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6. Quantifiers in Natural Language

6.1. Introduction

In the previous chapter we were concerned with two kinds of noun phrases (or “determiner
phrases”, in newer terminology:

(1) a. Names like Molly;
b. definite NPs like the girl

But there are many other types of noun phrases. Here are a few examples:

(2) a. every girl b. a girl
c. some girl d. many girls
e. most girls f. few girls
g. three girls h. the three girls

In this section we will turn to the semantics of such expressions. In general, they are called
quantifiers, and the theory that investigated the properties of such quantifiers is called General-
ized Quantifier Theory. We will leave our toy grammar for a while and investigate the semantic
properties of such quantifiers.

6.2. Generalized Quantifiers

6.2.1. The General Format of Generalized Quantifiers

The notion of Generalized Quantifiers (GQ) has its roots in Frege and arguably even farther back,
in Aristotle; it has been developed more recently for mathematics by Mostowski (1957), and applied
to linguistic phenomena first by Barwise & Cooper (1981).

What is the type of a quantifier? It is a noun phrase, and we have seen that one kind of noun
phrases, names, are of the semantic type e, that is, they denote entities. But quantifiers like every girl
and no girl cannot be of this type. For example, no girl cannot stand for any particular girl. One of
the oldest recorded jokes makes precisely this point: When Odysseus (Ulysses) and his associates
blinded the one-eyed giant (cyclop) Polyphemus, he asked for Odysseus’ name. Odysseus said
that his name is “Nobody”. Polyphemus then asked his fellow cyclops to kill nobody, but of
course they just laughed at him.

If a verb phrase is of type et, and the combination of a quantified NP with a verb phrase is of
type t, but the quantified NP cannot of type e, then the only remaining option, if semantic combina-
tion is by functional application, is that the quantified NP is of type (et)t:

(3) [S[NPNobody] [VPlaughed]]
[[Nobody]] ( [[ laughed]] )
(et)t                       et     

t

If the quantificational noun phrase consists of a determiner and a noun, and the noun is of type et,
then the determiner must be of type (et)(et)t:
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(4) [S[NP[DetNo]   [Ngirl]]  [VP laughed]]
[[No]] (          [[girl]]  ) ( [[ laughed]])
(et)(et)t                 et     

(et)t                              et
t

In this view, determiners are functions from Det to functions from Det to Dt. Alternatively, we can
consider determiners as relations between  a noun meaning and a verb meaning:

(5) [[no]]([[girl]], [[ laughed]])

In this view, determiners are two-place relations between Det and Det.

A note on terminology:

• You will sometimes find the term “quantifier” used for what we call here “determiner”.

• The first argument (here, the noun meaning) is called restrictor, and the second argument (here,
the verb meaning) is called matrix or nuclear scope. For example, in every girl smiled, the
noun girl is the restrictor, and the VP smiled is the matrix or nuclear scope.

The logical properties of quantifiers in natural language have been studied extensively (Bar-
wise & Cooper, van Benthem, Keenan). This was done typically by assuming that determiners are
two-place relations, with the general format: D(X,Y), or DA(X)(Y), where A stands for the universe.
We will switch back and forth between those two views whenever convenient.

6.2.2. Examples of Generalized Quantifiers

Let us discuss a few natural-language examples of generalized quantifiers. In the functional
format, a sentence like every man walks will be analyzed as follows.

(6) a. every man walks: [[every]]([[man]])([[walk]])

b. = λP∈DetλP′∈Det[P′ ⊆ P]([[man]])([[walk]])
    ⇔ λP[[[man]]  ⊆ P]([[walk]])

⇔ [[man]]  ⊆ [[walk]]

That is, every man walks is true iff the set of men is a subset of the set of walkers.

Let us now look at a wider range of quantifiers, given in the same format as every above. I will
generally assume that P, P′ are variables for elements in Det and leave that unexpressed.

(7) a. all/every N: λP[ [[N]]  ∩ P = [[N]]], or λP[ [[N]]  ⊆ P]
b. some N: λP[ [[N]]  ∩ P ≠ Ø]
c. no N: λP[ [[N]]  ∩ P = Ø]
d. not all N: λP[ [[N]]  ∩ P ≠ [[N]]], or λP[ [[N]] ⊄ P]
e. at least two N: λP[#([[N]]  ∩ P) ≥ 2]
f. exactly two N: λP[#([[N]]  ∩ P) = 2]
g. between two and five N: λP[2 ≤ #([[N]]  ∩ P) ≤ 5]
h. an odd number of N: λP[#([[N]]  ∩ P) is odd]
k. more male than female N: λP[#([[N]] ∩ [[male]] ∩ P) > #([[N]] ∩ [[ female]] ∩ P)]
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6.2.3. Names, Definites and Indefinites

The categories of noun phrases that we dealt with in the previous chapter can be rendered as Gener-
alized Quantifiers as well. First of all, names can be seen as quantifiers, along the following lines:

(8) Leopold: λP[P(LB)]

We can analyze a sentence like Leopold smiled as follows:

(9) a. [[Leopold]]([[smiled]])
b. = λP[P(LB)]([[smiled]])
c. =  [[smiled]](LB)

This analysis of names may seem a bit perverse at first. But there is one advantage: It allows us to
treat names and true quantifiers as belonging to the same semantic type, (et)t.

We have analyzed definite NPs as involving a particular presupposition, a presupposition of
existence and uniqueness. We can express definite NPs as follows:

(10)a. [[[NP [Det the] [N woman]]]]([[smiled]])
b. = [[ the]]([[woman]]([[smiled]])
c. = λP∈{P | #(P) = 1}λP′[P ⊆ P′]([[woman]])([[smiled]])
d. = [[[woman]] ⊆ [[smiled]]], provided that #([[woman]]) = 1
e. = 1, if every woman smiled and there is exactly one woman,

= 0, if not every woman smiled and there is exactly one woman,
undefined else.

As before, we express the existence and uniqueness condition by a requirement for the domain of a
function.

Indefinite NPs, like a woman, can be treated similarly to some woman:

(11)a. [[[NP [Det a] [N woman]]]]([[smiled]])
b. = [[a]]([[woman]]([[smiled]])
c. = λPλP′[P ∩ P′ ≠ ∅]([[woman]])([[smiled]])
d. = [[[woman]] ∩ [[smiled]] ≠ ∅]

6.2.4. Types of Quantifiers

Many of the quantifiers listed above just impose a condition for the intersection [[N]]  ∩ P, that is,
the intersection of the noun meaning and the verb phrase meaning. For example, at least two N says
that the number of elements in this set must be greater or equal than two. Such quantifiers are called
cardinal or intersective quantifiers, as it depends solely on the cardinality of the intersection
whether they hold or not.

But there are other quantifiers that are a bit more complex, like the following ones:

(12)a. most N: λP[ #([[N]]  ∩ P) / #([[N]]) > 1/2],
b. between 10 and 20 percent of the N λP[ 0.1 ≤ #([[N]]  ∩ P) / #([[N]]) ≤ 0.2]

In this case, the number of elements in [[N]]  is important as well. More specifically, whether the
quantifier obtains or doesn’t obtain depends on the proportion of #([[N]]  ∩ P) and #( [[N]]). Such
quantifiers are called proportional quantifiers.
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Quantifiers that come with a particular condition on their restrictor can be called presupposi-
tional. Definite NPs like the girl are one type of example (see (10)), but there are others:

(13)a. the N: λP∈{P | #([[N]]) = 1}[ [[N]]  ⊆ P]
b. both N: λP∈{P | #([[N]]) = 2}[ [[N]]  ⊆ P]
c. neither N: λP∈{P | #([[N]]) = 2}[ [[N]]  ∩ P = Ø]
d. the seven N: λP∈{P | #([[N]]) = 7}[ [[N]]  ⊆ P]

Another interesting class of quantifiers is the one based on the determiners several, a lot of,
many or few. They are similar to cardinal quantifiers, as the intersection of [[N]]  and P is all that
matters, but we cannot give precise conditions for when a quantifier relation actually obtains. Such
quantifiers are called vague quantifiers. The best we can do at the moment is to assume some
threshold value n, a parameter that heavily depends on the context:

(14)a. many N: λP[#([[N]]  ∩ P) > n],  n: some context-dependent standard
b. few N: λP[#([[N]]  ∩ P) < n]

Vague quantifiers are of course only the tip of the iceberg when it comes to vagueness in natu-
ral language. For example, many adjectives are vague as well. When are you willing to say that
someone is a tall person, or a small person? We have talked about such context-dependent adjec-
tives in the preceding chapter.

Quantifiers like many N and few N are not only vague, they are in addition ambiguous. They
also have a proportional reading. with a vaguely specified proportion:

(15)a. many N: λP[ #([[N]]  ∩ P) / #([[N]]) > n]
b. few N: λP[ #([[N]]  ∩ P) / #([[N]]) < n]

This reading is obvious in examples like the following:

(16)a. Many stars are red.
b. Few mosquitoes carry malaria.

It is not the absolute number of stars that are red or the number of mosquitoes that carry malaria
that is of interest, but the proportion. (Below we will discuss yet another possible interpretation of
many and few, cf. (24)).

6.2.5. Representation of Quantifiers by Venn Diagrams

Quantifiers can be represented by Venn diagrams. For example, the quantifier every girl is the set
of subsets of the universe De such that the set [[girl]]  is subset of them. We can illustrate this as
follows:
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Other quantifiers can be represented similarly:

[[some girl]] [[no girl]]

[[ three girls]] [[Mary]]

[[girl]]

m

elements
in
[[every girl]]

De
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6.3. Universal Restrictions for Generalized Quantifiers

One important question in GQ research of the 1980’s was: Which of the logically possible deter-
miners and quantifiers are actually realized in natural language?

6.3.1. How Many Quantifiers (Determiners)?

First, let us think about how many theoretically possible determiners there are — that is, how many
determiners a universe of a given size can “support”. We expect that natural languages actually
have only a small fraction of the theoretically possible determiners. This is similar as with other
expressions. For example, if we have a universe De, then every subset of De represents the meaning
of a potential one-place predicate. If the universe has n elements, we have 2n-many possible predi-
cate meanings. But certainly, many of these possible predicate meanings cannot be expressed by
any simple predicate in a given language. For example, there is no predicate that applies to this chair
over here, that fly over there, the number 27, and nothing else.

It is convenient to analyze a determiner D as a two-place relation between subsets of De.
Let us assume that De has n elements. Then the calculation is a simple exercise:

•  First, the number of subsets of De, #(pow(De)), is 2n

•  Second, the number of pairs of subsets of De, #(pow(De) × pow(De)), is 2n • 2n , which is 4n

•  A specific determiner, like every, is a particular relation between subsets of De, hence a particu-
lar subset of this set. And every subset of this set is the meaning of a possible determiner. The
set of all possible determiners then is the power set of this set. We have:

•  The number of sets of pairs of subsets of De, #(pow(pow(De) × pow(De))), is 24n

That’s a lot of determiners! For example, when the universe De consists of two elements only, that
is, n = 2, then there are already 216  = 65536 possible determiners.

You may wonder how we arrive at this huge number. Consider one example of a determiner
meaning in this universe. I give as an example the meaning of the determiner every in a universe that
consists only of the elements a and b:

(17)pair of sets truth value pair of sets truth value

〈∅, ∅〉 → 1 〈∅, {b}〉 → 1
〈{a}, ∅〉 → 0 〈{a}, {b}〉 → 0
〈{b}, ∅〉 → 0 〈{b}, {b}〉 → 1
〈{a, b}, ∅〉 → 0 〈{a, b}, {b}〉 → 0
〈∅, {a}〉 → 1 〈∅, {a, b}〉 → 1
〈{a}, {a}〉 → 1 〈{a}, {a, b}〉 → 1
〈{b}, {a}〉→ 0 〈{b}, {a, b}〉 → 1
〈{a, b}, {a}〉 → 0 〈{a, b}, {a, b}〉→ 1

Notice that this characterizes just one determiner. Every distribution of truth values over these 16
pairs constitutes a distinct determiner meaning — which gives us 216  determiner meanings allto-
gether.
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6.3.2. Another Way of Expressing Determiners

There is another perspective that allows us to express the meaning of determiners. We have seen
that a determiner denotes a relation between two sets, [[N]]  and [[VP]] . We can depict this in the fol-
lowing generalized Venn diagram:

(18)

[[N]]

(1)   (2) (3)
[[VP]]

  (4)

There are four “cells” that are relevant for a particular instance of a set [[N]]  and [[VP]] :

(19) (1): the set [[N] ]  [[VP]]
(2): the set [[N]]  ∩ [[VP]]
(3): the set [[VP]]   [[N]]
(4): the set (De  [[N]])  [[VP]] .

We can characterize every determiner in terms of the four cells. For example:

(20)a. every N VP is true iff (1) = ∅,
b. some N VP is true iff (2) ≠ ∅,
c. no N VP is true iff (2) = ∅,
d. an odd number of N VP is true iff #(2) is odd.

We can compute the number of possible determiners under this perspective in the following
way. A particular pair of two sets [[N]]  and [[VP]] , together with a particular universe De, can be de-
scribed by determining, for each individual x in De, whether x belongs to (1), (2), (3), or (4). If the
universe De has n elements, we get matrices like the following:

(21)Elements of De (1) (2) (3) (4)

x
1
 √   

x
2
       √ 

x
3
       √

....     ... ... ... ...
xn   √ 

Each particular pair [[N]], [[VP]]  corresponds to a particular matrix. We can calculate the number of
all pairs of sets [[N]], [[VP]] according to this scheme, as follows: Each element x

i
 might be in one of

four sections, (1) to (4). As each element is independent of any other, we have 4 • 4 •...• 4 (n times)
= 4n many possible matrices. As each matrix corresponds to a pair of  [[N]]  and [[VP]] , we have 4n

many possible pairs.

Now, a particular determiner is a particular subset  of the set of all pairs of [[N]]  and [[VP]] . For
example, the determiner every can be identified with the set of all matrices for which (1) is empty.
We know that if a set has m elements, then there are 2m subsets. A set with 4n elements hence has
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24n 
subsets. Hence there are 24n

-many possible determiners in a universe with n elements. We see
that this way of counting quantifiers gives us the same result as the one we used before.

An interesting question at this point is: Do we need, for every element x, the information
whether x is in (1), (2), (3) or (4)? This depends on the specific determiner we are considering. A
“worst-case” determiner for which we would indeed need information about all sets (1), (2), (3),
(4) is D*, defined as follows:

(22)D*([[N]], [[VP]]) is true in a universe De iff #(1) = #(2) and #(3) < #(4).

For example, D* boys smiled would be true if the number of boys that smiled is equal to the
number of boys that did not smile, and there are fewer smiling non-boys than entities that neither
smile nor are boys. Such weird determiners do not occur in natural language. The quantifiers we
have considered so far all can be expressed by using information present in the cells (1) and (2). It
turns out that the cells (1) and (2) are by far the most important for quantifiers in general. Let us
have a look at a number of constraints that have been discussed in quantifier research.

6.3.3. Extensionality

One constraint that seems to be obvious for natural-language determiners is that cell (4) (the ele-
ments in the rest of the universe) does not matter. For example, to assess whether most girls smiled
is true, we are not concerned at all about rocks, or cars, or whatever the universe contains besides the
girls and the sleepers.

Determiners that have this property are called extensional. We can define extensionality as
follows:

(23)A determiner D is extensional iff for all P,P′ with P, P′ ⊆ De and all De* with De ⊆ De* the
following holds:
D(P, P′) is true in De iff D(P, P′) is true in De*.

The only possible exception to extensionality that has been discussed (by Dag Westerståhl,
1985, Linguistics & Philosophy) is a certain use of many and few. Assume that we are talking about
human beings, hence the universe De is the set of all people. A sentence like

(24)Many Scandinavians are blond

may be paraphrased as: The incidence of blondness among Scandinavians is greater than the inci-
dence of blondness among people (= the universe) in general. Hence:

#([[N]] ∩ [[VP]]) #([[VP]])
many N VP is true in De iff >

#([[N]])   #(De)

Or, in terms of cells:

     #(2)    #(2) + #(3)
>

#(1) + #(2) #(1) + #(2) + #(3) + #(4)

Obviously, for this interpretation of many the cell (4) counts — adding more entities to the universe
might make the sentence false. Hence many is not an extensional quantifier in this interpretation. It
is, however, an open issue whether this is an appropriate semantic analysis of many.
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6.3.4. Conservativity

One particularly important restriction for natural-language determiners is that they have the property
of being conservative, in the following sense:

(25)D is conservative iff for all P, P′: D(P, P′) iff D(P, P ∩ P′) (that is, the extension of P′ counts
only insofar as it overlaps with P).

Examples: 

(26)a. Every N VP: [[N]]  ⊆ [[VP]]  iff  [[N]]   ⊆  [[N]]  ∩ [[VP]]
b. No N VP:    [[N]]  ∩ [[VP] ] = Ø  iff  [[N]]   ∩  [[N]]  ∩ [[VP]]  = Ø

Test for conservativity: A determiner D is conservative iff it supports the following logical
equivalence, for all N and VP:

D N VP ⇔ D N are N that VP.

Examples:

(27)a. All girls smiled. ⇔  All girls are girls that smiled.
b. Some girls smiled. ⇔ Some girls are girls that smiled.
c. Most girls smiled. ⇔ Most girls are girls that smiled.
d. No girl smiled ⇔ No girl is a girl that smiled.

If all natural language determiners are conservative, then the question is: How many conserva-
tive determiners are there? We can find out about this by simply looking at the relevant cells in the
representation of quantifier meanings in (17). For conservative determiners we don’t care for cell
(3) (the elements of the VP meaning that are not also elements of the N meaning), and we can com-
bine cell (3) and (4). Hence we have only three sections that are relevant. The number of determin-
ers drops to 23n

, for a universe with n elements. In a universe with only two elements, we will only
have 29, that is, 512 conservative determiners.

Why is it that natural-language determiners are conservative and extensional? One answer
might be in the way how we process statements with quantifiers. It turns out that conservative and
extensional quantifiers are conceptualy simpler than other quantifiers. To check whether a statement
of the form D(P,Q) is true or false, we can concentrate on the set P (the extension of the noun);
other entities are irrelevant. This means, effectively, that we can shrink the universe to the set P, for
the purpose of evaluating the statement.

There is a potential counterexample to the claim that all natural language quantifiers are con-
servativity, namely only, analyzed as a determiner, as in Only girls sleep: This sentence is true iff
there is no sleeper that is not a girl. Hence only imposes a restriction on cell (3): (3) must be empty.

(28) Only N: λP[P ⊆ [[N]]]

But only is quite different from other determiners: It can be used with names, as in (a), or as an ad-
verbial, as in (b) and (c). Also, in order to interpret sentences containing only we must identify the
constituent that is stressed (the constituent in focus).

(29)a.  Only JOHN kissed Mary.
b. John only kissed MARY.
c. John only KISSED Mary.
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The position of the focus has crucial influence on the interpretation. For example, (b) means ‘the
only person John kissed was Mary’, and (c) means ‘the only thing that John did to Mary was that
he kissed her’. Hence it seems that it is focus that determines the readings of sentences with only.
Very roughly, we have:

(30)[...only...F...] means: The only P such that [...P...] is F.
(or: For all P such that [...P...] it holds that F = P)

But this is a radically different case from nominal determiners. Hence we can assume that only isn’t
a determiner after all.

Note that even if we treat only as a determiner, it has one property that is related to conserva-
tivity. It holds for D = only that

(31)For all P, P ′: D(P, P′) ⇔ D(P ∩ P′, P′).

This property is sometimes called anti-conservativity. For example, we have that Only girls
smiled is logically equivalent to Only girls that smiled smiled. In terms of cells, only (2) and (3)
matter for anti-conservative determiners.

6.3.5. Intersectivity

Intersective determiners are those for which the truth conditions of a sentence of the form D(P, P′)
can be stated solely in terms of the intersection of P and P′. For example, some, more than two, less
than seven, an odd number of, or no are intersective determiners. Clearly, determiners like every, the
or most are not intersective. Of course, all intersective determiners are also extensional and conser-
vative. But intersective determiners are even more restricted, as only the content of cell (2) matters.

How many intersective determiners are there, in a universe with n elements? For intersective
quantifiers it is sufficient to know whether an individual is in cell (2) or not. Following the reason-
ing above, we will have only 22n

 intersective determiners. This means, for example, that a universe
with 2 elements will have just 16 intersective determiners.

Intersective determiners are a linguistically interesting class, because it is precisely these determin-
ers that occur easily in existential constructions (cf. Keenan 1987).

(32)(i) There was a student at the party.
There were more than seven students at the party.
There were more male than female students at the party.
There were few students at the party.
There was no student at the party.

(ii) *There was every student at the party.
*There were most students at the party.
*There was the student at the party.
*There were both students at the party.
*There was John at the party.

The following explanation has been proposed why intersectivity may lead to this distribution
in grammaticality. Existential sentences express the existence of entities in the universe. For exam-
ple, the first sentence in (i) says that the universe of discourse (which is restricted to the people at
the party, by the phrase at the party) contains a student. The second sentence says that it contains
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more than seven students, and the last sentence says that it contains no student. Notice that these are
all informative sentences — they could be false.

Contrast this with the sentences in (ii). If we interpret these sentences in the same way, as a
statement about the universe restricted to people at the party, then the first sentence says that the
universe contains every student. But this is trivially true, a tautology. The second sentence says that
the universe contains most students — again a tautology. The third sentence has a presuppositional
determiner, and can be evaluated only in case the universe contains exactly one student. But in all
universes that satisfy this requirement, the sentence again expresses a triviality. Similar with the
other sentences. In particular, the last sentence can be interpreted only if the name John refers to
some individual. If it can be evaluated, it says that this individual is in the universe, again something
that is trivially true. Hence the explanation for the distribution that we find with (i) and (ii) is that the
sentences (ii) express tautologies and hence cannot be used to communicate anything meaningful.

Notice that they contrast with the following non-existential sentences that do express some-
thing meaningful:

(iii) Every student was at the party.
Most students were at the party.
The student was at the party.
Both students were at the party.
John was at the party.

But in this case, at the party does not specify the domain of discourse, but is rather the VP argu-
ment of the determiner.

This explanation is perhaps not the final one, because we sometimes indeed find that sen-
tences of type (ii) can be quite good:

(33)a. There is every reason to believe that Bill is the thief.
b. I turned the corner, and what do I see? There was John standing at a lamppost.

But in these cases we don’t seem to talk about existing, pre-specified universes and their members.
Example (a) expresses something like: Every potential reason to believe that Bill is the thief exists
in the universe under consideration, that is, can be regarded as a good reason. And (b) says John,
whose existence in a larger universe of discourse is given, actually existed in the smaller universe
that appeared when the speaker turned around the corner.

6.3.6. Quantitativity

Another universal restriction for natural-language determiners is the following: In order to deter-
mine whether D(P, Q) is true, it is sufficient to check the cardinality of the sets P and P ∩ Q. That
is, we don’t have to know the identity of those elements; it suffices to know how many elements
there are. Examples:

(34)a. [[every]](P, P′): #(P) = #(P ∩ P′)
b. [[no]](P, P′): #(P ∩ P′) = 0
c. [[some]](P, P′): #(P ∩ P′) ≥ 1
d. [[most]](P, P′): #(P ∩ P′)/#(P) > 1/2.
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An obvious counterexample are genitive NPs, like John’s in John’s books. If we paraphrase John’s
by “the objects that belong to John”, we get the following interpretation, which cannot be re-
phrased as a simple statement about cardinalities.

(35) [[John’s]](P, P′):  [P  ∩  {y| y belongs to John}]  ⊆  P′.

Quantitative determiners are particularly simple, as all that counts is the number of elements in
the cells (1), (2), (3), (4) of the diagram in (17). If we have a universe with n elements, then a quan-
titative determiner can be characterized by four numbers n

1
, n

2
, n

3
 and n

4
 (one number for each cell);

the numbers add up to n, the number of elements in the universe. For conservative and/or extensive
determiners it may be sufficient to know one or two of these numbers. For example:

(36)a. no: n
2
 = 0

b. every: n
1
 = 0

c. some: n
2
 ≥ 1

d. most: n
2
 > 1/2 n

1

6.4. Monotonicity

So far we were interested in general properties of all natural-language quantifiers. Now, there are
interesting logical differences between quantifiers that allow us to classify them in semantically
interesting subclasses.

6.4.1. Monotonicity of Quantifiers

First let us have a look at some inference patterns that relate to the VP-element of a quantifier (we
use the symbol ⇒ to express that if the right-hand sentence is true, then the left-hand sentence is
true).

(37)a. All men walked rapidly. ⇒ All men walked.
b. A girl smoked a cigar. ⇒ A girl smoked.
c. Most students slept and snored. ⇒ Most students slept.
d. Both tourists ate spaghetti. ⇒ Both tourists ate.

In (37) we replaced the VP of the first sentence by a VP with a more general meaning; note that
the opposite pattern (⇐) does not hold.

(38)a. No man walked. ⇒ No man walked rapidly.
b. Few girls smoked. ⇒ Few girls smoked a cigar.
c. Less than 10% of the students slept. ⇒ Less than 10% of the students slept and snored.
d. Neither tourist ate. ⇒ Neither tourist ate spaghetti.

In (38) we replaced the VP of the first sentence by a VP with a more specific meaning; note that
the opposite pattern (⇐) does not hold.

The quantifiers in (37) are called upward monotone or increasing, a property that is de-
fined in the following way:

(39)a. Q is upward monotone iff it holds for all interpretations:
If P ∈ Q and P ⊆ P′, then P′ ∈ Q.
 (that is, upward monotone quantifiers are closed under extension.)
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Quantifiers in (38) are called downward monotone or decreasing:

(39)b. Q is downward monotone iff it holds for all interpretations:
If P ∈ Q and P′ ⊆ P, then P′ ∈ Q.
Downward monotone quantifiers are closed under contraction.

Other formulations of monotonicity that are equivalent with the ones given above:

(39)c. Q is upward monotone iff for all P, P′:   If P ∩ P′ ∈ Q, then P ∈ Q and P′ ∈ Q.
d. Q is downward monotone iff for all P, P′: If P ∪ P′ ∈ Q, then P ∈ Q and P′ ∈ Q.

Consider the following examples that make use of the schematas in (39.c,d):

(40)a. All girls were smoking and drinking. ⇒ All girls were smoking.
⇒ All girls were drinking.

b. Few boys were singing and dancing. ⇒/    Few boys were singing.
⇒/    Few boys were dancing.

c. All girls were smoking or drinking. ⇒/     All girls were smoking.
⇒/    All girls were drinking.

d. Few boys were singing or dancing. ⇒ Few boys were singing.
⇒ Few boys were dancing.

There are quantifiers that are neither upward monotone nor downward monotone. Examples
are exactly three boys and between three and five boys.

(41) Exactly three boys were smoking and drinking. ⇒/    Exactly three boys were smoking.
⇒/    Exactly three boys were drinking.

Exactly three boys were smoking or drinking. ⇒/    Exactly three boys were smoking.
⇒/    Exactly three boys were drinking.

6.4.2. Monotonicity and Count Complexity

Montonic quantifiers are particularly simple to evaluate when compared to non-monotone ones.
Imagine the following task:

Check whether a quantified statement D(N)(VP) is true or false,
where N applies to n elements!

(Note that the number of elements in VP or the universe doesn’t matter, as we assume conservativ-
ity and extensionality)

Let us now compute the minimal number of elements in the domain we have to check in order
to prove to an incredulous opponent whether a particular statement is true or false; the sum of these
numbers can be taken as a kind of complexity measure for the semantic computation. We call this
number the count complexity of a quantifier.
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(42)a. All children are asleep Verify: n elements, Falsify: 1 element,
Count complexity: n+1 elements.

b. Some children are asleep: Verify: 1 element, Falsify: n elements
Count complexity: n+1

c. No child is asleep: Verify: n elements, Falsify: 1 element.
Count complexity: n+1

d. At least k children are asleep Verify: k elements, , Falsify: n-k+1 elements,
Count complexity: n+1

e. At most k children are asleep: Verify: n-k elements., Falsify: k+1 elements.
Count complexity: n+1

These were all monotone quantifiers. Now take a non-monotone one, for comparison:

Exactly k children are asleep: Verify: n elements, Falsify: k+1 elements.
Count complexity: n+k+1 (!)

In general, n+1 is the minimal count complexity for quantifiers. It can be shown that all quantifiers
that have this “minimal count complexity” are upward or downward monotone.

Interestingly, we find that monotone quantifiers are special in their syntactic form, too: We
find that every non-compound quantifier in natural language is (upward or downward) monotone
(cf. a). Non-monotone quantifiers, are expressed by complex expressions (cf. b):

(43)a. John, everybody, something, nobody,
b. exactly three children, between three and seven children, an odd number of children.

Hence we find that quantifiers that are most simple syntactically are also most simple semantically.

6.4.3. Monotonicity of Determiners

We have seen that determiners like every, most, or no may be treated as two-place relations between
sets. As with quantifiers like everybody or nothing, we can investigate the semantic properties of
certain classes of determiners. For example, we can investigate the monotonicity properties of the
noun argument of determiners.

One set of determiners that includes some, at least three, not all, and many others exhibit the
following inference patterns:

(44)a. Some lions roared  ⇒ / ⇐/   Some animals roared.
b. At least three girls smoked ⇒ / ⇐/   At least three persons smoked.
c. Not all boys drank. ⇒ / ⇐/    Not all persons drank.

Determiners with that property are upward-monotone in their noun argument, or persistent:

(45)A determiner D is persistent iff for all P, P′, P″, if D(P, P″) and P ⊆ P′, then D(P′,P″).

Another set of determiners that includes all and every, at most , and no, exhibits the following
pattern of inference:
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(46)a. All animals roared. ⇒ / ⇐/   All lions roared.
b. At most three persons smoked ⇒ / ⇐/   At most three girls smoked
c. No person drank ⇒ / ⇐/   No boy drank.

Such determiners are downward-monotone in their noun argument, or anti-persistent:

(45)A determiner D is anti-persistent iff for all P, P′, P″,
if D(P, P″) and P′ ⊆ P, then D(P′, P″).

Many determiners are neither persistent nor anti-persistent, e.g. most, the:

(47)a. most girls smoked   ⇒/     / ⇐/   most persons smoked.
b. the girl smoked  ⇒/     / ⇐/   the person smoked.

Marking upward monotonicity by ↑ and downward monotonicity by ↓, and if we distinguish
between the left argument of a determiner (= the noun argument) and the right argument (= the VP
argument), then we can characterize the monotonicity properties of the four basic determiners in the
following way:

(48) all: ↓mon↑ no: ↓mon↓
some: ↑mon↑ not all: ↑mon↓

6.5. Quantifiers and Negation

6.5.1. Negation Ambiguities

Let us now consider how quantifiers interact with negation. We have discussed the semantics of
negation in chapter 3, where we discussed sentences like the following:

(49)a. It is not the case that Molly snores.
b. Molly doesn’t snore.

These sentences are unambiguous. But consider now a sentence with a quantified subject:

(50)Every student doesn’t snore.

Arguably, this sentence has two meanings:

• ‘It is not the case that every student snores’, which includes that some students might snore;

• ‘For every student holds: he or she doesn’t snore’, which excludes this possibility.

We could have expressed the second reading also by No student snores. The two meanings appear
to correlate with particular intonation patterns. We have ecountered it already with examples like the
following:

(51)All that glitters isn’t gold.

The idiomatic interpretation corresponds to (i); ‘it is not the case that all that glitters is gold’.
But the sentence also has another possible interpretation, corresponding to (ii): ‘For all that glitters
the following holds: It isn’t gold.’

Why do these ambiguities arise in the case of quantifiers, but not in the case of names? This is
a consequence of the fact that quantifiers of type (et)t are semantically more complex than names of
type e. We can discuss this in the framework of the Toy Grammar that we have developed so far.
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Notice that the way how we paraphrased the reading (i) suggests the use of a sentential negation, it
is not the case that, whereas the way we paraphrased reading (ii) suggests the use of an auxiliary
negation. Let us first recall the derivation of the two sentences in (64):

(52)a. [[[S[Modit-is-not-the-case-that][SMolly snores]]]]
b. = [[[Modit-is-not-the-case-that]]]([[[SMolly snores]]])
c. = λt∈Dt[1—t]([MB snores])
d. = [1 — [MB snores]]
e. = 1, if [MB snores] = 0,

= 0, if [MB snores] = 1

(53)a. [[[S [NP Molly] [VP [Aux doesn’t ] [VPinf [Vinf snore]]]]]]
b. = [[[Aux doesn’t ] [VPinf [Vinf snore]]]]]]([[[NP Molly]]])
c. = [[doesn’t]]([[snore]])([[Molly]])
d. = λP∈Detλy∈De[1—P(y)](λx∈De[x snores])(MB)
e. = λy∈De[1—λx∈De[x snores](y)](MB)
f. = λy∈De[1—[y snores]](MB)
g. = [1—[MB snores]]
h. = 1, if [MB snores] = 0,

= 0, if [MB snores] = 1

We arrive at the same result, though on different paths. Now look what happens with a quantified
sentence:

(54)a. [[[S[Modit-is-not-the-case-that][Severy student snores]]]
b. = [[[Modit-is-not-the-case-that]]]([[[Severy student snores]]])
c. = λt∈Dt[1—t]([[[student]] ⊆ [[snores ]]])
d. = [1 — [[[student]] ⊆ [[snores ]]]]
e. = 1, if [[[student]] ⊆ [[snores ]]] = 0,

= 0, if  [[[student]] ⊆ [[snores ]]] = 1.

We get the truth value 0 if all the students are snorers, otherwhise the truth value 1. That is compati-
ble with situations in which a few students snore, provided that it’s not all of them.

(55)a. [[[S [NP every student] [VP [Aux doesn’t ] [VPinf [Vinf snore]]]]]]
b. = [[[Aux doesn’t ] [VPinf [Vinf snore]]]]]]([[[NP every student]]])
c. = λP∈Det[[[student]] ⊆ P](λy∈De[1— [[snores ]](y)])
d. = [[[student]] ⊆ λy∈De[1— [[snores ]](y)]
e. = 1, if [[[student]] ⊆ λy∈De[1—  [[snores ]](y)],

= 0, else.

This sentence is true if the students are a subset of the non-snores, that is, if no student snores, and
true otherwise. Notice that this reading is clearly distinct from the one we have obtained in the first
case.

The two readings differ in what semanticists call the scope of the negation and the quantifier.
In (69), the negation has wide scope over the quantifier, and in (71), the quantifier has wide scope
over negation.

We have seen that the English sentence Every student doesn’t snore may have also the read-
ing we have derived in (69) for It is not the case that every student snores, that is, a reading with
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wide-scope negation. How can we derive this reading, then, for Every student doesn’t snore? One
way is to type-lift negation in an ingenious way so that it takes the subject NP as an argument again,
but now a subject NP of the type of quantifiers:

(56) [[not]] = λP∈DetλQ∈D(et)t[1 — Q(P)]

We then get the following derivation:

(57)a. [[[S [NP every student] [VP [Aux doesn’t ] [VPinf [Vinf snore]]]]]]
b. = [[[Aux doesn’t ] [VPinf [Vinf snore]]]]]]([[[NP every student]]])
c. = [[doesn’t]]([[snore]])([[[NP every student]]])
d. = λP∈DetλQ∈D(et)t[1 — Q(P)]( [[snore]])(λP∈Det[[[student]] ⊆ P])
e. = λQ∈D(et)t[1 — Q([[snore]])](λP∈Det[[[student]] ⊆ P])
f. = [1 — λP∈Det[[[student]] ⊆ P]([[snore]])]
g. = [1 — [[[student]] ⊆ [[snore]]]]

Notice that this is the same result as the one we got for the derivation (69).

6.5.2. Other Quantifiers and Negation

So far we have just looked at negation patterns with one type of quantifier, namely, universal quanti-
fiers like every student. What about other quantifiers? Consider the following examples:

(58)a. It is not the case that three arrows hit the target.
b. Three arrows didn’t hit the target.

(i) ‘For three arrows it holds: they did not hit the target.’
(ii) ‘It is not the case that three arrows hit the target.’

Assume that there were 10 arrows shot at the target, and 7 of those hit the target. Then (i) is true but
(ii) is false. The truth conditions are different, hence the sentence has different readings.

Sometimes we have the feeling that a sentence is ambiguous even though there is no differ-
ence in truth conditions. Consider the following:

(59)a. It is not the case that most of the arrows hi the target.
b. Most of the arrows didn’t hit the target.

(i) ‘For most of the arrows it holds: they did not hit the target.
(ii) ‘It is not the case that most of the arrows hit the target.’

Where “most of the arrows” is interpreted as: “more than half of the arrows”. Assume as before
10 arrows shot at the target. You can experiment with different numbers, and you will see that (i)
and (ii) are either both true or both false. So, should we assume an ambiguity in the first place? Yes,
because it seems that the syntactic structure of those sentences in general allows for two interpreta-
tions schemes that just happen to have the same truth conditions. (This is similar to 1•2+2, which is
either (1•2)+2, or 1•(2+2), in both cases, 4.)

Another case of a quantifier that allows for an ambiguous reading is the following:

(60) a. It is not the case that a student sit on the bank.
b. A student didn’t sit on the bench.

(i) ‘It is not the case that a student sat on the bench.’
(ii) ‘There is a student for which the following holds: He/she sat on the bench.’
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But notice that not every quantifier can be easily combined with negation. Contrast (63) with the
following:

(61)a. It is not the case that some student sat on the bench.
b. Some student didn’t sit on the bench.

Here, (b), and even (a), is rather interpreted with narrow-scope negation: ‘There is some student for
which it holds that he/she sat on the bench’, at least if some is not reduced to something that lin-
guists sometimes write sm. In order to enforce the other interpretation, we should replace some by
any:

(62)It is not the case that any student came to the party.

 Another case in point is is the negative quantifier no :

(63)a. It is not the case that no student sat on the beach.
b. No student didn’t sit on the bench.

While (a) is fine, with a meaning as predicted (‘At least some student sat on the bench’), (b) sounds
quite odd, except for speakers of English dialects that allow for multiple negation. But even then it
doesn’t mean what it is supposed to, but rather the same as ‘No student sat on the bench’. In these
dialects, one of the negations is superfluous; it’s there just for the sake of grammar.

6.5.3. Negation of Quantifiers

Certain quantifiers correspond to each other — one being the “upward monotone” counterpart, the
other the “downward monotone” counterpart. Let’s discuss a few examples:

(64)Upward monotone: Downward monotone:
all N not all N
some N no N
many N few N
at least n N at most n N.
more than half of the N less than half of the N

In general: Whenever Q is an upward (downward) monotone quantifier, then its negation is down-
ward (upward) monotone. The negation of a quantifier Q, for which I will write ¬Q, is defined as
the complement of Q in its domain:

(65)  [ [¬Q]]  = {P| P ∉ [[Q]]}, which in turn is pow(A)  [[Q]] .

Examples:

(66)a. [[not all N]],
 = [[¬all N]] ,
 = {P| P ∉ [[all N]]},
 = {P| P ∉ {P| [[N]]  ⊆ P]},
 = {P| [[N]]  ⊄ P}
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b. [[not some N]]
 [[¬some N]] ,
= {P| P ∈ [[some N]]}
= {P| P ∉ {P| [[N]]  ∩ P≠Ø]},
= {P| P ∩ [[N] ] = Ø}
= [[no N]]

Actually, this is just one type of negation that we can define for quantifiers — the external
negation . In addition, we we can define an internal negation, for which I will write Q¬:

(67)  [ [Q¬]]  = {P| (A — P) ∈ Q} (take for every element of Q its complement).

Examples:

(68)a. [[all N not]]
 = [[all N ¬]] ,
 = {P | (A  P) ∈ [[all N]]}
 = {P| (A  P) ∈ {P| [[N]]  ⊆ P]},
 = {P| [[N]]  ⊆ (AP)},

= {P| [[N]]  ∩ P = Ø}
 (= [[no N]])

b. [[some N not]]
 = {P| (A  P) ∈ {P| [[N]]  ∩ P ≠ Ø}},
 = {P| [[N]]  ∩ (AP) ≠ Ø},
 = = {P| [[N]]  ∉ P)
 (= [[not all N]])

The basic quantifiers some, all, no and not all can be arranged in the following way:

(69)
no N all N

internal negation

    external negation        dual           external negation

internal negation

some N not all  N

Internal and external negation reverse monotonicity:

• If Q is upward monotone, then ¬Q, Q¬ are downward monotone.

• If Q is downward monotic, then ¬Q, Q¬ are upward monotone.

Let us consider a proof of the first clause. The following proof is of the following structure: We try
to prove the negation of what we actually want to prove, and it turns out that this leads to a contra-
diction.
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(70)a. Assume that Q is u.m.,
Take arbitrary P, P′ such that P ∈ ¬Q and P′ ⊆ P.
P ∈ ¬Q means: P ∉ Q.
Assume to the contrary that P′ ∈ Q, i.e. P′ ∉¬Q, then P ∈ Q, because Q is u.m..
That’s a contradiction, hence P′ ∉ Q, i.e. P′ ∈ ¬Q.
Hence ¬Q is d.m.

b).Assume Q is u.m.,
 take arbitrary P, P′ such that P ∈ Q¬, P′ ⊆ P.

That is, (AP) ∈ Q,
Since P′ ⊆ P, it holds that (AP) ⊆ (AP′),
hence (AP′) ∈ Q, as Q is u.m.
hence P′ ∈ Q¬.
Hence Q¬ is d.m.

There is an interesting observation due to Barwise & Cooper (1981) with regard to
monotonicity and negation. They observe that if a language has a syntactic construction whose se-
mantic interpretation is to negate a quantifier, then this construction is unacceptable with monotone
decreasing quantifiers. Examples1:

(71) not all students, not many students, but *not no student, *not few students

Another important notion that should be mentioned here is the dual of a quantifier:

(72)The dual of Q, is defined as: {P| (AP) ∉ Q}

Note that the dual of a quantifier Q is ¬Q¬. Examples:

(73)a. all N and some N are duals of each other;
b. no N and not all N are duals of each other;
c. John is the dual of itself.

6.6. Monotonicity and Negative Polarity Items

We have seen that we can classify determiners according to their monotonicity properties. It turns
out that monotonicity plays an important role for a certain class of expressions in English and in
many, perhaps all, other languages, namely, so-called negative polarity items (NPIs).

6.6.1. Negative Polarity Items

NPIs were first identified as expressions that have to occur in a “negative” context, like in the
scope of a negation (hence their name). Frequent polarity item in English is the determiner any and
NPs formed with it, like any student, anybody, anything,  as in the following examples:

(74)a. Mary didn’t talk to any students.
*Mary talked to any students.

                                                
1 But notice that focussing negation is possible, e.g. not FEW, but MANY students. Also, languages may have idiomatic
constructions that seem to violate this generalization, for example German nicht wenige Studenten, literally ‘not few stu-
dents’, meaning ‘quite a few students’. But idiomatic constructions are not interpreted compositionally, and hence this does
not constitute a counterexample to the generalization by Barwise and Cooper.
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b. John didn’t say anything.
*John said anything.

We see that any-NPs cannot occur in the non-negated sentences. In these cases they have to be
replaced by some-NPs. In turn, some-NPs in negated sentences typically have a different interpre-
tation than any-NPs (the wide-scope interpretation):

(75)a. Mary talked to some student.
‘There is a student such that Mary talked to him.’

b. Mary didn’t talk to any student.
‘It is not the case that there is a student such that Mary talked to him.’

c. Mary didn’t talk to some student.
‘There is a student such that Mary didn’t talk to him.’

The last sentence is preferably interpreted as: There is some student that Mary did not talk to.
In this interpretation the indefinite NP some student is not in the scope of the negation. — Another
example of a negative polarity item is ever. The corresponding positive forms for ever are expres-
sions like once or at some time

(76)a. John didn’t ever go to graduate school.
*John ever went to graduate school.

b. John once / at some time went to graduate school.

There are many more NPIs in English. Many of them are idiomatic, such as lift a finger or bat an
eye In their idiomatic meaning they show a similar distribution as any and ever:

(77)a. John didn’t lift a finger to help Mary.
*John lifted a finger to help Mary. (o.k. in the literal interpretation).

b. Mary didn’t bat an eye when she heard about the bad news.
*Mary bat an eye when she heard about the bad news. (o.k. in the literal interpretation).

Early accounts for NPIs (E. Klima, 1964) have suggested that their distribution can be ex-
plained by a transformation triggered by negation. For example, the negation of the sentence Mary
talked to some student was supposed to trigger a change from some to any. However, this does not
explain the distribution of idiomatic NPIs like lift a finger. And it does not explain instances in
which we find NPIs in other contexts than negation, a subject we turn to next.

6.6.2. NPI’s in Downward-Entailing Contexts

Consider the following examples of quantified sentences:

(78)a. *Every student lifted a finger / has ever been to China.
b. *Some/*Most/*Many/*More than three students have ever been to China.
c. No/Few/Less than three students have ever been to China

The quantified NPs no student, few students and less than three students have in common that they
are downward-entailing (monotone decreasing) in their VP argument, in contrast to NPs like every
student, some students, most students, many students etc.
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(79)a. Every student who has ever been to China enjoyed it.
b. *Some/*Many/*More than three students who have ever been to China enjoyed it.
c. No/Few/Less than three students who have ever been to China enjoyed it.

The determiners every, no, few, less than three have in common that they are downward en-
tailing (monotone decreasing) in their N argument, in contrast to determiners like some, many,
more than three.

Notice that the scope of negation is downward entailing as well, as illustrated with the follow-
ing example:

(80) John did not go to university ⇒ John did not go to graduate school

So when we assume that NPIs occur only  in downward-entailing contexts, we have a common ex-
planation for their distribution in negated and quantified sentences. This was actually suggested by
Bill Ladusaw (1979), in a UT dissertation.

There are other instances of downward-entailing contexts that support Ladusaw’s generaliza-
tion. For example, the scope of before is downward-entailing:

(81) Mary spoke Chinese before she had been to China
⇒ Mary spoke Chinese before she had been to Bejing

We find NPIs in this context:

(82) Mary spoke Chinese before she had ever been to China.
Mary spoke Chinese before she had been to any Chinese city.

Contrast this with after. This expression does not create a downward-entailing context, and it does
not house NPIs:

(83)a. Mary spoke Chinese after she had been to China
⇒/     Mary spoke Chinese after she had been to Bejing.

b. *Mary spoke Chinese after she had ever been to China.
*Mary spoke Chinese after she had been to any Chinese city.

It seems that Ladusaw’s Generalization holds up in these cases as well.

6.6.3. Why are NPI’s restricted to Downward-Entailing Contexts?

But we should ask now: Why is Ladusaw’s Generalization true? Why are NPIs restricted to
downward-entailing contexts?

One answer that has been suggested is the following: The meaning of an NPI invokes a set of al-
ternative meanings. It is not always easy to describe these alternative meanings, but the following
examples should at least give a rough idea:

(84)a. any student: Alternative meanings are John, Mary, graduate students, foreign students,
and other students or subsets of students.

b. ever: Alternatives are 1985, 1986, September 1993, and other times.
c. lift a finger: Alternatives are carry the suitcase, cleaning the dishes, and other acts of labor.
d. bat an eye: Alternatives are cry for help, start sweating, faint,

and other types of reactions to negative stimuli.
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Among these meanings, the NPI itself denotes an extreme value. For example, the meaning of
any student is related to the set of all students, the meaning of ever is related to the set of all relevant
times, lift a finger denotes the act of labor that involves the absolutely minimal effort, bat an eye
denotes the absolute minimal reaction to a negative stimulus, and so on. (This has been observed
already in 1975 by Gilles Fauconnier).

Now observe the semantic relation between an expression with an NPI and a similar expres-
sion in which the NPI was replaced by some other expression that denotes an alternative to the NPI
meaning. For the sake of this argument we have to pretend that the sentences in which the NPI oc-
curs in an upward entailing environment are actually allright.

(85)a. Mary did not talk to any student  ⇒ / ⇐/   Mary did not talk to a graduate student.
Mary talked to any student (= a student) ⇒/     / ⇐ Mary talked to a graduate student.

b. John did not lift a finger. ⇒ / ⇐/         John did not do the dishes.
John lifted a finger (= did at least something minimal) ⇒/     / ⇐ John did the dishes.

We find that in the good cases, the sentence with the NPI expresses something that is semantically
stronger than the alternative sentences (it entails the alternative sentences). In the bad cases, the
sentence with the NPI expresses something weaker than alternative sentences (it is entailed by the
alternative sentences). Hence we can suggest the following reason for the distribution of negative
polarity items:

(86)a. Sentences with NPIs have the function to express “strong” statements.
 They work under the assumption that the sentence with the NPI is semantically
 stronger than all the alternatives.

b. This relation between the strength of the sentence with the NPI and the strength of the
 alternative sentences holds only if the NPI occurs in a downward-entailing context.

For the specific class of NPIs that are formed with any there is another plausible motivation
(one that was suggested by Victor Sanchez Valencia in a 1991 dissertation). Such NPIs indicate the
type of inferences that can be drawn. We can observe the following:

(87)Every declarative sentence Φ[...[any ]..] that contains an NP [any ],
and for every noun phrase  that is semantically stronger than  (that is, [[ ]] ⊆ [[ ]])
it holds that Φ[...[any ]..] ⇒ Φ[.. [any ]...]

For example,

(88)a. Mary did not talk to any student ⇒ Mary did not talk to any graduate student.
b. Every tourist who has visited any Asian country was impressed

⇒ Every tourist who has visited any East Asian country was impressed.

In contrast, NPs like some  or an  occur in contexts where the opposite inference pattern holds:

(89)a. Mary talked to a graduate student ⇒ Mary talked to a student.
b. A tourist who has visited an East Asian country was impressed.

⇒ A tourist who has visited an Asian country was impressed.

In this sense, the near-complementary distribuition of any-phrases and a/some-phrases indicates the
type of inference that we can draw. In a case like Mary didn’t talk to some student we know that we
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have to switch to the wide-scope interpretation of some student, because only then the inference
pattern that is typical for some student holds. The presence of negative polarity items allows us to
draw such inferences in a rather automatic and “cheap” way. That is, natural languages have a de-
vice to facilitate such semantic inferences.


