the domain we have to check in order
to prove to an incredul ous opponent whether a particular statement is true or false; the sum of these
numbers can be taken as a kind of complexity measure for the semantic computation. We call this
number the count complexity of aquantifier.
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(42)a. All children areadeep Verify: nelements, Falsify: 1 element,
Count complexity: n+1 elements.

b. Some children are asleep: Verify: 1 dement, Falsfy: n lements
Count complexity: n+1

c. Nochild isadeep: Verify: n dements, Falsfy: 1 eement.
Count complexity: n+1

d. Atleast k children are adeep Verify: k dements, , Falsify: n-k+1 elements,
Count complexity: n+1

e. Atmost kchildrenareadeep:  Verify: n-k elements,, Falsify: k+1 elements.
Count complexity: n+1

These were al monotone quantifiers. Now take a non-monotone one, for comparison:

Exactly k childrenareadeep:  Verify: n elements, Falsify: k+1 elements.
Count complexity: ntk+1 (1)

In general, n+1isthe minimal count complexity for quantifiers. It can be shown that all quantifiers
that have this “minimal count complexity” are upward or downward monotone.

Interestingly, we find that monotone quantifiers are special in their syntactic form, too: We
find that every non-compound quantifier in natural language is (upward or downward) monotone
(cf. @). Non-monotone quantifiers, are expressed by complex expressions (cf. b):

(43)a. John, everybody, something, nobody,
b. exactly three children, between three and seven children, an odd number of children

Hence we find that quantifiers that are most smple syntactically are also most smple semanticaly.

6.4.3. Monotonicity of Determiners

We have seen that determiners like every, most, or no may be treated as two-place relations between
sets. Aswith quantifiers like everybody or nothing, we can investigate the semantic properties of
certain classes of determiners. For example, we can investigate the monotonicity properties of the
noun argument of determiners.

One set of determinersthat includes some, at least three, not all, and many others exhibit the
following inference patterns:

(44)a. Somelionsroared b /U Some animalsroared.
b. At least threegirlssmoked P /U At least three persons smoked.
c. Not all boysdrank.p /U Not all persons drank.

Determiners with that property are upward-monotone in their noun argument, or per sistent:
(45)A determiner D is persistent iff for all P, P¢ P2, if D(P, P2) and Pi P¢ then D(P¢P®).

Another set of determinersthat includes all and every, at most, and no, exhibits the following
pattern of inference:
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(46)a. All animalsroared. b /U All lionsroared.
b. At most three persons smoked b /(J At most three girls smoked
c. Nopersondrank P /U No boy drank.

Such determiners are downward-monotone in their noun argument, or anti-per sistent:
(45)A determiner D is anti-persistent iff for all P, P¢ P,

if D(P, P2) and P¢i P, then D(Pg F?).
Many determiners are neither persistent nor anti-persistent, e.g. most, the

(47)a. most girlssmoked B /U most persons smoked.
b. the girl smoked H /U the person smoked.

Marking upward monotonicity by - and downward monotonicity by , and if we distinguish
between the left argument of a determiner (= the noun argument) and the right argument (= the VP
argument), then we can characterize the monotonicity properties of the four basic determinersin the
following way:

(48) all: - mon- no:  mon
some: - mon- not all: - mon

6.5. Quantifiersand Negation
6.5.1. Negation Ambiguities

Let us now consider how quantifiers interact with negation. We have discussed the semantics of
negation in chapter 3, where we discussed sentences like the following:

(49)a. Itisnot the casethat Molly snores.
b. Molly doesn’'t snore.

These sentences are unambiguous. But consider now a sentence with a quantified subject:
(50)Every student doesn’t snore.

Arguably, this sentence has two meanings:
‘It is not the case that every student snores’, which includes that some students might snore;
‘For every student holds: he or she doesn't snore’, which excludes this possibility.

We could have expressed the second reading also by No student snores. The two meanings appear
to correlate with particular intonation patterns. We have ecountered it already with examples like the
following:

(51)All that glittersisn’t gold.

The idiomatic interpretation correspondsto (i); ‘it isnot the case that all that glittersisgold’.
But the sentence a so has another possible interpretation, corresponding to (ii): ‘ For al that glitters
the following holds: It isn't gold.’

Why do these ambiguities arise in the case of quantifiers, but not in the case of names? Thisis
a consequence of the fact that quantifiers of type (et)t are semantically more complex than names of
type e. We can discuss thisin the framework of the Toy Grammar that we have developed so far.
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Notice that the way how we paraphrased the reading (i) suggests the use of a sentential negation, it
is not the case that, whereas the way we paraphrased reading (ii) suggests the use of an auxiliary
negation. Let usfirst recall the derivation of the two sentencesin (64):

(52)a. [[4[\yoqit-is-not-the-case-that][sMoally snores]]]
b. =[[[.qit-iS-not-the-case-that] | ([[{Molly snoreg]])
c. =1t DJ1—t]([MB snores])
d. =[1— [MB snoreg]]
e. =1,if [MB snores| =0,
=0, if [MB snores] =1

(53)& [[S [NP MO”“ [VP [Aux doesn’t] [VFﬂ'nf [Vinf Snore]]]]]
b' = [[Aux doesn,t ] [Van [Vinf Snore]]]]] ([[NP MO| ly]])

[doesn’t] ([snore] )([Molly])

| Pl Dyl D[1—P(y)](I xI D[x snores])(MB)

| yl DJ1—I xI D[x snores](y)](MB)

| yI DJ1—][y snores]](MB)

[1—[MB snoreg|]

1, if [MB snores] =0,

=0, if [MB snores| =1

We arrive at the same result, though on different paths. Now look what happens with a quantified
sentence:

SQ o e

(54)a [[[4[yoqit-is-not-the-case-that] [ every student snored]
b. = [[ogit-iSnot-the-case-that] ] ([ [severy student snored])
= tl DJ1—t]([[student] i [snores]])
. =[1—[[student] I [snores]]]
=1, if [[student] i [snores]] =0,
=0, if [[student] I [snores]] = 1.

We get the truth value O if al the students are snorers, otherwhise the truth value 1. That is compati-
ble with situations in which afew students snore, provided that it’s not all of them.

®ao

(55)& [[S [NP e‘/ery SUdent] [VP [Aux doeg’]’t] [Van [Vinf Snore]]]]]
b' = [[Ayx doesn,t] [VFﬂ'nf,[Vinf Srl(:)!:e]]]]]([[NPG’.‘/a‘y al-’ldeﬂt]ll)

=| Pl D[[student] I P](l yl DJ1— [snores](y)])

. =[[student] | |yl DJ1— [snores](y)]

=1,if [[student] i |yl DJ1— [snores](y)],

=0, dse

This sentenceistrueif the students are a subset of the non-snores, that is, if no student snores, and
true otherwise. Notice that thisreading is clearly distinct from the one we have obtained in the first
case.

The two readings differ in what semanticists call the scope of the negation and the quantifier.
In (69), the negation has wide scope over the quantifier, and in (71), the quantifier has wide scope
over negation.

We have seen that the English sentence Every student doesn’t snore may have also the read-
ing we have derived in (69) for It is not the case that every student snores, that is, areading with

®ao
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wide-scope negation. How can we derive this reading, then, for Every student doesn’t snore? One
way isto type-lift negation in an ingenious way so that it takes the subject NP as an argument again,
but now a subject NP of the type of quantifiers:

(56) [not] =1 Pl Dyl QI D{1— Q(P)]
We then get the following derivation:

(57)8. [[S [NP e\/ery $Udent] [VP [Aux doesn,t] [Van [Vinf Snore]]]]]
= [[ s 40ES't] [ypig [y STOFEITIT] ([ [ Every student]])
c. = [doesn’t] ([snore] )([[»every student]])
d. =1Pl D QI D el 1 — Q(P)]([snore] )(l Pl Det[[student]I P])
e
f.

(o)

. =1 Qi D(e“[l Q([snore])I(I Pi D[ student] I P])
=[1—1 PI D[[student] I P]([snore])]
g. =[1—[[student] | [snore]]]

Notice that thisisthe same result as the one we got for the derivation (69).

6.5.2. Other Quantifiers and Negation

So far we have just looked at negation patterns with one type of quantifier, namely, universal quanti-
fierslike every student. What about other quantifiers? Consider the following examples:

(58)a. Itisnot the casethat three arrows hit the target.
b. Three arrowsdidn’t hit the target.
(i) ‘For three arrowsit holds: they did not hit the target.’
(i1) ‘It is not the case that three arrows hit the target.’

Assume that there were 10 arrows shot at the target, and 7 of those hit the target. Then (i) istrue but
(i) isfalse. Thetruth conditions are different, hence the sentence has different readings.

Sometimes we have the feeling that a sentence is ambiguous even though there is no differ-
encein truth conditions. Consider the following:

(59)a. Itisnot the case that most of the arrows hi the target.
b. Most of the arrows didn’t hit the target.
(i) ‘For most of the arrows it holds: they did not hit the target.
(ii) ‘It is not the case that most of the arrows hit the target.’

Where “most of the arrows” isinterpreted as: “more than half of the arrows”. Assume as before
10 arrows shot at the target. Y ou can experiment with different numbers, and you will see that (i)
and (ii) are either both true or both false. So, should we assume an ambiguity in the first place? Yes,
because it seems that the syntactic structure of those sentencesin general allows for two interpreta-
tions schemes that just happen to have the same truth conditions. (Thisissimilar to 1- 2+2, whichis
either (1- 2)+2, or 1- (2+2), in both cases, 4.)

Another case of aquantifier that allows for an ambiguous reading is the following:
(60) a Itisnotthe casethat astudent sit on the bank.
b. A student didn’'t sit on the bench.

(1) ‘1t is not the case that a student sat on the bench.’
(i) *Thereis astudent for which the following holds. He/she sat on the bench.’
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But notice that not every quantifier can be easily combined with negation. Contrast (63) with the
following:

(61)a. Itisnot the case that some student sat on the bench.
b. Some student didn’t sit on the bench.

Here, (b), and even (a), israther interpreted with narrow-scope negation: ‘ There is some student for
which it holds that he/she sat on the bench’, at least if some is not reduced to something that lin-
guists sometimes write sm. In order to enforce the other interpretation, we should replace some by
any.

(62)It is not the case that any student came to the party.
Another casein point isisthe negative quantifier no :

(63)a. Itisnot the case that no student sat on the beach.
b. No student didn’t sit on the bench.

While (a) isfine, with ameaning as predicted (‘ At least some student sat on the bench’), (b) sounds
quite odd, except for speakers of English dialects that allow for multiple negation. But even then it
doesn’t mean what it is supposed to, but rather the same as * No student sat on the bench’. In these
diaects, one of the negationsis superfluous; it’sthere just for the sake of grammar.

6.5.3. Negation of Quantifiers

Certain quantifiers correspond to each other — one being the “ upward monotone” counterpart, the
other the “downward monotone” counterpart. Let’s discuss afew examples:

(64)Upward monotone: Downward monotone:
all N not all N
some N noN
many N fewN
at least nN at most n N.
more than half of the N less than half of the N

In general: Whenever Q is an upward (downward) monotone quantifier, then its negation is down-
ward (upward) monotone. The negation of a quantifier Q, for which | will write @Q, is defined as
the complement of Q initsdomain:

(65) [-Q] ={PIPT [Q]},whichinturnispow(A) % [Q].
Examples:
(66)a. [not all NJ,

= [-all NJ,

={P|P1 [alIN]},

={PIPI {PIIN]I P},

={PI[N]E P}
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b. [not some N]
[-some NJ,
={P|PT [someN]}
={P|Pi {P|[N]C P @]},
={PIPC [N] =&}
=[noN]

Actually, thisisjust one type of negation that we can define for quantifiers — the external
negation. In addition, we we can define an inter nal negation, for which | will write Q-:

(67) [Q-] ={P|(A —P)T Q} (takefor every element of Q its complement).
Examples:

(68)a. [all N not]
= [all N =],
={P[(A% P)T [allN]}
={PI (A% P 1 {PI[N]I P},
={PI[N] I (A¥%P)},
={PI[N] C P=a}
(=[noNJ)

b. [some N not] A
={P[(A% P)I {PI[N]CP* &}},
={P|[N] C (A%2P) * &},
=={PI[N] I P)
(=[notall NJ)

The basic quantifiers some, all, no and not all can be arranged in the following way:

(69)

noN - allN
~ Tnternal negaiion d
Y. .. . P 4
I external negation IPRE E]’L?a] ______ external negationI
P internal negation .
some N * > notall N

Interna and external negation reverse monotonicity:

If Q isupward monotone, then —=Q, Q- are downward monotone.
If Q isdownward monotic, then =Q, Q- are upward monotone.

Let us consider a proof of the first clause. The following proof is of the following structure: We try
to prove the negation of what we actually want to prove, and it turns out that this leads to a contra-
diction.
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(70)a. Assumethat Qisu.m.,
Take arbitrary P, P¢such that PT -Q and P¢i P.
PT -Qmeans. PT Q.
Assumeto the contrary that P¢I Q, i.e. P¢i =Q, then PT Q, because Q isu.m..
That' s a contradiction, hence P¢l Q, i.e. Pt -Q.
Hence -Q isd.m.

b).Assume Q isu.m.,
take arbitrary P, P¢such that PT Q-, P¢i P.
Thatis, (A%P)T Q,
Since P¢i P, it holdsthat (A%P) | (A% P9,
hence (A% P91 Q,asQisu.m.
hence P¢I Q-
Hence Q- isd.m.

There is an interesting observation due to Barwise & Cooper (1981) with regard to
monotonicity and negation. They observe that if alanguage has a syntactic construction whose se-
mantic interpretation isto negate a quantifier, then this construction is unacceptable with monotone
decreasing quantifiers. Examplest:

(71) not all students, not many students, but *not no student, * not few students

Another important notion that should be mentioned hereisthe dual of a quantifier:
(72)The dua of Q, isdefined as: {P| (A%P) I Q}
Note that the dual of a quantifier Q is -Q-. Examples:

(73)a. all Nand some N are duals of each other;
b. no N and not all N are duals of each other;
c. Johnisthedual of itself.

6.6. Monotonicity and Negative Polarity [tems

We have seen that we can classify determiners according to their monotonicity properties. It turns
out that monotonicity plays an important role for a certain class of expressionsin English and in
many, perhaps al, other languages, namely, so-called negative polarity items (NPIs).

6.6.1. Negative Polarity Items

NPIswere first identified as expressions that have to occur in a“negative’ context, likein the
scope of a negation (hence their name). Frequent polarity item in English is the determiner any and
NPs formed with it, like any student, anybody, anything, asin the following examples:

(74)a. Mary didn't talk to any students.
*Mary talked to any students.

1 But notice that focussi ng negation is possible, e.g. not FEW, but MANY students. Also, languages may have idiomatic
constructions that seem to violate this generalization, for example German nicht wenige Studenten, literally ‘not few stu-
dents’, meaning ‘quite a few students'. But idiomatic constructions are not interpreted compositionally, and hence this does
not constitute a counterexample to the generalization by Barwise and Cooper.

© Manfred Krifka, Institut fir deutsche Sprache und Linguistik, HU Berlin, WS 2000/2001



101 Quantifiersin Natural Language

b. John didn’t say anything.
* John said anything.

We see that any-NPs cannot occur in the non-negated sentences. In these cases they have to be
replaced by some-NPs. In turn, some-NPs in negated sentences typically have a different interpre-
tation than any-NPs (the wide-scope interpretation):

(75)a. Mary talked to some student.
‘Thereis a student such that Mary talked to him.’

b. Mary didn't talk to any student.
‘It is not the case that there is a student such that Mary talked to him.’

c. Mary didn’t talk to some student.
‘There is a student such that Mary didn’t talk to him.’

The last sentence is preferably interpreted as. There is some student that Mary did not talk to.
In thisinterpretation the indefinite NP some student is not in the scope of the negation. — Another
example of anegative polarity item is ever. The corresponding positive forms for ever are expres-
sions likeonceor at sometime

(76)a. John didn’t ever go to graduate school.
*John ever went to graduate school.
b. John once/ at some time went to graduate school.

There are many more NPIsin English. Many of them are idiomatic, such aslift afinger or bat an
eyeln their idiomatic meaning they show asimilar distribution as any and ever:

(77)a. John didn’t lift a finger to help Mary.
*John lifted a finger to help Mary. (0.k. inthe literal interpretation).
b. Mary didn’t bat an eye when she heard about the bad news.
*Mary bat an eye when she heard about the bad news. (0.k. in the literal interpretation).

Early accounts for NPIs (E. Klima, 1964) have suggested that their distribution can be ex-
plained by atransformation triggered by negation. For example, the negation of the sentence Mary
talked to some student was supposed to trigger a change from some to any. However, this does not
explain the distribution of idiomatic NPIslike lift a finger. And it does not explain instancesin
which we find NPIsin other contexts than negation, a subject we turn to next.

6.6.2. NPI’ sin Downward-Entailing Contexts
Consider the following examples of quantified sentences:

(78)a. * Every student lifted a finger / has ever been to China.
b. * Some/* Most/* Many/* More than three students have ever been to China.
c. No/Few/Less than three students have ever been to China

The quantified NPs no student, few students and |less than three students have in common that they
are downward-entailing (monotone decreasing) in their VP argument, in contrast to NPs like every
student, some students, most students, many students etc.
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(79)a. Every student who has ever been to China enjoyed it.
b. * Some/* Many/* More than three students who have ever been to China enjoyed it.
c. No/Few/Less than three students who have ever been to China enjoyed it.

The determiners every, no, few, less than three have in common that they are downward en-
tailing (monotone decreasing) in their N argument, in contrast to determiners like some, many,
mor e than three.

Notice that the scope of negation is downward entailing as well, asillustrated with the follow-
ing example:

(80) John did not go to university b John did not go to graduate school

So when we assume that NPIs occur only in downward-entailing contexts, we have a common ex-
planation for their distribution in negated and quantified sentences. This was actually suggested by
Bill Ladusaw (1979), inaUT dissertation.

There are other instances of downward-entailing contexts that support Ladusaw’s generaliza-
tion. For example, the scope of beforeis downward-entailing:

(81) Mary spoke Chinese before she had been to China
P Mary spoke Chinese before she had been to Bejing

We find NPlsin this context:

(82) Mary spoke Chinese before she had ever been to China.
Mary spoke Chinese before she had been to any Chinese city.

Contrast thiswith after. This expression does not create a downward-entailing context, and it does
not house NPIs:

(83)a. Mary spoke Chinese after she had been to China
H Mary spoke Chinese after she had been to Bejing.

b. * Mary spoke Chinese after she had ever been to China.
* Mary spoke Chinese after she had been to any Chinese city.

It seems that Ladusaw’ s Generalization holds up in these cases as well.

6.6.3. Why are NPI’ s restricted to Downward-Entailing Contexts?

But we should ask now: Why is Ladusaw’s Generdlization true? Why are NPIs restricted to
downward-entailing contexts?

One answer that has been suggested is the following: The meaning of an NPI invokes a set of al-
ternative meanings. It is not always easy to describe these aternative meanings, but the following
examples should at least give arough idea:

(84)a. any student: Alternative meanings are John, Mary, graduate students, foreign students,
and other students or subsets of students.
b. ever: Alternatives are 1985, 1986, September 1993, and other times.
c. lift afinger: Alternatives are carry the suitcase, cleaning the dishes, and other acts of labor.
d. bat an eye: Alternatives are cry for help, start sweating, faint,
and other types of reactions to negative stimuli.
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Among these meanings, the NP itself denotes an extreme value. For example, the meaning of
any studentisrelated to the set of all students, the meaning of ever isrelated to the set of all relevant
times, lift a finger denotes the act of labor that involves the absolutely minimal effort, bat an eye
denotes the absolute minimal reaction to a negative stimulus, and so on. (This has been observed
already in 1975 by Gilles Fauconnier).

Now observe the semantic relation between an expression with an NPl and asimilar expres-
sion in which the NPI was replaced by some other expression that denotes an alternative to the NPI
meaning. For the sake of this argument we have to pretend that the sentences in which the NPI oc-
cursin an upward entailing environment are actually alright.

(85)a. Mary did not talk to any student P /J Mary did not talk to a graduate student.
Mary talked to any student (= a student) & / U Mary talked to a graduate student.

b. John did not lift afinger. P /U John did not do the dishes.
John lifted a finger (= did at least something minimal) B /U John did the dishes.

We find that in the good cases, the sentence with the NPI expresses something that is semantically
stronger than the alternative sentences (it entails the alternative sentences). In the bad cases, the
sentence with the NPI expresses something weaker than alternative sentences (it is entailed by the
alternative sentences). Hence we can suggest the following reason for the distribution of negative
polarity items:

(86)a. Sentences with NPIs have the function to express “strong” statements.
They work under the assumption that the sentence with the NPI is semantically
stronger than all the alternatives.

b. Thisrelation between the strength of the sentence with the NPI and the strength of the
aternative sentences holds only if the NPI occursin adownward-entailing context.

For the specific class of NPIsthat are formed with any there is another plausible motivation
(one that was suggested by Victor Sanchez Vaenciain a 1991 dissertation). Such NPIsindicate the
type of inferences that can be drawn. We can observe the following:

(87)Every declarative sentence F[...[any a.]..] that contains an NP [any o],
and for every noun phrase p that is semantically stronger than o, (that is, [B] | [a])
itholdsthat F[...[any a]..] P F[.. [anyf]...]

For example,

(88)a. Mary did not talk to any student P Mary did not talk to any graduate student.
b. Every tourist who has visited any Asian country was impressed
P Every tourist who has visited any East Asian country was impressed.

In contrast, NPs like some o or an a. occur in contexts where the opposite inference pattern holds:

(89)a. Mary talked to a graduate student b Mary talked to a student.
b. Atourist who has visited an East Asian country was impressed.
P Atourist who has visited an Asian country was impressed.

In this sense, the near-complementary distribuition of any-phrases and a/some-phrases indicates the
type of inference that we can draw. In acase like Mary didn’t talk to some student we know that we
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have to switch to the wide-scope interpretation of some student, because only then the inference
pattern that is typical for some student holds. The presence of negative polarity items allows usto
draw such inferences in arather automatic and “cheap” way. That is, natural languages have a de-
vice to facilitate such semantic inferences.
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