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Abstract
A novel character-level statistical measure is de-
scribed which quantifies the level of repetitions
in a text. It behaves remarkably uniformly for
texts from all 20 tested languages. In contrast
to most other text-statistical quantities, the pro-
posed measure is computed from the text as a
whole, not from a tokenised text reduced to a fre-
quency list. For growing text sizes, it converges
rapidly to a constant value. This text length
independent behaviour is an uncommon feature
for text-statistical constants. The described phe-
nomenon of constant repetitiveness has so far not
been observed in any non-natural language text.
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1 Introduction

Since George Kingsley Zipf first published the famous
empirical law since named after him [13], a lot of text
statistical regularities have been proposed, usually in
the form of a formula with some constants in it. (See
[2] for an overview.)

However, recent publications have raised doubts as
to whether these laws hold and whether these con-
stants are constant. In [11], it is shown for all al-
leged lexicostatistic constants known at the time that
they systematically depend on text size. Additionally,
Evert and Baroni [5] demonstrate the low predictive
power of many of the laws that were proposed to cope
with such text length dependencies.

The theoretical significance of Zipf’s Law and its rel-
atives is limited by three factors: firstly, they merely
make propositions about word frequency lists instead
of full human texts. Secondly, they apply in a very
similar fashion to randomly produced pseudo text
[9, 8] and thus are not a specific property of language.
Thirdly, they are not easily interpreted theoretically:
it’s unclear what the validity of Zipf’s Law actually
tells us about the system of natural language and its
properties.

This paper introduces a new text statistical mea-
sure V which quantifies the level of repetitiveness in a
text. For natural language text, V converges rapidly
towards a fixed value, as the text size grows, and

the convergence point is a good constant over texts
from different languages. This was tested with 20 lan-
guages, from three distinct language families, written
with three different classes of writing systems.

So far, this constant repetition rate has only been
observed for natural language text. The possible es-
tablishing of this phenomenon of constant repetitive-
ness as a universal and exclusive feature of human text
could have some impact on the theory of language: on
the one hand, it would impose restrictions on every re-
alistic language model, since such a model would have
to reproduce this property in its output (see the dis-
cussion in Section 6). On the other hand, the phe-
nomenon would bring up two new questions: if the
level of repetitiveness is so amazingly constant, why is
this so and what mechanism keeps it constant?

Section 2 gives the necessary conceptual background
and defines V . Section 3 describes the experiments
which survey V for texts from different languages. The
results are shown in Section 4. Section 5 reports an
experiment which gives more insight into the nature of
the investigated quantity. Section 6 discusses compa-
rable known text statistical measures. Section 7 gives
an outlook.

2 The measure V

2.1 Defining V

In the context of this work, a text is simply a string
of symbols. I define the repetitiveness V of a text
T as k/t0, where t0 is the length of T , and k is the
number of its substrings which occur with more than
one continuation in T . In other words, V is the number
of ended repetitions divided by the text length.

Consider the example text1 T = xabcdecdeabcbx.
There are 7 substrings with more than one continua-
tion: abc, bc, c, cde, de, e, and b. The text length t0
is 14, hence V = 7/14 = 1/2.

If there are no repetitions in the text, V is obviously
0. If the text consists of the same character repeating
– except for the last character – then k = t0 − 2 and
thus V = (t0 − 2)/t0, which approaches 1 as t0 grows.

Quantifying the repetitiveness of a text by defin-
ing V can be justified a priori by its conceptual sim-
plicity and adequateness (it measures repetitions). Its

1 Example text is written in type writer font.



remarkable properties will serve as an a posteriori jus-
tification.

The number of substrings of a text is t0(t0 + 1)/2
where t0 denotes the text length. This expression
quickly gets very large. The practical computation
of V is carried out using the suffix tree of T which can
be built in linear time and space complexity [12]. k is
then simply the number of nodes in this tree-like index
structure [6].

The focus of this paper is not the value of V for the
whole text, but how V develops if we read the text
character by character and view V as a function of t,
the length of the text part read so far.

2.2 Exemplifying V (t)
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Fig. 1: The development of V for an example text
set up to clarify the interpretation of V as a measure
of the level of repetitions. The scale on the x-axis is
logarithmic.

Fig. 1 shows the development of V for an artifi-
cial example text of 60,149 characters: the first 20,000
characters are repetitions of the following four lines:

isn’t_it_funny
how_a_bear_likes_honey
buzz!_buzz!_buzz!
i_wonder_why_he_does?

After this, new text (definitely!) is introduced,
before the bear song repeats again until the end of the
text.

For the first six text characters (isn’t ) there is no
repetition (V = 0). The seventh one (i) is a repetition
of the first one. But only after the eighth character is
read (t), does it have two different continuations (s
and t). V jumps to 1/8. The t itself is a repetition
but the next character ( ) is no new continuation and
V drops to 1/9. After the ninth character (f) is read,
we have three substrings with different continuations
(i, t and ) and V = 3/10. The following u and n
don’t terminate any repetition, and V drops again. In
this way, V follows a slow upward trend until the end
of the four cited lines.

Nothing new is introduced now for nearly 20,000
characters. Since no repetition does ever terminate in
this phase, V drops steadily.

When this very long repetition is ended by the sud-
den appearance of definitely!, the situation changes
radically. All at once we have nearly 20, 000 substrings
with different continuations and V jumps to a value
close to 1 accordingly. After this interruption, the text
gets repetitious again and V drops for a second time.

3 Languages and corpora

V (t) was compared for natural language texts from 20
languages. They belong to the three language families
Indo-European, Dravidian, and Uralic. Their writing
systems instantiate three different classes of writing
systems.

3.1 The investigated languages

Regarding the genetic relations of the tested languages
we refer to [1].

Fourteen Indo-European languages were investi-
gated: The Slavic language Russian, the West Ger-
manic languages English and German, the Romance
language French, and the ten Indo-Iranic languages
Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya,
Punjabi, Sinhala, Urdu, and Kashmiri (subclassified
as Dardic).

Tamil, Kannada and Malayalam from the south-
ern branch of the Dravidian language family were in-
cluded, as was Telugu from the Telugu-Kui branch.

From the Finno-Ugric branch of the Uralic lan-
guages, the Finno-Saamic Finnish and the Ugric Hun-
garian were investigated.

3.2 The writing systems

The same text can come out completely different when
written in different writing systems. Since the defini-
tion of V is based on repetitions on the character level,
the writing system used can be expected to affect the
value of this quantity. To investigate this effect, the ex-
periments have been performed on texts written with
different scripts.

We adopt the classification of writing systems pro-
posed in [4]. The authors classify scripts “with respect
to how symbols relate to the sounds of the language”[4,
p. 4]. The resulting classification of the scripts over-
laps only in part with the genetic relations cited above.

3.2.1 Abugidas

“In an abugida, each character denotes a consonant
accompanied by a specific vowel, and the other vowels
are denoted by a consistent modification of the conso-
nant symbols [...].”[4, p. 4].

Most languages spoken in the Indian language area
use historically related abugidas. This applies to As-
samese, Bengali, Gujarati, Hindi, Kannada, Malay-
alam, Marathi, Oriya, Sinhala, Tamil and Telugu.



3.2.2 Abjads

“In a consonantary, here called an abjad [...] the char-
acters denote consonants (only) [...]”[4, p. 4]

Some of the languages spoken in India use scripts
based upon the Arabic script, the world’s most
widespread abjad. From the set of tested languages,
this applies to Urdu, Kashmiri, and Punjabi. Urdu is
an abjad following [4]. Regarding Kashmiri, see Sec-
tion 3.2.3.

Punjabi is written in two different scripts: on the
one hand in Gurmukhi (an abugida); on the other hand
in the Perso-Arabic abjad. The corpus used for this
investigation is written in Perso-Arabic.

3.2.3 Alphabets

“In an alphabet, the characters denote consonants and
vowels”[4, p. 4].

German, English, Finnish, French and Hungarian
use different variants of the Latin alphabet.

Russian is written with the Cyrillic alphabet.
The script used for Kashmiri is based on the Perso-

Arabic abjad, but called an alphabet in [4]. I follow
this classification.

3.3 The corpora

The corpora of the tested Indian languages are all part
of the EMILLE corpus [18]. For each of these lan-
guages, I used between 2 and 20MB (that is approx-
imately between 200, 000 and 2 million tokens) of the
written part of this corpus. Most of the data stems
from various Indian dailies.

The German texts are taken from the online edition
of the Süddeutsche Zeitung – a high quality German
newspaper.

For English, a part of the Brown Corpus [17] was
used.

For French [20], Russian [15], Finnish [14] and Hun-
garian [16], novels were used.

4 Experimental Results

Intuitively, there seems to be no reason for a uniform
behaviour of V (t) in different texts, let alone in dif-
ferent languages. On the contrast, it seems natural
to expect changing levels of repetitiveness both within
one text and between texts. The repetitiveness could
probably depend on various factors such as subject,
genre, author, the morphological structure of the lan-
guage or the writing system.

Fig. 2 and Fig. 3 show the evolution of V (t) for
growing text sizes t. Fig. 3 is an enlargement of the
central part of Fig. 2.

We can draw a set of observations from these figures:

O1 For all investigated corpora V converges towards
a constant2.

O2 This constant is reached after as few as about
10, 000 characters, that is after approximately
three pages of text.

2 The obvious jumps in most of the curves are addressed below.
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Fig. 2: V for all tested languages. Refer to the text
for a list of languages. Fig. 3 enlarges the box in the
middle and shows a label for each language. The char-
acteristic value of 1/2 is clarified by the bold arrows.
The scale on the x-axis is logarithmic.

O3 For shorter text lengths, an average curve is easily
discernible, although the convergence level is not
yet reached.

O4 The convergence level is compatible with 1/2.

We will henceforth summarise the uniform be-
haviour of the V -curves as described by the observa-
tions O1 through O4 under the term V -convergence.
So far, V -convergence has been found in all tested nat-
ural language texts.

The V -curves of other texts show a much more di-
verse behaviour. A small set of examples of such texts
is shown in Figure 4 (for comparison, V (t) for the Rus-
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sian text is shown as curve R):

1 A uniformly distributed random text, i.e. each char-
acter has the same probability of occurrence at
each text position. Alphabet size is 3.

2 c sources from the Linux 2.6.0 kernel. Generally,
V (t) for source code runs above 0.5 and shows a
rather unpredictable behaviour.

3 Random text generated as described in [3]. This
elaborated language model was designed to emu-
late basic statistic characteristics of natural text
such as mean word and sentence length.

4 A random text which simulates the English charac-
ter distribution.

5 A uniformly distributed random text3 with alpha-
bet size 100. Compared with curve 1, V (t) looks
rather different here. In general, for this class of
texts, shape and height of V (T ) depend heavily
on the alphabet size. This contrasts with the be-
haviour of natural language texts: although the
set of symbols of abugidas (Section 3.2.1) is usu-
ally twice as large as for alphabets (Section 3.2.3),
there seems to be no immediate impact on V (t)
(see Figure 3).
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Fig. 4: The V -curves of different kinds of text. See
the text for a detailed description. The scale on the
x-axis is logarithmic.

On the grounds of the experiments reported here,
the still highly speculative hypothesis can be formu-
lated that V -convergence might be a universal and ex-
clusive feature of natural language texts.

This hypothesis has to be thoroughly checked by
testing many more texts from different languages,
scripts, styles and epochs. So far, additional exper-
iments with the Chinese LCMC corpus [19] were per-
formed. This corpus exists in two different scripts, the
traditional characters and the romanised transcript
pinyin. The V of the character version converges to-
wards 0.27 ± 0.02, while the pinyin version shows V -
convergence with V approaching 0.52± 0.01. See also
the discussion at the end of Section 5.
3 The peculiar oscillations reflect the fact that first the bigrams

repeat, then the trigrams, and so on.

A Remark: the bumps that can be seen for many
of the corpora in Fig. 3 are due to longer repetitions in
these corpora as exemplified in Fig. 1. For web based
corpora, such as the EMILLE corpus [18], longer repe-
titions are hard to avoid, since cut and paste can easily
multiply chunks of text or whole texts, especially if an
online edition of a newspaper is used as the source.

The fact that longer repetitions in the text are re-
flected as bumps in its V -curve could be converted into
a method for detecting artificial repetitions in large
corpora, provided one is able to cope with the heavy
memory consumption of suffix trees. This index struc-
ture is used for the technical implementation of the
computation of V (t) as mentioned in Section 2.1.

The novels and the German corpus don’t show any
bumps. For the novels, this smoothness can be ex-
pected, because long repetitions are naturally avoided.
In the German corpus they occurred, but were care-
fully filtered out by a variety of ad-hoc heuristics.

5 The impact of randomisation

It is a special feature of the quantity V that it is
based on character strings, not on words. Accord-
ingly, it measures repetitions both below and above
word level. It is a natural question, which of these two
kinds of repetitions contribute more to the value of V .
To address this question, I separately randomised the
internal structure of words and the sequence of words.
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Fig. 5: The impact of randomisation on V (t). See the
text for a detailed description.

The starting point of the investigation was the orig-
inal Russian corpus. The result of the different ran-
domisations of the corpus is shown in Fig. 5:

1 V (t) for the original Russian corpus.

2 The inner structure of words is left untouched, but
their sequence is scrambled. V (t) is considerably
lowered.

3 The characters of the words are randomised, while
the word order is left untouched. Each word is re-
placed by a random character string. Equal sur-
face forms are replaced by equal random strings



drawn from a 59 character alphabet. Each char-
acter had the same probability.

4 combining the randomisation schemes for curves 2
and 3.

5 for comparison only: V (t) for random text, drawn
from a uniformly distributed alphabet of size 62.

Clearly, randomisation always lowers V . This is to
be expected since a random string of characters and
words can only result in random repetitions. Since the
system of human language prescribes the reoccurrence
of certain structures, we expect that a deliberate de-
struction of these structures will diminish the level of
repetitions.

Randomising the internal structure of the words af-
fects V much more than only randomising word or-
der. This shows that repetitions below word level con-
tribute more to the value of V than repetitions on a
larger scale. This corresponds to another observation:
V -convergence occurs in all tested texts written with
scripts in which graphemes and phonemes correspond.
This includes the (invented) pinyin script, but does
not apply to the traditional Chinese script for which
no V -convergence was found. Together, these two ob-
servations could be interpreted as a first hint that this
phenomenon is rooted in the phonemic level of lan-
guage.

6 Other text statistical regular-
ities and constants

This section discusses how V (t) and the phenomenon
of V -convergence can be compared with other text sta-
tistical constants and regularities.

The best known such regularity is Zipf’s Law [13].
It states that the most frequent word in any natural
language text is twice as frequent as the second most
frequent one and three times as frequent as the third
most frequent one, and so on. Zipf’s law roughly holds,
except for the most frequent and the very infrequent
words. But, as sketched in [9], and shown in more de-
tail in [8], Zipf’s Law is also valid for random text.
This over-generality greatly reduces its significance:
there’s little value in knowing about a property which
natural language text shares with noise. As pointed
out in the discussion of Figure 4, V -convergence, on
the other hand, could so far not be observed for ran-
dom text, even if it simulates a natural character dis-
tribution or was designed to simulate the statistical
features of natural language [3]. If it can be confirmed
that V -convergence is a universal and exclusive feature
of natural language text, we gain a strong tool to de-
cide about the adequacy of statistical language models:
if such a model is not able to reproduce V -convergence
in its output, it cannot be said to mimic the structure
of human language. This hurdle can be expected to be
much higher for models which aim at modelling both
words and their sequence. Models which reuse existing
natural language words will have a lesser problem, as
we know that the word sequence has a smaller impact
on V than the inner structure of the words themselves
(see Section 5).

Besides Zipf’s Law, a lot of lexicostatistic quantities
were proposed to measure – for example – lexical rich-
ness or the productivity of word formation processes
[2, 10]. Many of these text statistic quantities were
proposed as constants, independent of text size. But
it was shown that, in practice, these alleged constants
tend to vary with text length [11]. Similarly, there
is a class of models which try to capture these text
length dependencies. Evert and Baroni [5], however,
show that the predictive power of most of these mod-
els is low: the behaviour computed for small text sizes
cannot be extrapolated to larger texts. In contrast to
this, V (t) converges very rapidly towards a fixed value
around which it fluctuates only a little.

As can be seen from Fig. 1 and 4, different kinds
of text can produce qualitatively diverse V -curves.
In contrast, most lexicon based text statistical mea-
sures have only a few degrees of freedom. Consider
Zipf’s law as an example: it is usually depicted in a
Zipf plot: starting with an ordered frequency list, the
place in this list is shown on the x-axis, while the fre-
quency is shown on the y-axis. This will always yield
a monotonously decreasing function. The potential
variability in V (t) makes its uniformity in natural lan-
guage text more surprising than the validity of Zipf’s
Law.

V (t) is computed from the full character sequence
of the text and is thus sensitive to structural changes
on all levels. In contrast, the lexicostatistic quantities
discussed in this section are usually derived from sum-
mary statistics such as the number of Hapax Legomena
or the vocabulary size. Thus, they lose, from the start,
most of the information contained in the full text: they
remain the same if the text is replaced by a random se-
quence of random tokens, as long as these tokens have
the same frequency distribution as the tokens of the
original text.

As a consequence, none of the randomisation meth-
ods applied in Section 5 would have any effect on these
word frequency based measures, since the statistics of
the lexicon is left untouched.

This striking difference between lexicostatistic mea-
sures and constants, on the one hand, and V -
convergence, on the other hand, effectively counters
the argument that the latter might turn out to be an
alternative manifestation of one of the former, for ex-
ample of Zipf’s Law.

All these features – its exclusive occurrence in natu-
ral language text, its higher sensitivity to structural
changes of the text, its stable convergence and its
richer structure – make V (t) and its convergence to-
wards 1/2 much more informative and significant than
any of the token frequency related models and con-
stants.

7 Outlook

If V -convergence can be firmly established as a fea-
ture of natural language text, this would immediately
raise two questions: why is the level of repetitions so
very constant? It is clear that too many repetitions
in language are bad: it’s both boring and time con-
suming. On the other hand, if nothing ever repeats
we have no chance of recognising known elements or



of regaining lost information: no understanding with-
out repetition and no stable communication without
redundancy. But why should repetitions be so evenly
distributed? V = 1/2 seems to be some kind of opti-
mum, but what does it optimise? The other question
that would be raised is: what keeps V this constant?
What is the mechanism within the human language
system that regulates repetitiveness?

But before all of these questions can gain real rel-
evance, a second round of experiments is necessary:
V (t) has to be investigated for more texts – natural
and non-natural – being as diverse as possible.

In order to get a clearer picture of V and the phe-
nomena surrounding it, the exact shape of this quan-
tity will have to be measured carefully. One obvious
questions is whether there is a significant deviation of
the convergence point of V (t) from 1/2 or not.

Another thrilling task ahead is to examine V (t) for
spoken corpora, maybe in phonetic transcription. Is
V -convergence a phenomenon of written language or
does it also occur in spoken language?

A related project [7] investigates the impact of
stylistic differences, like authorship, on similar data.
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