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Abstract

This paper investigates a method for segmenting
unannotated natural language text into morphemes
or bigger linguistic units and for partially grouping
them hierarchically. The approach is unsupervised
and language independent. It is purely statistic and
based on the frequency counts for all substrings in a
text. The underlying model is very simple and has
no free parameters.

1 Introduction

The proposed method for unsupervised text seg-
mentation and structure inference is opposed to
most approaches to natural language processing as
it addresses the tasks of text segmentation, morpho-
logical decomposition, multiword unit detection,
and compound analysis as a whole. Usually these
tasks are handled separately in subsequent work
stages. See Manning and Schütze (1999) for gen-
eral introductions to these fields.

The linguistic prerequisites which enter the
model are minimal. This makes its implementation
an investigation on how far one can get with an ap-
proach of unsupervised language structure learning
which solely relies on surface statistics.

The results show clearly that the task of text seg-
mentation can be solved fairly well along this line,
while treelike grammatical structures cannot be cov-
ered equally well. Success and failure both offer
insight into the relation between statistics and lan-
guage structure.

2 Related Work

Nearly all statistical approaches to unsupervised
morpheme detection are either related to the work

of Harris (1955) and Hafer and Weiss (1974) or to
Goldsmith (2001).

The first approach takes a substring of a text and
counts the number of possible next characters as oc-
curring in some training corpus. For example this
number is 3 forinstrument1: possible continuations
area, s, and . The text is segmented at those points,
where thissuccessor variety has a local maximum.
Bordag (2005), Dang and Choudri (2005) and Ham-
marström (2006) fall into this category.

The second approach tries to find a description of
the training corpus whose length is minimal. The
length of the description is the sum of the lengths of
its two parts, the morpheme inventory and the model
used to combine these morphemes into words. A
rather successful example of such an approach is
Creutz and Lagus (2005).

Approaches of both kind usually operate on pre-
tokenized text or even on word lists and aim at in-
ferring word morphology. In contrast, the proposed
method for analysing natural language texts starts
from the raw character sequence and aims at find-
ing linguistic units not confined to word boundaries.
This is both more interesting and more promising,
since obviously nearly all information carried by a
text is destroyed when the text is compressed into a
word list.

Although developed independently, if to be cat-
egorized the proposed analysis falls under the first
category of approaches, related to Harris (1955).

However in contrast to the idea put forward by
Harris, not the number of possible continuations
of a substring is considered, but the predictability
of the next character actually occurring in the text.

1Example text is written initalic and blanks are indicated
by underscores.



 p r e v e n t i n g  t h e s e  d e a t h s  .

 
p

r
e

v
e

n
t

i
n

g
 

t
h

e
s

e  
d

e
a

t
h

s  
.

Figure 1: The raw frequency counts for the example chunkpreventing these deaths .. Each colored field
represents the frequency count for one particular substring: The field marked by the cross corresponds to
the substringenting th. Dark colors mean high frequencies. Frequency differencesare indicated by solid
lines between adjacent fields. These frequencies may well beso small that the grey scale is not fine enough
to discern them.

These two quantities are inversely correlated, since
a high successor variety implies a low predictabil-
ity. But while successor variety does not depend on
the next character actually occurring in a test cor-
pus, the measure proposed here yields different re-
sults in different contexts. This flexibility is highly
desirable.

Details of the algorithm are explained in the fol-
lowing section.

3 The algorithm

The underlying idea is very old and basic and reads
as follows: “A unit is made up of parts which com-
monly occur together”.

The implementation of this idea can be stated
as: “The text is segmented at points where the pre-
dictability of the next character drops”.

Starting point for the segmentation are the raw
frequency counts for all substrings in a test corpus
as they occur in a training corpus.

The frequency counts are easily accessible when
stored within a suffix tree of the text. Fundamental
knowledge of this data structure can for example be
gained from Gusfield (1997).

Figure 1 pictures the raw frequency

counts for an exemplifying chunk of data:
preventing these deaths .2.

At first glance these frequency data seem to con-
tain meaningful patterns: With the naked eye one
can discern the steps representing the substrings
preventing and these . But the picture is not clear

and a lot of filtering needs to be done to identify the
linguistic units within the noise.

To find a segmentation of the text on the basis
of the raw frequency counts, the concept ofpre-
dictability is used. We start with a simple obser-
vation: The space afterthese is very easy to pre-
dict: Figure 1 shows that 100% of the occurrences
of these were followed by a space. But after the
space a drop occurs: only 18 out of the 385 occur-
rences of these or4.7% were followed by the letter
d. If we interpret these relative frequencies as an es-
timation of likelihood, we can use them to predict
the next character. Since a drop in predictability oc-
curs after these , a segment border is set there.

2There are spaces (underscores) before punctuation marks
because I used a preprocessed version of the corpus for tech-
nical reasons. This does not affect the results, but it simply
changes the definition of all punctuation to a sequence of space
followed by the punctuation character.



The same argument can be used to find word or
morpheme boundaries in the backward direction:
385 out of the 452 occurrences ofthese (83%) in
the training data are preceded by a space. But only
20 of these 385 or 5% are preceded by ag.

This concept leads to segmenting the text into
substrings which have a drop of predictability in
both directions at their borders. Let me state this
more formally:

3.1 Definition of Predictability

Let st(i,m) = titi+1..ti+m−1 be a character string
of length m starting at characteri within the test
corpus t = t1t2..tn. Let T be the training cor-
pus, andNT (st(i,m)) the number of occurrences
of st(i,m) in T . Accordingly NT (ti−1st(i,m))
andNT (st(i,m)ti+m) are the training frequencies
of the prolongations to the left and to the right of
st(i,m) by the characters preceding and succeeding
it in the test corpust.

I define

V +

T,t(i,m) =
NT (st(i,m)ti+m)

NT (st(i,m))
(1)

as theforward-predictability at characteri and sub-
string lengthm in the test corpust relative to the
training corpusT . Thebackward-predictability at i
andm is accordingly defined as

V −

T,t(i,m) =
NT (ti−1st(i,m))

NT (st(i,m))
(2)

The forward predictability drop at i and m is de-
fined as:

D+
T,t(i,m) =

V +

T,t(i,m)

V +

T,t(i,m − 1)
(3)

Thebackward predictability drop is then:

D−

T,t(i,m) =
V −

T,t(i,m)

V −

T,t(i + 1,m − 1)
(4)

All substringsst(i,m) of t with D+
T,t(i,m) < 1 and

D−

T,t(i,m) < 1 are considered possible segments.
Figure 2 shows the same data as figure 1 together

with all possible segments as defined above.

3.2 Disambiguation
Figure 2 shows two very different things: First,
the segmentation can be made hierarchical in the

sense that segments can be split up into others:
preventing can be divided inprevent anding .

Secondly there are too many possible segments
and they can be grouped into different hierarchical
structures.

This makes disambiguation a necessity. Before
different strategies are discussed in 3.2.2, the next
section explains how a big fraction of wrong seg-
ment candidates can easily be ruled out from the
start.

3.2.1 Completeness
Not only these constitutes a possible segment
in figure 2, but also the spuriousthe, obviously
backed by the high frequency of the definite deter-
miner in English texts.

But as can be seen, there is no possible segment
starting at this position in the text, particularly,se
is no possible suffix in English morphology.

So we establish a constraint: Only those seg-
ments are considered, which can be arranged with
other segments into a non-overlapping but complete
partition of the text. This greatly reduces the set of
candidate segments as can be seen in figure 2. From
all possible segments, indicated by dots, only the
white dots with black borders survive the constraint,
the black dots with white borders miss it.

3.2.2 Disambiguation strategies
Disambiguation of the remaining segmentations can
be split into two subtasks. I gave themboldface
lower case names to distinguish them from the dif-
ferent strategies tested to solve them written UPPER
CASE.

topdown: If we have a possible segment like
preventing how shall we cut? Here solu-

tions like ( prevent)(ing ) are to be preferred to
the wrong (preventi)(ng ) which is also sanc-
tioned by figure 2.

follower: Where to go from a possible segment like
these ? Here we want to rule out the contin-

uation with death in favor for deaths which
can be subdivided into (death)(s ).3

A variety of different strategies was tested:

topdown. Each possible decomposition of a sub-
stringz = st(i, j) into (x)(y) with x = st(i,m) and
y = st(i+ m,n) with (m + n = j) was scored by a

3Each strategy used to solve thefollower task can be ap-
plied locally or globally. This is governed by two other param-
eters. We get back to this very soon.
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Figure 2: The same data as in figure 1. All possible segments are indicated by a dot in the upper right corner
of the field. So the framed dot represents the possible segment preventing . The two ways of partitioning it
into ( prevent)(ing ) and ( preventi)(ng ) are shown by solid and dashed arcs respectively. The two possible
continuations after the segmentthese are referred to by the arrows, which end atdeath and deaths . The
segments which are ruled out from the outset by requiring a complete segmentation are shown as black dots
with a white border, the remaining ones are inversely marked.

functionS. The decomposition yielding a minimum
S was chosen. The following definitions forS were
tested:

PF Predictability in forward direction. The score
for segmentingz into (x)(y) is defined as
SPF = −NT (xy)/NT (x), i.e. the fraction of
occurrences ofx in the training corpus which
continue withy. The minus assures that a high
predictability is rated as good.

PB Predictability in backward direction.SPB =
−NT (xy)/NT (y), that is the fraction of occur-
rences ofy that were preceded byx.

PDF Predictability drop in forward direction for
the first segmentx: SPDF = D+

T,t(i,m)

PDB Predictability drop in backward direction for
the second segmenty, that is SPDB =
D−

T,t(i + m,n)

PD2 Logarithmic sum of the predictability drops in
both directions for both segments orSPD2 =
log(D+

T,t(i,m)) + log(D+
T,t(i + m,n)) +

log(D−

T,t(i,m)) + log(D−

T,t(i + m,n)). The

logarithm was chosen in order to make use of
three of its properties: First,log(1) = 0, that
is no predictability drop gives zero score. Sec-
ondly log(0) = −∞, that is maximum pre-
dictability drop (which is unreachable), gets
a maximum score. Third, when compared
the same relative difference inD yields the
same absolute distances in score:log(aD) =
log(a) + log(D), independent of the value of
D.

follower. For solving the task of selecting the next
segmenty = st(i,m) to the right of a known suffix
x, each possibley was priced with a scoreP . The
following measures were considered forP

LONG Choose the longesty: PLONG = −m
(minimizing favors the longest segment.)

SHORT Choose the shortesty: PSHORT = m
(minimizing favors the shortest segment.)

FPDF Maximize the forward predictability drop:
PFPDF = log(D+

T,t(i,m)).

FPDB Maximize the backward predictability drop:
PFPDB = log(D−

T,t(i,m)).



FPD Combine both:PFPD = PFPDF + PFPDB.

All these five strategies for solving the disam-
biguation subtaskfollower by defining some score
functionP can be applied locally or globally in two
ways.

locglob: Only consider the immediately adjacent
segment candidates or consider all following ones
as well. Possible strategies are:

LOCAL Only use theP score of the directly fol-
lowing candidate segmenty.

AV Compute theP score ofy and of all of its fol-
lowers until the end of the sentence and use the
average of these values to judgey.

tdav: Finally there are different ways of comput-
ing theP score for a segmenty which is itself split
into two segments (v)(w):

TOP Only compute theP score ofy itself.

ALLAV Compute theP score ofy, u, andv and of
all of their parts recursively. Use the average
as a final score fory.

Figure 3: The final partitioning of the data. The
example chunk is correctly segmented. The two
spaces betweenpreventing and these and between
these anddeaths belong to both segments each. The
strategies used were PD2, FPDF, AV, and ALLAV.

Figure 3 shows the final decision made for the ex-
ample chunk, if the procedures PD2, FPDF, AV, and
ALLAV are used. As can be seen, the segmentation
into {[( )(prevent)](ing )}( these )[( death)(s )]
coincides with the analysis of standard linguistics
in this case. The whole phrase is not recognized
as such. However, this is what we expect, since
the algorithm at its present stage is only capable of
detecting units which repeat.

3.2.3 Interim summary
To sum up so far, the algorithm divides the text into
segments which have a drop in predictability at both
of its borders. Afterwards, disambiguation proce-
dures are run to find the best overall segmentation
of the text.

Many of the segments can be discarded from the
start. For the rest we need to score the segments and
their relations. This task is broken down as far as
possible and for the subtasks a variety of strategies
are investigated.

Basically, only three minor linguistic prerequi-
sites are hardwired into the system.

First: Natural language text can be split up into
characters which follow each other in a row. While
this cannot be said to be true for all scripts, it is def-
initely true for the two languages considered so far,
English and German. For other cases, the method
might have to be changed.

Secondly: Because the drop in predictability usu-
ally occurs before and after the spaces framing a
graphical word, whitespace characters in contrast to
visible characters can belong to two adjacent seg-
ments. The linguistically trivial distinction between
visible and invisible characters is not known to the
computer a priori.

Similarly, the third linguistic fact entering the
model is the assumed identity of lower and upper
case. If the system works in a case sensitive way,
we get pseudo segments. To give an example, about
8% of the occurrences of the English definite deter-
miner the are upper case in the used training cor-
pus. For these we get a segmentation as (T)(he ).
To avoid this, the program was run exclusively on
lower case text.

4 Evaluation
4.1 The used measure
Evaluation in computational linguistics is usually
done by givingprecision p andrecall r:

p =
number of correct decisions made

number of decisions made

r =
number of correct decisions made

number of possible correct decisions

These measures require the definition of a correct
decision. This is not a problem as long as a correct
decision can be defined as one which coincides with
a given theory.

In the introduction we stated that the proposed
algorithm aims at segmenting text into morphemes,
words and phrases and at grouping these units ac-
cording to their linguistic interrelations. For using
recall and precision for evaluation we need the cor-
rect solutions to both of these problems. For this we
need full-fledged theories of morphology and syn-
tax. But even if we had such theories at hand, we



would still evaluate in relation to theories, not to re-
ality.

The reality we want to assess is the human lan-
guage faculty. Of course we cannot do this directly,
because we do not know in which units the human
brain would break down the test corpus.

But there is a loophole left: It might be impos-
sible to tell, whether the partition ofloophole into
(loop)(hole) is correct or if this string is better pro-
cessed as a whole. But there should be no disagree-
ment among native speakers of English that a seg-
mentation into (loo)(phole) is definitely wrong. So
even if we cannot honestly claim to be able to tell
how many correct decisions the system makes, we
are nevertheless able to tell how often it blunders.
I tentatively define ablunder as an error no native
speaker would ever make. While it would be desir-
able to have a stronger definition of this term, this
preliminary one will suffice for the given study. We
take the unclear cases (which will not be so many),
as an estimation of the error margin.

This way of evaluation is not as much an embar-
rassing back door as it might seem. The perfect nat-
ural language processing system would not be the
one making no errors at all, but the one which avoids
errors a human would never make. Consequently, if
we look at the bold blunders, we look at exactly the
kind of error we have to worry about.

Resulting from these considerations the measure
of pseudoprecision PΨ is defined for comparing the
different disambiguation strategies:

PΨ = 1 −
B

B + O
, (5)

whereB is the number of blunders andO is the
number of non blunders.

The due objection that it is meaningless to work
with pseudoprecision without definingpseudorecall
must be taken seriously. In languages like English
segmentation along white space will lead to very
few blunders, even if it might be inappropriate to
split up proper nouns likeNew York.

But for any definition ofpseudorecall we would
need to know the splits which all native speakers
would set, but which the system did not set. To ren-
der such a definition precise enough to get reprodu-
cable results seems an intractable task.

Nevertheless, a natural language processing sys-
tem which produces no blunders is either extremely
good or trivial. We have to cope with the fact that re-
call always presupposes to know the full set of true

answers which is not always a meaningful concept.

4.2 Evaluation procedure
Since there are five strategies for solving thetop-
down disambiguation subtask, five forfollowers,
and two for bothlocglob and tdav, there are alto-
gether5 ·5 ·2 ·2 = 100 different combinations. This
is too much for manual evaluation.

So I resorted to a less complete procedure. I
started with a plausible choice for three of the four
parameters, and varied the fourth.

After this, each parameter is varied separately,
starting from the optimal choice reached so far.

Two aspects of the segmentation of the test cor-
pus were assessed separately: The points where cuts
are set by the system (4.3) and the resulting seg-
ments delimited by these cuts (4.4). To give exam-
ples, (loo)(phole) is a blunder in the first sense, be-
cause the cut is clearly set at a wrong position, while
(prevent)[(ing )( these)] is a blunder in the second
sense, because the ending is attached to the next
word wrongly.

The primary evaluation was done for German and
for the quality of the cuts set by the system (4.3).
As a result we get an optimal set of disambiguation
strategies to solve the subtaskstopdown, follower,
locglob, andtdav. This optimal set is tested on En-
glish (4.3) and on the buildup of structure for both
English and German (4.4).

For both training and testing different parts of the
EUROPARL (Koehn, 2002) corpus were used. I
used this parallel corpus to guarantee the compa-
rability of the data for the two different languages.
Training was done on a text of only about1.300.000
characters. The data used for both languages were
aligned translations of each other.

4.3 Cuts
If we fix topdown, locglob, andtdav to PD2, AV,
and ALLAV respectively, we get the following per-
formance values for the various strategies solving
the follower disambiguation subtask:

follower PΨ Instances tested
LONG 0.862 ± 0.018 225
SHORT 0.748 ± 0.014 147
FPDF 0.861 ± 0.024 166
FPDB 0.894 ± 0.015 273
FPD 0.863 ± 0.015 172

0.872 ± 0.017 450

The last table row shows that testing more instances
yields consistent results.



Now follower was set to FPDB, bothlocgloband
tdav were kept at AV and ALLAV, while the strat-
egy for topdown was varied. The results are shown
below.

topdown PΨ Instances tested
PF 0.874 ± 0.018 390
PB 0.891 ± 0.017 270
PDF 0.888 ± 0.016 273
PDB 0.881 ± 0.016 274
PD2 0.894 ± 0.015 273

Now, topdown was set to its optimum
PD2 again andlocglob and tdav were varied:

locglob, tdav PΨ Instances
LOCAL, TOP 0.802 ± 0.023 131
LOCAL,ALLAV 0.793 ± 0.022 135
AV, TOP 0.877 ± 0.021 409
AV, ALLAV 0.894 ± 0.015 273

The performance on the English test corpus with
the winning set of strategies (topdown: PD2, fol-
lowers: FPDB, locglob: AV, tdav: ALLAV) was
0.889 ± 0.015 with 239 instances tested, that is the
results for German and English overlap greatly with
respect to their error margins.

4.4 Linguistic units

In this second evaluation procedure it was checked
if a segment with two non-blundering boundaries
constitutes a possible linguistic unit which is a mor-
pheme, word, or phrase. As above, no gold stan-
dard was set up, but the number of blunders like
detain(ed in the uk) was counted to compute pseu-
doprecision as defined in equation 5.

The parameters were set to the optimal values as
obtained in the preceding section:topdown to PD2,
locglob to AV, andtdav to ALLAV, and follower to
FPDB. Results were as follows:

Language PΨ Instances tested
German 0.893 ± 0.008 243
English 0.870 ± 0.008 311

Interestingly, most of the non-blundering seg-
ments are simply morpheme candidates. If only seg-
ments containing subsegments are counted, the fig-
ures fall to values nearer to0.5 than to1.

5 Discussion
There are two classes of results for the various dis-
ambiguation strategies tested in 4.3. Two very naı̈ve
strategies perform badly: Always continuing with

the shortest segment (SHORT) is obviously subop-
timal (PΨ ≈ 0.75) and only scoring the very next
segment (LOCAL) yields aPΨ around0.8. All
other strategies figure around aPΨ of 0.9 without
significant differences. Nearly all of the remain-
ing 10% blunders are avoided by at least one of the
strategies (that is how they were set up), but the
overall performance stays the same. This resem-
bles very much the behavior found for state-of-the-
art methods of unsupervised segmentation of words
into morphemes which stop at anF measure be-
tween0.6 and0.7 (Kur, 2005). Similar figures are
found in all papers cited in the present study.4

It should be mentioned that if only word internal
cuts are considered5 PΨ drops from0.894 ± 0.015
to 0.812 ± 0.042 for the winning parameter setting
for German (96 instances). For English the figure is
dropping to0.609 ± 0.064 (55 instances).

The demonstrated stability of the results should
be worrying for everyone doing language structure
learning purely on surface statistical basis. The re-
maining10% blunders simply do not seem to stem
from surface statistics.

Surely, some really promising possibilities to im-
prove the results have not been applied yet: Parlia-
ment discussions are restricted in genre. One could
try the method on a more balanced corpus. More-
over, the training corpus was very small. It only
contains about 1.3m characters or around300 pages
of text, about a tenth of the small Brown corpus.
Not even a cutoff was used to exclude segments
with too bad statistics. It is – by the way – an as-
tonishing fact, how good the results are from this
point of view and how often segments were rec-
ognized from one occurrence in the training corpus
only (lord inglewood is an example).

The most interesting and so far untested way of
excluding spurious segments by the use of context
information is sketched in figure 4.

But apart from these prospects a glance at
the occurring blunders shows two things: First,
many wrong segmentations clearly stem from the
complete lack of categorical knowledge in the
system: In German the occurring segmentation
[(ver)(sich)]{[(er)(ung)](en)}6 is caused by the re-
flexive and personal pronounssich and er which

4Of course no quantitative comparison is possible between
my and their results, because I refrain from using precisionand
recall, which are usually given.

5That is if all cuts which coincide with white space are ex-
cluded.

6instead of{[(<ver><sicher>)(ung)](en)}, assurances
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Figure 4: The segment represented by the framed
dot (stru) is definitely no possible morpheme in this
context. It is a blunder of the current setup. But as
shown in the figure, every occurrence ofstrument
was preceded by anin. This fact should help to sup-
press the wrong segment.

could be ruled out in this context if recognized as
such.

Secondly, many wrong segment groupings such
as the German (wesentlich)[(er)( teil)]7 where the
inflectional ending is attached to the following noun
instead of the adjective have their origin in syntactic
agreement: Because the adjective ending is deter-
mined by the noun, its affiliation to the adjective is
not resolvable statistically. Here we also need cate-
gorical information.

This is why I strongly suggest to give up the long
standing paradigm of sequential processing, where
preprocessing is followed by tokenization is fol-
lowed by tagging is followed by grammatical an-
alyzes. It should be replaced by a more holistic
approach which is capable of recognizing linguis-
tic categories while processing raw text. This could
consist of a combination of a system like the inves-
tigated and an approach as it is described in Solan
et al. (2005).
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